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A B S T R A C T

Electron tomography is used in both materials science and structural biology to image features well below the
optical resolution limit. Here, we present a new method for high-resolution 3D transmission electron microscopy
(TEM) which approximately reconstructs the electrostatic potential of a sample at atomic resolution in all three
dimensions. We use phase contrast images captured through-focus and at varying tilt angles, along with an
implicit phase retrieval algorithm that accounts for dynamical and strong scattering, providing more accurate
results with much lower electron doses than current atomic electron tomography methods. We test our algorithm
using simulated images of a synthetic needle geometry dataset composed of an amorphous silicon dioxide shell
around a silicon core. By simulating various levels of electron dose, tilt and defocus, missing projections, and
regularization methods, we identify a configuration that allows us to accurately determine both atomic positions
and species. We also test the ability of our method to recover randomly positioned vacancies in light elements
such as silicon, and to accurately reconstruct strongly-scattering elements such as tungsten.

1. Introduction

Transmission electron microscopy (TEM) offers unprecedented re-
solution for imaging applications in biology and materials science [1,2].
Modern systems can quantitatively reconstruct 3D local structure,
electrostatic and magnetic potentials, and local chemistry [3]. Recent
progress enables locating the 3D position of individual atoms with high
precision [4–6], and even determining both the 3D position and species
of every atom in a nanoscale sample [7]. These atomic electron tomo-
graphy (AET) studies use a TEM imaging mode called annular dark field
(ADF) scanning transmission electron microscopy (STEM). ADF-STEM
generates contrast that increases monotonically with the 2D projection
of the 3D electrostatic potential of the sample along the beam direction.
Such approximated linearity allows for traditional tomographic re-
construction algorithms [8,9]. However, ADF-STEM requires large
electron doses, as it is much less efficient than phase contrast ima-
ging [10,11]. Additionally, because the electron probe is focused to a
small spot and scanned over the sample surface, sample motion during
the experiment can cause artifacts [12].
The simplest phase contrast imaging mode used in TEM studies is

plane-wave illumination, usually referred to as high-resolution trans-
mission electron microscopy (HRTEM). However, at atomic resolution,

HRTEM imaging produces highly nonlinear contrast for any sample
thicker than a few atomic monolayers, making it difficult to interpret
the results [13,14]. For thin samples, comparing experiments to simu-
lations can recover some quantitative 3D information [15,16], but this
is difficult or impossible for experiments with a high degree of multiple
electron scattering. Thus, phase contrast imaging is not widely used in
materials science electron tomography studies at atomic resolution.
By comparison, phase contrast HRTEM imaging in biology is simpler

to interpret because most biological specimens can be approximated as
weak phase objects, allowing for the sample’s phase to be reconstructed
from a single defocused intensity measurement [17]. This single-image
requirement is important for biological samples because they tend to be
extremely sensitive to electron beam damage and cannot tolerate the
much higher electron doses used in materials science [18]. In structural
biology, the introduction of direct electron detectors with high
quantum efficiency [19] has rapidly expanded the number of solved
protein structures, using 3D tomographic averaging of images of many
identical or near-identical protein structures with random orientations.
This technique is called single particle cryo-electron microscopy (cryo-
EM) [20]. When imaging larger biological samples, averaging of sub-
volumes can also produce high-resolution reconstructions [21].
Recent advances in computational methods have improved
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reconstruction accuracy even further, for example by introducing a
correction for the microscope contrast transfer function (CTF) [22].
However, advanced algorithms generally make a weak object assump-
tion and treat the measured signal as a linear sum of the projected
potential [23]. This linearizes the physical model in order to provide a
closed-form solution, but these assumptions usually only hold for very
thin samples [24]. Nonlinear effects of multiple scattering are non-
negligible for thick samples, which represent a large majority of ma-
terials science samples. Therefore, thick samples require both a non-
linear forward model and a reconstruction method that captures the
dynamical scattering of the electron beam.
Nonlinear phase reconstruction in 2D for TEM includes algorithms

