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ABSTRACT: Heat management is crucial in the design of nanoscale devices as the
operating temperature determines their efficiency and lifetime. Past experimental
and theoretical works exploring nanoscale heat transport in semiconductors
addressed known deviations from Fourier’s law modeling by including effective
parameters, such as a size-dependent thermal conductivity. However, recent Hyarodys

experiments have qualitatively shown behavior that cannot be modeled in this decay DAM REGION

way. Here, we combine advanced experiment and theory to show that the cooling of '

1D- and 2D-confined nanoscale hot spots on silicon can be described using a general

hydrodynamic heat transport model, contrary to previous understanding of heat flow

in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from
transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-
dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport
mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport
regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on
nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal
management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a
subset of geometries, supplying a route for optimizing heat dissipation.

KEYWORDS: phonon hydrodynamics, non-Fourier heat transport, silicon, high-order harmonic generation, pump—probe spectroscopy

dvances in fabrication have scaled the characteristic design for good thermal management in next-generation
dimensions of complex systems to the few nanometer nanodevices. »
range and even thinner. At these length scales, Theoretical proposals based on truncated Levy flights,

suppression of phonons,”'* or relaxons'® have explained
certain aspects of nondiffusive thermal transport for specific
geometries. Phonon hydrodynamics'®™** has been also
successfully used to explain thermal transport behavior on
2D materials,”® such as graphene,26 and even in bulk materials
at very low temperatures.”” As this behavior is known to occur
when “normal” phonon scattering events (i.e.,, processes that
efficiency falls well below what is predicted by bulk diffusion, conserve quasi-momentum) dominate over “resistive” ones,
both for structured optical excitati0n1_4 or for optically excited the existence of hydrodynamic transport in bulk semi-
nanostructured transducers.”” " Moreover, recent experiments

conventional macroscopic (bulk) models can fail to accurately
describe nanoscale behavior because of the dominance of
interfaces and surfaces. Specifically, thermal transport from
nanoscale heat sources on semiconductor substrates strongly
deviates from bulk diffusive transport predictions. Experiments
show that as the heat source size is reduced, the heat transport

have uncovered that both the size and spacing of periodic Received: March §, 2021
nanoheater arrays strongly influence thermal transport, Accepted: July 23, 2021
resulting in counterintuitive behaviors.*” However, there is Published: July 30, 2021

still no consensus on the underlying physics—in large part

because there is no comprehensive model to describe these

new nanoscale thermal transport regimes. This precludes smart
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conductors, like silicon, at room temperature has been
explicitly discarded.”®

It is widely accepted that solving the Boltzmann transport
equation with ab initio calculated parameters is the most
precise way to describe the transport of phonons, which are the
dominant heat carriers for semiconductor and dielectric
materials.”” ™! However, several difficulties associated with
this approach limit its use at a practical level. First, this
equation is challenging to solve in general because of the
complexity of phonon collisions. To overcome this challenge,
the relaxation time aggroximation is often used to simplify the
collision expression.1 % However, this approximation does not
guarantee energy conservation, which can lead to invalid
results.”>*® Second, complex geometries are challenging
because one must model how each phonon mode interacts
with every boundary present. Finally, coupling this equation to
other phenomena, such as thermoelectricity or thermo-
elasticity, exponentially increases the computational require-
ments. These challenges can prevent microscopic models, like
the Boltzmann transport equation, from being directly
compared to experimental data.

Because microscopic models cannot be applied in many
complex geometries, experiments often use an intermediate
layer, or mesoscopic models, to compare results and theory.
Most mesoscopic models to date are based on Fourier’s law of
heat diffusion with the addition of phenomenological effective
parameters. This approach fits effective parameters to experi-
ments and then formulates theoretical models to connect the
fitted values to ab initio calculations. Recent works have used
this effective Fourier model to analyze heat dissipation away
from metallic nanostructures of varying size and spacing.”~>""'
This can quantify the deviation from the diffusive prediction by
fitting either an effective thermal boundary resistance between
the transducer and substrate’” or an effective thermal
conductivity of the substrate.”*'***7*® These techniques
have significantly advanced our understanding, making it
possible to develop new experimental mean free path
spectroscopy techniques,l as well as uncovering new transport
regimes dominated by the heat source spacing.”® However,
using Fourier’s law as a mesoscopic model, even with effective
parameters, can obscure the underlying physics and fails to
predict thermal transport observed for all time and length
scales.'””> Most importantly, this approach is difficult to
generalize to arbitrary geometries or materials.