for reconstruction of the sample potential phase contrast measure-
ments [25,26], maximum likelihood methods [27–29], and other
iterative algorithms [30–33]. These methods, however, are usually
limited to samples that are either single scattering or satisfy crystal
approximations.
Methods to correct for multiple scattering in 3D phase reconstruc-

tions have been proposed in optics [34–41]. A typical strategy - the
multislice or beam propagation method [14,42,43] - treats the 3D ob-
ject as a series of 2D slices, each with it’s own transmittance function,
separated by small distances of free-space propagation. For TEM, the
interaction of the electron beam with the sample can thus be modeled
by two linear operators. The first is a multiplication by the transmit-
tance function that describes the absorption and phase delay of the
electron beam when interacting with that slice of the sample. The
second is the free space propagation operator, which captures the dy-
namics of propagation. Unfortunately, these two operators do not
commute, making the inverse scattering calculation both nonlinear and
non-convex. Van den Broek and Koch have proposed an inversion
method for multiple electron scattering, which uses multiple beam tilt

projections for phase contrast TEM imaging to perform a 3D re-
construction with very few layers [43–45] similar to 3D Fourier Pty-
chographic Microscopy [41]. In simulation, they were able to re-
construct the atomic potential of a small nanoparticle in 3D from a
small number of tilt angles, for strongly scattering atoms and a low TEM
accelerating voltage of 40 kV, and assuming structural priors. However,
the 3D transfer function for tilting the beam results in non-isotropic
resolution [46,47]; hence, the axial resolution is fundamentally limited
when assuming no structural priors on the sample.
In this paper, we present an isotropic atomic-resolution method for

3D reconstruction from intensity-only images taken at varying tilt an-
gles and defocus values. Our algorithm models multiple scattering of
the electron beam and strong phase shifts induced by individual atoms.
Further, we introduce an efficient regularization scheme that exploits
the well-known structure of atoms in order to obtain a physically-ac-
curate result, even with very low signal-to-noise ratio (SNR). After re-
construction, we use an atom-tracing algorithm that is capable of
identifying individual atoms as well as estimating their sub-voxel 3D
positions and chemical species. Our proposed method will allow AET
experiments to be performed on samples that contain weakly scattering
elements such as carbon, oxygen or even lithium, with either crystalline
or amorphous structures, or a mix of both. Taken together, these im-
provements enable imaging of thicker samples and those that cannot
withstand high electron doses. Biological cryo-EM studies may also
benefit if they are performed on very large volumes (where the pro-
jection assumption breaks down) or contain multiple scattering regions.
Assuming a biological tomography experiment had a dose- limited re-
solution of approximately 1 nm, the reconstruction size used in this
study with a voxel size of 0.5 nm could reconstruct a volume of
(240 nm)3.

Fig. 1. Experimental setup for phase contrast atomic electron tomography experiment with a core-shell SiO2 needle geometry. (a) The multislice forward model treats
the 3D sample as a series of 2D slices separated by propagation, thus accounting for multiple scattering. (b) The sample is tilted with respect to the electron beam to
capture plane-wave illuminated images at varying angles (up to 180∘). For each tilt angle several HRTEM images are recorded at different focus planes.
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2. Methods

2.1. Atomic structure of the sample

We consider a two-component sample structure, with a tip geometry
similar to the experiment described in [6] (and shown in Fig. 1). The
structure consists of a crystalline silicon core and a silicon dioxide outer
layer. The crystalline core has a tip diameter of approximately 10 nm,
as in experiments [48]. A 2 nm thick shell of SiO2 surrounds the entire
Si tip. The SiO2 coordinates were taken from the SiO2 structure given
in [49], which were computed using Density Functional Theory (DFT).
Additionally, a 1.2 Å minimum distance was enforced between the
atomic positions of the Si core and SiO2 shell. In total, 150,847 atoms
are present in the structure.
The overall structure of this sample is complex. It contains both fully

crystalline and fully amorphous regions along the beam direction for all
projection directions. Also, while silicon scatters the electron beam with
a moderate cross-section, oxygen atoms scatter only weakly. Finally,
the amorphous SiO2 structure has an Si-O bond length of approximately
1.6 Å [50], making it challenging to resolve the individual atoms in this
structure. Hence, this is a challenging test object with realistic length
scales for AET reconstruction algorithms.

2.2. Simulation setup & parameters

Data is captured using the simplest TEM measurement protocol:
plane-wave illumination, typically referred to as HRTEM or phase
contrast imaging. Using a modern TEM instrument equipped with
hardware aberration correction, we can image the sample with very
little aberrations and sufficient coherence for atomic resolution ima-
ging [51,52]. Fig. 1(b) shows examples of simulated HRTEM plane-
wave images.
To capture phase information, we use through-focus HRTEM images

at each tilt (rotation) angle.Defocusing the electron wave increases
contrast and delocalizes the atomic signal (see Fig. 1(b)). In this near-
field, or Fresnel diffraction regime, each image is high-pass filtered by
the microscope, and the measured signal is modulated by the CTF [14],
which can lead to spatial frequency pass-bands or contrast inversions.
The sample is mounted on a tilt-rotation stage so that it can be ro-

tated with respect to the electron beam. For the tip sample considered
here, a full tilt range of 180∘ has been demonstrated [6] with the TEAM
stage [53]. However, most electron tomography experiments have a
“missing wedge” of tilt angles where the sample geometry or stage
prevent measurements at some projection angles. Therefore, we con-
sider both the full-angle and the missing wedge situations. When the tilt
direction is closely aligned with the crystalline silicon region of the
sample (the low-index zone axis imaging conditions), strong image
contrast is observed (Fig. 1(b)).
In the meantime, we choose parameters that can be realistically

achieved in experiments:
Electron energy: In order to achieve very high resolution, we use an

electron accelerating voltage of 300 kV (de Broglie wavelength
0.0197 Å), as in [6,7]. While SiO2 is known to be sensitive to the
electron beam, it has been imaged previously using 300 kV
HRTEM [54–57].

Voxel size: The voxel size of 0.5 Å (isotropic in all three dimensions)
gives a good balance between resolution and field-of-view (FoV), with
consideration for practical limits on computation. This voxel size can
resolve individual atoms in the amorphous SiO2 structure (average Si-O
bond length of 1.6 Å). Our reconstruction volume is computationally
limited to (24nm)3, corresponding to =480 1.1·103 8 voxels, which re-
quires 422MB of storage space for each full array at single floating
point precision. Because we operate in complex space, the storage size
requirements double to 844MB. Without loss of generality, our final
reconstruction volume contains a large majority of the sample, which

includes approximately 120,000 atoms. In the appendix we show that
this voxel size is sufficient by reconstructing from measurements gen-
erated with a much smaller voxel size of 0.1 Å.

Tilt angles: Due to the nonlinearity of multiple scattering, choosing
the optimal set of tilt angles analytically is not possible. However, we
can get a good estimate by using a linear approximation (single scat-
tering) from optical diffraction tomography [47,58], which treats each
tomographic measurement as coming from a particular subspace of the
sample’s 3D Fourier spectrum (specifically, a parameterized 2D sur-
face). Crystalline samples have distinct preferred measurement direc-
tions, but amorphous materials do not [59]. Since our sample contains
both, we choose tilt angles that are equally spaced, in order to evenly
span Fourier space. In simulations, we mimic experimental limitations
by simulating the effect of a missing wedge where some range of tilt
angles are missing.

Defocus: As few as two measurements taken at different focus po-
sitions can provide phase information [60]. More images will improve
the phase result, but must be traded off against dose, data size and
capture time. Linearly-spaced focus steps have been shown to be an
inefficient scheme for capturing all spatial frequencies; instead, we use
exponentially-spaced focus steps [61]. Positive and negative defocus
provide essentially identical information about the sample (up to a sign
difference) for aberration-corrected microscopes, so we defocus the
electron wave in one direction only. As a practical issue, we further
restrict the defocus to small enough magnitudes to enable easy trans-
lation alignment of multiple images. Due to the increased signal delo-
calization, large defocus values also require a larger FoV and correction
of any magnification or rotation errors, which would increase com-
plexity.