In this work, we present a comprehensive set of dynamic
EUV scatterometry measurements of nondiffusive heat flow
away from 1D- and 2D-confined nanostructures on bulk
silicon. We use this data to validate and generalize the Kinetic
Collective Model (KCM),””** which is a mesoscopic model
which uses a hydrodynamic-like heat transport equation'® with
ab initio parameters. Contrary to conventional understanding,
we show that heat transport away from nanoscale sources on
bulk silicon can be predicted by the hydrodynamic equation.
This generalizes the hydrodynamic framework to situations
where phonon momentum is conserved, which applies not
only when normal collisions dominate but in regions with size
comparable to the average resistive phonon mean free path
near heat sources and system boundaries.””’**” We also
experimentally observe that closely spaced 2D-confined
(nanodots) on a bulk silicon substrate cool faster than widely
spaced ones, and that this effect is larger in 2D-confined than
in 1D-confined (nanoline) sources observed by previous
works.”” Moreover, we demonstrate that KCM both fully

predicts the heat transport over a wide range of length-scales
and time-scales from 1D- and 2D-confined heat sources on a
silicon substrate—including the counterintuitive behavior of
the closely spaced geometry—and captures the full thermo-
mechanical response to the system, which is beyond the
capabilities of microscopic models.

Our mesoscopic hydrodynamic model also provides insight
into the fundamental transport behavior. KCM allows us to
identify the time scales over which two different transport
mechanisms are dominant: one characteristic time dominated
by the thermal boundary resistance and another regime that is
dominated by hydrodynamic heat transport. The latter
mechanism is responsible for the slow thermal decay of small
heat sources, and consequently, its reduction is responsible for
the increased dissipation of close-packed nanoheaters.
Furthermore, we develop a two-box model, derived from the
hydrodynamic equation, which provides a physical interpreta-
tion and specific expressions for the two characteristic
dissipation mechanisms. We confirm these findings by
comparing our models to both past 1D-confined and new
1D- and 2D-confined experimental data. We conclude that
KCM—involving only a few parameters—provides a predictive
description of the thermal and mechanical response in these
complex systems with highly nondiffusive behavior and has
specific advantages over the traditional effective Fourier model.
This work thus represents a significant advance in both
experimental and modeling capabilities opening the door to
improved thermal management in iterative nanoscale device
design, including possible routes to increase clock rates in
nanoelectronics by surpassing what has been called the
“thermal wall”.***!

We measure the heat dissipation away from 1D-confined
periodic nanoline heat sources on a silicon substrate using
dynamic EUV scatterometry similar to that of refs 7—9 but
with significantly improved signal-to-noise ratio—by nearly 2
orders of magnitude. These improvements allow us to perform
new measurements on 2D-confined periodic nanodot heat
sources on a silicon substrate, which are more challenging than
1D measurements due the reduced fraction of surface covered
by the heat sources. Both the nanodot and nanoline arrays
were fabricated under identical conditions. Our time-resolved
measurements use an ultrafast infrared pump laser pulse to
rapidly excite thermal heating and expansion in the metallic
structures. The resulting thermal and elastic surface
deformation is monitored by measuring the change in
diffraction efficiency of an ultrashort EUV probe pulse, as
depicted in Figure 1 (see Methods). Using this technique, we
observe the heat dissipation from nanodot arrays in general
geometries without complex fabrication and from nanoline
arrays down to 20 nm in size (L) and 80 nm in spacing (P).

To interpret the experimental data, we implement a
mesoscopic model using KCM and a thermoelastic set of
equations (see Methods). For heat transport, we use Fourier’s
law for the metal sources (which is dominated by electrons),
and the Guyer and Krumhansl transport equation'® for the
substrate (silicon), which is the material where non-Fourier
behavior is expected:

dgq _ 2/ o2
— +q=—-«kVT + (Vg + aV(V-gq))
dt (1)
where « is the bulk thermal conductivity of substrate, 7 the
relaxation time of flux g, and [ the nonlocal length—that can be
microscopically interpreted as a weighted average phonon
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Figure 1. Schematic of dynamic EUV scatterometry for probing nondiffusive hydrodynamic-like heat flow. An ultrafast laser pulse rapidly
heats the nanostructured transducers, which dissipate the thermal energy by transferring heat to the substrate. The heat flows away from the
nanoscale heat sources following a nondiffusive hydrodynamic-like behavior, creating a “balloon” shaped temperature profile. The resulting
surface deformation of the heated nanostructures and substrate is measured via diffraction of an ultrafast Extreme Ultraviolet (EUV) probe
pulse, after a controlled pump—probe time delay. The EUV pulse scatters from the periodic nanostructure arrays into a detector. We reduce
the recorded scattering pattern into a single value of diffraction efficiency as a function of time delay between the pump and probe pulses,

which precisely tracks the thermal and elastic dynamics in the sample.