2.3. Forward simulation

First, we describe our computational model for the process of the
incident beam interacting with the sample and forming each mea-
surement; this forward model is used to simulate measurements and will
also be crucial to our inverse problem reconstruction. It is composed of
three parts: object rotation, complex-wave propagation and imaging.
We model the 3D object as a series of projected 2D atomic potential
functions =V V r{ ( )} ,m m

N
1

z where = x yr ( , ) are the lateral coordinates
and m is the slice index along the axial direction (z) [14], with slice
separation described by a set =z{ }m m

N
1

z .
For each tilt angle, θk ( = …k N1, 2, , ), we rotate the 3D object

along the y-axis using a fast rotation algorithm [62]. The tilted object
Wk is then =W V{ },k k where k denotes a linear rotation operator.
Then, we model the propagation of the complex wave, with re-

lativistically-corrected electron wavelength λ, through the object. We
use a multislice algorithm to account for multiple scattering events (see
Fig. 1(a)). Each slice is converted from a 2D potential function to a 2D
transmittance function =t i Wr r( ) exp[ ( )],k m k m, , where σ is the beam-
sample interaction parameter that depends linearly on λ. Example
projected potentials are shown in Fig. 2(b) and (c).
The complex electron wave function before reaching each slice is

denoted by ψk,m(r). As it passes through the slice, it will be multiplied
by the corresponding 2D transmittance function at the corresponding z
depth. After that, it is propagated in free space to the next slice using
the angular spectrum method:

=+ tr r r( ) { ( ) ( )},k m z k m k m, 1 , ,m (1)

where

= i z q{·} {exp[ 2 1/ ]· {·}}z m
1 2 2

m (2)

is the linear operator for free-space propagation by distance Δzm,
= q qq ( , )x y is the 2D Fourier space coordinates, and {·} and {·}1

denote Fourier transform and its inverse, respectively.
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The exit wave of a thin sample (in focus) will show primarily am-
plitude contrast, but most of the electron scattering information is en-
coded as phase shifts on the exit wave. Because defocus induces phase
contrast, we use the free-space propagation operator to defocus the exit
waves by distances of =f{ }j j

N
1

f before capturing the intensity of the exit
wave:

Fig. 2. HRTEM simulation of the SiO2 model. (a) A slice of the atomic structure,
perpendicular to the electron beam direction. (b) The summed 2D projected
potential of the object at 0∘ and (c) 5∘ rotation, with intensity scaled to show the
weakly scattering edges. (d),(e) Noise-free (infinite dose) HRTEM images at
100 nm defocus for (b) and (c), respectively. (f),(g) Noisy versions of the same
images, simulating a dose of 40 electrons/Å2. In
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= +{ }I r r r^ ( ) ( ) ( ) ,k j f k N, , 1

2

exit,k,j
2

j z

(3)

where

= H q{·} { ( )· {·}},1 (4)

with H(q) denoting the microscope’s transfer function [14]. After all tilt
angles and defocus images are acquired, we obtain a series of images

= =I r{^ ( )} ,k j k j
N N

, 1, 1
, f examples of which are shown in Fig. 2(d) and (e). The

multislice beam propagation method is outlined in Algorithm 1 and
schematics are shown in Fig. 1(a).
To image the sample with minimal damage, a low dose is required,

resulting in noisy measurements. The noise can be modeled by an
electron counting process, with each pixel incurring Poisson noise with
mean = =I r{^ ( )}k j k j

N N
, 1, 1

, f . Fig. 2(f) and (g) illustrate a measurement process
with a total electron budget of 7000 electrons/Å2, which is equivalent
to approximately 40 electrons/Å2 when distributed across 60 tilt angles
having 3 defocused images each.

2.4. Reconstruction algorithm

Given a set of intensity-only measurements, we estimate the po-
tential, V, by solving an optimization problem. Starting with an esti-
mated potential V, we use our forward model to generate a series of
predicted measurements = =I r{^ ( )}k j k j

N N
, 1, 1

, f . We formulate an error function
to quantify the difference between predicted and actual measurements

= =I r{ ( )}k j k j
N N

, 1, 1
, f . The goal is to find the 3D atomic potential that fits the

intensity measured and thus minimizes the error:

=

=

= =

= =

V e

I Ir r

arg min

arg min ( ) ^ ( ) ,

V k

N

j

N

k j

V k

N

j

N

k j k j

1 1
,

2

1 1
, ,

2

2

f

f

(5)

where ‖ · ‖2 is the l2 norm. Instead of directly comparing the difference
between the predicted and actual intensity measurements, we compare
the square roots of the intensity, which correspond to the amplitude of
the exit waves. This is because the amplitude-based error function
better accounts for Poisson-distributed noise (whereas a intensity-based
error function would be ideal for Gaussian-distributed noise) [63]. In
this study, the low electron dose means that Poisson noise dominates.
We solve the optimization problem with an accelerated gradient

method outlined in Algorithm 3. For each tilt angle and defocus, We
first tilt the estimated sample and predict the intensity using the

multislice algorithm outlined in Algorithm 1. Next, we minimize Eq. (5)
by differentiating the error with respect to each slice of V. This is done
by recursively applying the chain rule to calculate the gradient, and we
refer to this process as the backpropagation. The back propagation is
illustrated in Algorithm 2, and it is derived in the appendix. Notice that
the symmetry between Algorithms 1 and 2 is a key signature in many
non-linear optimization methods. Then, we perform a regularization
process that enforces prior knowledge we have about the sample (de-
tails discussed later). The last step in the loop is that we apply Nes-
terov’s acceleration, which adds a momentum factor in the gradient
update to improve convergence speed. By repeating these steps, we
finally reach a converged estimate of V and terminate Algorithm 3.
Notice that the reconstruction algorithm implicitly solves the phase
retrieval problem in the gradient calculation. Line 7 of Algorithm 3
closely resembles the traditional Gerchberg-Saxton type phase retrieval
method by applying an amplitude substitution to the residual
error [64].
Algorithms that assume lattice types and occupancies inevitably

preclude detection of small scale spatial variations. Notice that during
the reconstruction, we do not assume any structural priors on the
sample. Thus, our method is robust enough to show vacancies and
defects when they are present in the sample. In contrast to Van den
Broek and Koch [43,44], we also do not assume specific shapes of the
individual atoms.

2.5. Regularization

Although the objective function in Eq. (5) accounts for Poisson-
distributed noise, the reconstruction quality will still suffer with in-
creased noise. In addition, as we lower the number of measurements,
the inverse problem becomes more ill-posed. We use a regularization
scheme to incorporate a priori knowledge that can mitigate this pro-
blem. The regularized cost function is:

= +
= =

V e R Varg min ( ) ,
V k

N

j

N

k j
1 1

,
2

f

(6)

where R( · ) is a general penalty function, and τ is a tuning parameter for
the strength of regularization.
We tested several common types of regularization methods. LASSO

(also known as l1) regularization, where =R V V( ) ,1 promotes spar-
sity in the natural domain and is extensively used in statistical para-
meter estimations [65]. Total Variation (TV) regularization [66], where

=R V V( ) { } ,1 with {·} denoting the finite difference operator, is a
well-known denoising technique. TV enforces piece-wise smoothness
between neighboring pixels by promoting sparsity in the finite differ-
ence domain. Since we know that the 3D atomic potential is a smoothly

Input: Residual vectors{r j(r)}Nf

j=1, intermediate wave functions{ψm(r)}Nz

m=1, 3D rotated atomic potentialsW, slice separations

{∆zm}Nz

m=1, defocus angles{∆ f j}Nf

j=1, and interaction parameterσ.