mean free path. All these parameters are intrinsic properties of
the substrate. Equation (1) resembles the hydrodynamic
Navier—Stokes equation of fluids; thus, we can build analogies
between heat flow and fluid behavior. Fourier’s law can be
easily recovered from eq 1: when the experiment time scales
are much larger than 7, the first term can be neglected, and if
spatial scales are much larger than I, the last term can be
neglected. For sizes comparable to I, however, these viscous
terms become important and capture the nondiffusive
transport due to momentum conservation at the scale of the
phonon mean free paths. In nanoscale regions near the heat
sources, the momentum of emitted phonons is conserved due
to the lack of resistive collisions. Hence, hydrodynamic effects
can locally alter the heat transport even in semiconductors like
silicon. In the limit where normal collisions dominate, Guyer
and Krumhans!'® found a = 2; however, we use a = 1/3—
analogous to a fluid with zero volume viscosity—in agreement
with more recent works.””****** To solve this equation,
appropriate boundary conditions are implemented (see
Methods and Supplementary Section 1). In addition, we
require the thermal boundary resistance between the metal and
the substrate. This boundary resistance is the only parameter in
the model that cannot be derived from ab initio calculations
since it is highly dependent on the fabrication process rather
than being an intrinsic material property. However, as all our
nanograting arrays have been fabricated in identical conditions,
we use the identical value of the thermal boundary resistance
for the entire data set. Given the ab initio values for the other
parameters, the model can be solved by using finite elements to
determine the evolution of the displacement, the temferature,
and the heat flux in the nanostructure and substrate.”"

The predictability of eq 1 has been recently validated in
compact and holey films, and thermoreflectance experiments in
silicon, with excellent agreement.u’zz’44 As discussed in ref,*!
the applicability of the model with ab initio parameters (x, |,
and 7) is restricted to geometries where edge effects produced
by two different boundaries do not overlap, i.e. when
boundaries are separated by a distance larger than 2. Here,
the distance between heaters is P — L (see Figure 2). Thus, eq

1 is expected to be valid for nanostructure arrays satisfying P —
L > 21. We term experiments under this condition, where
heaters are expected to behave independently, as effectively
isolated heat sources, and those with P — L < 2] as close-
packed heat sources.

RESULTS AND DISCUSSION

We first study effectively isolated heat sources for both 1D-
confined (nanolines) and 2D-confined (nanodots) of different
sizes and periodicities. Figure 2 compares the experimental
results on nanolines and nanodots with theoretical KCM
solutions obtained using COMSOL. We compare both inertial
solutions, which include elastic waves generated by the
impulsive pump laser excitation and quasi-static solutions
without elastic waves to isolate the effects of the heat flow (see
Supplementary Section 1). We use ab initio calculations to
compute the intrinsic parameters of bulk silicon at T = 300 K:
k=145 W/mK, 7= 50 ps,and | = 176 nm.”"*” For the thermal
boundary resistance, which is an intrinsic property that
depends only on the materials and the fabrication process,
we use R; = 2.25 nKm?/W for all nanostructure geometries
(see Methods), which agrees with previous EUV scatterometry
measurements on these samples’ and is close (~2X) to the
value obtained from time-domain thermoreflectance.”” We
extracted this value from the large heater data, where size
effects are negligible, and it is the only fitted parameter used for
this data set. The excellent agreement in Figure 2 between
experiment and theory demonstrates a significant advance in
modeling; the nanoline thermal decay has already been shown
to be highly nondiffusive® and the models employing a
suppression function are not easily calculable for a nanodot
geometry.” KCM—which is based on only a few key
parameters—accurately predicts the thermal transport and
elastic waves in both nanolines and nanodots without any
geometry-dependent fit parameters, which is beyond the
current capabilities of microscopic descriptions.

In the close-packed situation, (P — L) < 2I, nonlocal effects
are expected to yield interaction between heaters, as phonons

https://doi.org/10.1021/acsnano.1c01946
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Figure 2. Direct comparison between EUV scatterometry data and KCM modeling in 1 and 2D. Experimental and theoretical normalized
change in diffraction efficiency as a function of delay time for different sizes L and periods P for (a) effectively isolated, i.e., where (P — L) >
2], nanolines (1D) and (b) nanodots (2D). Black lines denote experimental data where the error is represented by the gray bar. Blue lines
indicate the inertial KCM predictions, and red lines denote the KCM quasi-static predictions which describe only the thermal transport
without the contribution of oscillating elastic waves. Theoretical predictions are computed using the same geometry-independent
parameters for all nanostructure sizes and shapes. The theoretical curves are identically normalized in each case so that the initial energy
released to the heaters matches experiment (see Methods). Inertial simulations for nanodots are shown just in a short time window because
of their high computational cost. We note that the first mechanical oscillation prevents observation of the initial temperature decay
described by quasistatic curves (see Supplementary Section 1). Also shown are the experimental and theoretical changes in diffraction
efficiency for close-packed, i.e., (P — L) < 21, (c) nanolines (1D) and (d) nanodots (2D) of different sizes L and periods P. Theoretical
results are solutions of eq 1 with I = (P — L)/2, while the other parameters are the same size-independent values. The only fitting
parameter for the entire data set is the intrinsic thermal boundary resistance, which is set to 2.25 nKm?/W for this work. The excellent
agreement between KCM and the experimental data for the highly nondiffusive decay for both 1D- and 2D-confined heat source geometries
demonstrates the predictive capability of this model.
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Figure 3. Hydrodynamic regions in effectively isolated and close-packed situations. Effective thermal conductivity profile on silicon, Igl/IVTI,
predicted by KCM for a nanoheater of width 30 nm at ¢ = 0.5 ns for (left) isolated (P = 600 nm) and (right) close-packed (P = 120 nm)
configurations. Similar to fluids, a friction-like reduction of thermal transport appears in the regions of the substrate where heat flux
gradients are large. Parameter I defines the characteristic size of the region below heaters where these hydrodynamic effects are important
(hydrodynamic region). When sources are separated a distance larger than 21 (effectively isolated lines), one uses the intrinsic value I = 176
nm. When this distance is smaller, i.e., (P — L) < 21, an effective value I 4 = (P — L)/2 (<I) is used. The red color indicates regions where the
thermal transport has been reduced (compared to diffusion) while the white color represents regions of diffusive transport. In close-packed
configurations, the interaction between heaters homogenizes the profile, thus reducing viscous effects to a smaller region of size I As a
result, close-packed configurations evacuate heat faster than isolated lines of the same width as shown in ref 8. The profiles shown do not
appreciably change during the time scale of experiments. Note that scales are the same in both panels.