1: φNz+1(r) ← 0
2: for j ← 1 to Nf do . Refocus to end of sample
3: φNz+1(r) ← φNz+1(r) + P−∆ f j

{
H†
{
r j(r)
}}

4: end for
5: for m← Nz to 1 do . Backpropagation
6: φm(r) ← P−∆zm{φm+1(r) }
7: t∗m(r) ← exp[−iσWm(r) ]
8: gm(r) ← −iσt∗m(r) · ψ∗m(r) · φm(r)
9: φm(r) ← t∗m(r) · φm(r)

10: end for
Return: Estimated gradient∇Wei , {gm(r)}Nz

m=1.

Algorithm 2. Error backpropagation for gradient computation.
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varying function, we choose to implement TV regularization here.
We use a proximal gradient implementation, outlined in

Algorithm 3. First, we compute the gradient sequentially using through-
focus intensities captured at different angles. Then, we evaluate the
proximal operator of the regularization techniques. LASSO regulariza-
tion has an efficient closed-form evaluation; however, the evaluation
for the TV proximal operator is in itself another iterative algo-
rithm [67]. In addition, since we assume in simulation that the atomic
potential is purely real and positive (i.e. no absorption of the electron
beam), we use a positivity constraint to refine our solution space, en-
forced by performing a projection of the estimate onto real and positive
space. In the case where absorption is present, we can remove the
constraint without changing the algorithm.

2.6. Measurements of atom positions and species

After using the algorithm described above to reconstruct the atomic
potentials, the final step is to use the depth or size of the atomic po-
tential wells to estimate the atomic coordinate positions and classify the
atomic species. We have adopted a similar atomic refinement strategy
as previous AET studies [6,7], which is referred to as “atom tracing.”
First, the reconstructed volume is filtered with a smoothing kernel - a
3D Gaussian distribution with a standard deviation of 0.5 voxels minus
another Gaussian distribution with a standard deviation of 1 voxel,
normalized to zero total amplitude. Next, the local maxima are re-
corded as candidate atomic sites. These site positions are refined by
fitting a 3D Gaussian function using nonlinear least squares. Next, the
fitted intensities are subtracted from the reconstructed volume and
candidate atomic sites are added by again filtering with a smoothing
kernel and finding local maximum.
Next, an iterative fitting routine proceeds; for each atomic candi-

date, the nearest-neighbor site intensities are subtracted from the re-
constructed volume. In this subtracted volume, nonlinear least squares
is used to refine the 3D Gaussian function. After each of these iterations,
several criteria were used to remove atomic coordinates. Any sites with
a very low intensity (below 30 V, approximately 10% of the maximum
sample potential) or size below 1 voxel were removed, and any sites
within 2.25 voxels of another site were merged into a single site. After
approximately 12 refinement steps, each reconstruction trial was re-
moving less than 2 atomic sites per iteration, and the root-mean square

(RMS) change in atomic positions was less than 0.005 voxels. Note that
the thresholds were chosen to give good average performance across all
datasets, and were not changed except in one specific instance de-
scribed below.
To classify atom species, we first generate a histogram of atom in-

tensities. We then fit the histogram curve with a bi-modal Gaussian
distribution and choose the intersection of the two Gaussian distribu-
tions to be the species classification threshold. All atoms having in-
tensities less than the threshold will be classified as oxygen, and the rest
will be classified as silicon.
While the full reconstructed volume contains over 120,000 atoms,

we select a smaller volume containing 62,402 atom sites to compare
with the ground truth atomic configuration, in order to demonstrate
accuracy in atom-tracing and atom identification.