from a given source are able to reach neighboring sources
before scattering. In this case, one does not expect eq 1 to be
applicable since higher-order derivatives should be included in
the transport equation.”® To keep the model as simple as
possible, we propose that the effects of these higher-order
terms can be absorbed into a geometry-defined value J g where
eq 1 is still sufficient to describe the system. We propose the
simplest expression that satisfies limiting cases: Iz = (P — L)/2
(<1). For this expression, when the period P tends to the line
width L, Iy — 0. In this limit, the grating tends to a line of
infinite line width, and thus, viscous effects should vanish. In
the other limit, if (P — L) — 2I, we recover Lz — [ as
constructed. Using this expression for l.g we compare KCM
predictions with experimental results for close-packed nanoline
and nanodot heaters in Figure 2¢,d. The model predicts that
closely spaced heat sources cool faster than widely spaced ones,
as uncovered in previous experiments.é’g’9 We also exper-
imentally demonstrate that this same counterintuitive behavior
observed in nanoline arrays is universal and manifests in
nanodot arrays, since the L = 50 nm with P = 200 nm nanodot
signal is relaxed at 800 ps while L = 50 nm with P = 400 nm is
not. The excellent agreement between the KCM prediction
and experimental results for the close-packed cases shows that
KCM can model this behavior with a simple expression for I ¢
(without fitting), while the other parameters used are the same
used in the isolated cases. In summary, both nanoline and
nanodot experiments can be predicted by the KCM using the
intrinsic value [ = 176 nm when sources are separated a
distance larger than 2! (effectively isolated sources), and a
geometry-defined effective value when distances are smaller
(close-packed sources). This modification of I for a specific
situation allows us to retain both the predictive capability and
simplicity of the model.

13023

Using our model, we interpret the behavior of the effectively
isolated sources from a hydrodynamic viewpoint and compare
it to the close-packed sources. For effectively isolated sources,
hydrodynamic effects become relevant when line width L is on
the same scale as the phonon mean free paths ~I; thus, the
non-Fourier terms in eq 1 reduce the heat flux, compared to
Fourier’s law, in agreement with experiments.””>'>** This
phenomenon is analogous to a friction that arises from the
large gradients in heat flux that impedes heat flow, referred to
as a viscous resistance.>® In other words, when line width L is
on the same scale as ~I, there is not enough resistive phonon
collisions to scatter the heat outward in all directions as
diffusion assumes. Instead, the thermal energy is forced straight
downward into the substrate over a distance related to ~I
before enough resistive phonon collisions occur to dissipate
energy in all directions, shown schematically in Figure 1. These
hydrodynamic-like friction effects resulting from a lack of
resistive collisions have been described in other formalisms
albeit with different interpretations. For example, models using
a phonon suppression function predict heat flow that is less
efficient than Fourier’s law when line width L is on the same
scale as ~I, similar to our hydrodynamic model; however, this
phenomenon is interpreted as a reduced number of carriers
due to ballistically traveling phonons.'*** Additionally, models
incorporating anisotropic behavior of thermal conductivity are
parallel to the downward flux forcing predicted by our
hydrodynamic model.'” The viscous term in eq 1 naturally
includes both heat flux reduction and apparent anisotropy
observed by experiments. In Figure 3, we visualize these
substrate regions where viscous effects are important (hydro-
dynamic regions) by converting results to a spatially dependent
effective thermal conductivity of silicon. Because of their
proximity to the interface, if one tries to apply Fourier’s law,
hydrodynamic effects might be interpreted either as an increase

https://doi.org/10.1021/acsnano.1c01946
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Figure 4. Experimental and theoretical quasi-static change in diffraction efficiency. Comparison of the thermal relaxation for effectively
isolated heater lines of L = 250 nm and P = 1000 nm. The black (gray) line denotes experimental data without (with) acoustics, the red line
is our KCM prediction using intrinsic parameters, while the green line is a Fourier model using an effective thermal boundary resistance
value fitted to obtain the best match to data. The Fourier fit overestimates experimental decay at short times and underestimates it at long
times. Experimental measurements indicate that the thermal decay of heaters cannot be described by just one characteristic time, like the
prediction by Fourier’s model; however, KCM captures the decay for all times. Raw experimental data is from ref 8.

of the thermal boundary resistance® or as a reduction of the
thermal conductivity near the heater.”*” In the effectively
isolated case with L = 30 nm and P = 600 nm, this region has a
size of order I ~ 200 nm, while in the close-packed case (P =
120 nm), it is much smaller and of order lg ~ 50 nm.
Therefore, we hypothesize that the interaction of the nearby
heat sources in the close-packed scenario reduces the nonlocal
length, decreasing viscous effects, allowing the system to cool
more efficiently than with isolated heaters. The microscopic
description of this effect is the subject of future work.

To demonstrate the advantages of our hydrodynamic model
over the traditional effective Fourier model with a best-fit
boundary resistance, we compare the two theoretical
predictions to experimental data for the isolated 250 nm line
width case in Figure 4. To emphasize the thermal decay of the
system, we compare only the quasi-static calculations and data
where the acoustic waves have been subtracted using the
matrix pencil method (see Supplementary Section 3).
Although an effective Fourier model can quantify the degree
of the nondiffusive nature of the system, one finds that the best
fit Fourier model fails to describe data at all times, as it
overestimates the decay at the beginning and underestimates it
at the end. In contrast, KCM predictions agree with data at all
times. This plot indicates that the experimental results display
two characteristic times: a fast one at short times and a slow
one at longer times. These two different time scales are also
apparent in the other nanostructure sizes shown in Figure 2.
Therefore, as diffusive transport in these geometries contains
only a single characteristic time scale, the effective Fourier
model cannot capture the full nanostructure relaxation and
misses the underlying physics, even with fitted intrinsic
parameters (see Supplementary Section 2). We note that
thermal transport data from visible probe techniques is
typically not fitted until >100 ps after the pump pulse.”®
Indeed, if the data from the first hundreds of picoseconds is
excluded from our analysis, the presence of two distinct time
scales cannot be observed (see Supplementary Section 2). In
contrast, our EUV probe is only sensitive to surface
deformations (see Methods) and thus precisely captures two
distinct time scales—a signature of non-Fourier heat transport.

A distinct advantage of KCM is that we can gain deeper
insight into the two time scales of thermal relaxation by
investigating the role played by hydrodynamics. To do this, we
analytically solve the thermal equations in the heater and the
substrate for the case L < [. In this range, hydrodynamic effects
are dominant: the g term in eq 1 can be neglected compared to
the Laplacian term, and the heat flux obeys the (linear)
Navier—Stokes equation. The system of equations obtained is

dr, G- 1T,

Vat R, (2)
i, TL-T,  T-T,

2 at R, R,

where T is the heater temperature, T, the average temperature
of the substrate at the interface, and T, the average substrate
temperature in the outer part of the hydrodynamic region, i.e.,
at a depth of order ! below the heater. C; = ¢h denotes the
heat capacity of the heater per unit surface, with ¢, and h the
specific heat and height of the heater, respectively. C, = ¢,L(1 +
@)/B is a heat capacity per unit surface characterizing the
substrate, with c, the substrate specific heat, and B a calculated
geometric coefficient that for nanolines is 3.0. R, is the thermal
boundary resistance between the metal and the substrate, and

BE . . .
R, = - is a size-dependent thermal resistance due to viscous
K

effects (details in Supplementary Section 2). At short times, Th
is close to T3® as heat has not reached this region, and eq 2
becomes a linear system with a double-exponential decay:

L-T,= “1‘5_”11 + ‘lze_m2 (3)

with 7; and g; the characteristic times and weights, which are
determined by C,, C,, R, and R,. Therefore, KCM provides
two characteristic times with specific expressions in terms of
the physical properties of the system.

Equation 2 can be interpreted intuitively as a two-box model
as seen in Figure 5. One box represents the heater, while the
other box is a region of order L in the substrate below the
heater (referred to as the dam region). The thermal response
of the system begins when the heater is filled with thermal
energy from the laser pulse. At short times after the laser pulse,

https://doi.org/10.1021/acsnano.1c01946
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rate ruled by hydrodynamic effects.

the heater releases the energy into the dam region, which
retains the energy and rapidly increases in temperature. The
initial rate of this energy transfer is dominated by the intrinsic
thermal boundary resistance between the heater and substrate.
At larger times, when the dam region has equilibrated with the
heater, the dissipation of the thermal energy is dominated by
the rate of energy transfer out of the dam region into the rest
of the substrate. Therefore, the substrate plays two roles in the
thermal response of the system: it acts both as an energy
reservoir with heat capacity C, and as a thermal resistance R,.
The rate of energy transfer in these later times is controlled by
the viscous resistance, i.e., hydrodynamic effects. The thermal
relaxation of the heaters can be described by an equivalent
circuit (Figure Sa) and illustrated by a fluid analog (Figure Sc).
The predicted temperature evolution of the system as a
function of time and position are shown in Figure 5b and
Supplementary Section 2.

For small isolated sources, we find simple expressions for the
characteristic times, namely 7, = R; C = R, C,G/(Cy + Gy),
and 7, = (C; + C,)R,. For nanolines of L = 50 nm, these
expressions yield 7, = 50 ps and 7, = 1050 ps; thus, 7, is an
order of magnitude larger than 7. In this limit, 7; depends on
the thermal boundary resistance, while the viscous time scale 7,
does not depend on the thermal boundary resistance but
mainly on the nonlocal length [ and geometry:

K ¢

12
7, = & 1+a+BC—hﬁ
L 4)

Therefore, for small isolated sources, KCM can provide
simple analytical expressions for the two different time scales of
the heat transfer, each one associated with a different resistive
mechanism. This allows accurate experimental validation of the
nonlocal length value for silicon at room temperature (a
sensitivity analysis of various KCM parameters is provided in
Supplementary Section 2). Additionally, the two-box model eq
2 can also be applied to close-packed experiments by
substituting [ by l.¢; however, the simple expression of eq 4
cannot be used in this case (see Supplementary Section 2).

Although the two-box model has been derived at small sizes,
it also characterizes the non-Fourier behavior for all
experimental sizes. To validate the intuition provided by the
two-box model, we fit a double-exponential decay (eq 3) to
each of our experimental measurements, as shown in Figure 6a.
We compare the fits of experiments to fits of numerical KCM
simulations and the analytical two-box model in Figure 6b—d.
We find that the experimental fit results agree well with both
KCM numerical and analytical calculations. Additionally, we
confirm the existence of a short time scale (z; ~ 100 ps) which
is dominated by the intrinsic thermal boundary resistance in
Figure 6b and a longer time scale (7, ~ 1 ns) which is
dominated by the hydrodynamic effects in Figure 6¢c. Figure 6¢
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Figure 6. Two characteristic decay times in thermal relaxation of nanoline (1D) experiments. (a) The experimental change in diffraction
efficiency, with oscillations removed, for a heater line of L = 250 nm and P = 1000 nm (thin line) can be fitted with a double exponential
decay (thick line), from which two characteristic times are extracted: a short time scale (red line region, 7,) and a long time scale (blue line
region, 7,). (b,c) Characteristic time 7; and 7, versus heater line widths L for effectively isolated (solid triangles) and close-packed (solid
circles) experiments. KCM numerical (analytical) results are denoted by open symbols (lines). The color intensity in the symbols indicates
the weight of each characteristic time in the overall decay. The short time scale (7; ~ 0.1 ns) is dominated by the interface resistance, while
the long one (7, ~ 1 ns) is ruled by the hydrodynamic effects in the substrate. Additionally, the difference between the dissipation of close-
packed versus effectively isolated heat sources is demonstrated. (d) The normalized weight of the hydrodynamic characteristic time in the
temperature decay, a, (= 1 — a,), is displayed versus line width for all experiments, showing the transition from interface- to hydrodynamic-
dominated decay as source size decreases. These experimental fits include raw data from refs.*” and the current study.

also displays the splitting of the decay times between effectively
isolated and close-packed experiments, i.e. the increase in
dissipation efliciency for close-packed heat sources. In Figure
6d, we plot the weight of the hydrodynamic dominated decay,
a, in eq 3, which shows a transition from a primarily
hydrodynamic decay for small heaters, to a decay ruled by the
thermal boundary resistance at large sizes. This is expected as
large sizes should converge to the Fourier prediction, which
contains a single time scale. Therefore, the size-dependent
effective boundary resistance extracted by the effective Fourier
model in refs 8 and 9 can be reinterpreted as capturing the
weighted average of the time-scales (7, 7,) generated by a size-
independent boundary resistance and size-dependent localized
hydrodynamic effects.

CONCLUSIONS

In conclusion, we have shown that by adding a hydrodynamic
heat transport term, we can explain the thermal transport
behavior of nanoscale metal—semiconductor samples with 1D-
and 2D-confined heat source geometries over a large range of
sizes, allowing a deeper insight of the physical behavior beyond
effective Fourier’s law. The hydrodynamic model allows us to

13026

uncover two fundamental mechanisms in the thermal
relaxation of nanoheaters on semiconductor and dielectric
substrates: a first decay ruled by the interface followed by a
second decay controlled by hydrodynamic heat transport in the
substrate. For large nanoheater sizes, the former mechanism
dominates, while for small nanoheater sizes, the hydrodynamic
effects dominate. We have found compact analytical
expressions for the time scales of these mechanisms and for
the general thermal decay of heaters by developing a simple
two-box model. In contrast to the single exponential decay
predicted by Fourier for the semi-infinite substrate conditions
of our experiments, the hydrodynamic model yields a two-
exponential decay, which has been confirmed by extensive
experiments in 1D- and 2D-confined source geometries. This
two-exponential kinetics thus confirms the non-Fourier
behavior of these experiments.

In contrast to previous models, the present hydrodynamic
model contains no geometry-dependent fitting parameters, and
it is thus predictive. The excellent agreement between KCM
and the experimental data for the highly nondiffusive decay for
both 1D- and 2D-confined heat source geometries demon-
strates the versatility and generality of this model to capture
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behavior in complex, device-relevant geometries. In addition,
our formalism enables predictive strategies to reduce the
cooling time of nanoscale heaters. The mesoscopic character of
the model and the use of intrinsic, geometry-independent
parameters allows it to be easily extended to the complex
architectures required by nanoscale technologies, where the
lack of control on heat dissipation represents an important
limitation for future developments.

METHODS

EUV Dynamic Scatterometry Measurements. The sample
consists of metallic Ni nanostructure arrays fabricated on the surface
of a silicon substrate using an e-beam lithography technique. The
nanostructure arrays are 150 X 150 pm? areas consisting of both
periodic nanolines and nanodots with line widths ranging from 1 ym
down to 20 nm, periods ranging from 4 ym down to 80 nm, and
average heights of 11.5 nm. The line width and period of the
nanoline/nanodot arrays is independently controlled in order to
separate the effects of size and spacing. The dimensions of the various
arrays are characterized using atomic force microscopy (see
Supplementary Section 4). To launch dynamics in the sample, an
ultrafast infrared (780 nm wavelength, ~25 fs pulse duration) pump
beam is incident on the sample with ~ 20 mJ/ cm? fluence and ~ 275
um spot size. The pump light is preferentially absorbed by the
metallic nanostructures which causes rapid heating followed by
impulsive thermal expansion in the nanostructures. The coherent
excitation of the periodic arrays launches acoustics waves that
propagate along the surface of the silicon substrate. As the heated
nanostructures cool down by thermal dissipation into the substrate,
they relax back to their original profile. An ultrafast, short wavelength
probe beam is generated by focusing an ultrafast infrared pulse into an
Ar filled glass capillary. A quantum nonlinear process called high
harmonic generation converts a portion of the infrared light into a
coherent short wavelength (~30 nm) ultrashort pulse duration (~10
fs) extreme ultraviolet (EUV) beam.*® The short wavelength of the
probe allows for exquisite picometer sensitivity to the surface
displacement and allows for measurements of 10s nm nanostruc-
tures.*” Moreover, these wavelengths interact with core electrons far
from the Fermi surface, which are not affected by small temperatures
changes as the photon energies are far from resonances in nickel.*’~*’
The probe beam is scattered from the nanostructure arrays at a set
time delay, controlled by a mechanical delay stage, relative to the
pump beam and captured on an EUV sensitive CCD camera. Images
of the EUV scattering pattern with and without the pump beam are
subtracted, allowing us to observe the change in the diffraction
pattern. By subtracting the change in intensity of the reflected EUV
light from the change in intensity of the diffracted EUV light, we can
compute the change in diffraction efliciency. This change in
diffraction efficiency is monitored as a function of time delay between
the pump and probe beams and can be directly related to the surface
deformation of the sample.

Thermoelastic Modeling. The microscopic expressions required
for the ab initio calculation of the KCM parameters can be found in
refs 37 and 38. The same parameter values for silicon at room
temperature have been used to model other experiments.””>**%**

The temperature and the heat flux are obtained by solving the
energy conservation equation along with the heat transport equation
(Fourier’s law for the heaters and eq 1 for the substrate). The second-
order derivatives in the substrate transport eq (eq 1) require the
inclusion of extra boundary conditions for the heat flux. A slip
boundary condition relating the tangential heat flux in the substrate
and its derivatives is imposed in the interfaces and in the silicon free
surfaces (see Supplementary Section 1). In the free surfaces, thermal
insulation is ensured by fixing normal component to zero. In the
interfaces, we impose continuity of the heat flux normal component in
the metal and in the substrate. Finally, we use a generalized boundary
condition for the temperature jump in the interface including a
Kapitza thermal boundary resistance term along with nonlocal
terms.”” Using ab initio calculations, we compute a lower bound for

the thermal boundary resistance assuming diffusive phonon reflections
and perfect contact area (see Supplementary Section 1). However, the
nanogratings fabrication process produces interface defects that
increase the actual boundary resistance value. Therefore, a single
correcting factor for the boundary parameters is required to predict
the thermal decay of all the gratings (1D and 2D). The obtained
correcting factor is fitted from the thermal decay of the largest
experimentally available 1D grating (L = 1 ym) and hence does not
depend on the model used. For large gratings, the hydrodynamic
corrections do not play any role and we obtain the same boundary
resistance correction using KCM or effective Fourier model.
Specifically, we obtained a thermal boundary resistance value 3.1
times larger than the lower bound. This factor is similar to the one
obtained in previous work for a similarly fabricated metal—
semiconductor interface.””

The thermal equations are coupled with the classical elastic
equations to predict the surface deformation of the system in order to
compute the resulting change in diffraction efficiency using numerical
Fresnel propagation. Specifically, the stress tensor of the nickel and
the silicon includes a linear thermal expansion term. Moreover, the
thermo-elastic energy exchange term is included in the energy
conservation equation. For heaters, we use nominal bulk nickel elastic
properties. For the substrate, we use an anisotropic stress tensor
accounting for the structural defects generated during the fabrication
of the nanogratings on the substrate top surface.*’

All the parameter values used and a detailed explanation of the
thermoelastic equations and the boundary conditions can be found in
Supplementary Section 1.

Comparison between Experiment and Model Predictions.
Since KCM consists of a linear set of partial differential equations, the
surface deformation and the predicted diffraction efficiency linearly
depends on the amount of energy deposited in the heater by the laser
pulse. In the simulations, a uniform energy density of 1W/m® with a
duration of <2.5 ps is introduced in the heater. To compare the model
predictions and the experiments, the diffraction efficiency obtained in
KCM inertial simulation is scaled by a factor to match the first
experimental peak. This is equivalent to scaling the simulated energy
density by this factor and this same scaling is used to normalize the
quasi-static simulations. This procedure is also applied to the effective
Fourier simulations in order to compare Fourier and experiments in
Figure 4. Note that a slight correction factor has been added to scaling
of the quasi-static simulation of L = 30 nm with P = 120 nm in Figure
2d due to a small numerical error in the first few picoseconds of this
inertial simulation.

The quasi-static solutions are obtained by removing inertial elastic
effects, i.e., dynamic equilibrium is imposed during all the simulation
(see Supplementary Section 1). These solutions capture the
deformations just due to thermal expansion and hence can be used
to track the temperature evolution of the system (see ref 9). Note that
the initial peak obtained in the quasi-static simulations is not observed
in experiments because the system needs a finite time to expand.

Double Exponential Fitting to Experimental and Numerical
Data. For Figure 6, we performed double-exponential fits to both the
experimental data and the numerical simulations. The quasi-static
numerical solutions can be easily fit to a double-exponential using
nonlinear least-squares; however, due to the noise and inertial elastic
effects, a double-exponential function with four free parameters is too
unconstrained to reliably fit to the experimental data. Therefore, we
constrain the number of free parameters in a single fit while still
independently extracting the four parameters of the double-
exponential. We achieve this by fitting the data in several different
steps. We determine a cut time, f, to divide the experimental trace
into two parts in time to separately fit the two exponentials. We define
the cut time as the time when the ratio between the two exponentials
is 1% and compute t_ using the fit values from the numerical solution.
We fit the experimental data for times ¢ > £, to extract the longer decay
time exponential; however, the functional form of the decay for large t
is not purely single exponential. Because diffusive transport occurs far
from the heat source at large ¢, the decay has a power law component
superimposed on the exponential. To mitigate the effects of this
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power law on the extraction of the decay constant, we fit an effective
Fourier model—with only two free parameters of effective thermal
boundary resistance (R,g) and the overall normalization (AS*)—for ¢
> t. and truncate the fit at roughly 2 times the expected decay
constant. We can then convert R to a decay time, :‘ZE, since ¢ =
Reﬂchh'

To extract the other exponential, we correctly set the overall
normalization by accounting for the inertial elastic effects in the
experimental data. To do this, we fit the KCM quasi-static simulation
to the experimental data with the acoustics waves subtracted for times
t < t, constraining the maxima of the inertial KCM simulation and
experimental data to be within the experimental noise. The resulting
maximum of the KCM quasi-static simulation, A, allows us to
compute Aff = A — A, We can extract the final parameter by fitting a
double-exponential, Afte™/ W Alite=t/ ’Ql, for t < t, with only one free
parameter, 7, For Figure6b-d, we plot 7, = 7 7, = it and a, = A%t/
A, respectively, for both the experimental data and the numerical
solutions. The error bars on the experimental data are the standard
deviation from multiple measurements (if there are no error bars, then
only one measurement was included). As the amplitudes of the
exponentials (a;, a,) decrease, the extracted corresponding decay
times (7, 7,) becomes more inaccurate. This is partially responsible
for the difference between numerical solutions and experimental data
for 7, at large L and 7, at small L. Additionally, inertial effects and
noise affect the extracted values of 7, as L decreases (see
Supplementary Section S).
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