3. Results and discussion

The following sections show the results of varying several experi-
mental or reconstruction parameters. For each, we show a single slice of
the normalized reconstructed atomic potential that is perpendicular to
the tilt axis. The slice was taken from the thickest part of the protrusion,
where the diameter is approximately 12 nm. We plot the atomic co-
ordinates that were correctly found for each slice, and the missing and
false positives.
Additionally, we show tetrahedral shapes for each cluster of 5 atoms

that formed a tetrahedron, with bond lengths of the 4 corner atoms to
the center atom within 0.375 Å of the mean Si-O bond length of 1.6 Å.
These tetrahedra help visualize how well the amorphous region of the
sample was reconstructed, especially for reconstructions with a lot of
noise or artifacts present. This feature classification is an example of the
kind of classification measurement that could be performed even in the
absence of clear atomic peaks, as is done in structural biology [68].
Next, we show two histograms that quantify how well we trace the

individual atoms in Fig. 4. The first histogram shows the statistics of
atomic potential intensities of identified atoms. The more resolved the
two distributions are, the better we have classified the specific types of
the atoms. The second histogram shows the errors of the 3D position
estimation from the reconstruction. Here, for each identified atom we
adopt the root-mean-square (RMS) from all coordinates:

Input: Tilt angles{θk}Nθ

k=1, measured intensity images{Ik, j}Nθ,Nf

k=1, j=1, interaction parameterσ, step sizeα, and maximum iterationNs.

1: U(1) ← 0, V(0) ← 0, β(1) = 1
2: for s← 1 to Ns do . Outer loop
3: for k← 1 to Nθ do . Object rotation
4: Wk = BNB

{
Rθk

[
U(s)
]}

5:
(
{ψexit,k,j}Nf

j=1, {ψk,m}Nz

m=1

)
← run Algorithm 1 withWk

6: for j ← 1 to Nf do . Compute residual
7: rk, j ← ψexit,k,j −

√
Ik, j

ψexit,k,j

|ψexit,k,j |
8: end for
9: ∇Wek(U(s))← run Algorithm 2 with{rk, j}Nf

j=1, {ψk,m}Nz

m=1, andWk

10: U(s)← U(s) − αR†θk

{
B†NB

[
∇Wek(U(s))

]}
11: end for
12: V(s)← prox

(
U(s)
)

. Regularization

13: β(s+1) ← 1+
√

1+4(β(s))2

2 . Nesterov acceleration

14: U(s+1) ← V(s) +

(
β(s)−1
β(s+1)

)
(V(s) − V(s−1))

15: end for
Return: Estimated atomic potentialV(s).

Algorithm 3. Iterative reconstruction.
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= + +x x y y z zPosition Error ( * ^) ( * ^) ( * ^) ,2 2 2
(7)

where x*, y*, z* are the true coordinates and x y z^, ^, ^ are the estimated
coordinates. A good reconstruction’s histogram has a peak close to 0
and a narrow main lobe. We also show RMS error (ϵ) in all three di-
mensions.
All reconstructions, unless otherwise stated, are full-angle TV reg-

ularized, created from 60 uniformly spaced tilt angles, each with 3
defocus steps (25, 45, 100nm) with total incident electron count of
50,000 electrons/Å2. The regularization parameter τ in Eq. (6) is chosen
such that the background noise is suppressed, without over-smoothing
(smearing) the adjacent atoms.
Reconstructions are computed on graphics processing unit (GPU) for

accelerated computation (12GB NVIDIA Titan X GPU) and the algo-
rithm converges within 40 iterations for all scenarios. The total com-
putation time for the dataset mentioned above is less than 2 hours.

3.1. Effect of electron dose

In the first set of simulations, reconstructions using different dose
budgets are compared to examine how noise affects the algorithm
performance. We chose three doses: infinite (noiseless), 50,000 elec-
trons/Å2, and 7000 electrons/Å2. Fig. 3(a)-(c) shows lateral slices at
multiple z depths, taken from simulations with different dose levels.
Fig. 4 shows a 1 Å thick z x cross-section slice (intensity normal-
ized), where the location is indicated by the white arrows in Fig. 3, and
atom tracing results. In all reconstructions, the atomic peaks are easily
identified. The reconstruction using 50,000 electrons/Å2 total dose over
all tilts and defocused images is nearly identical to the infinite dose
reconstruction.
As expected, the reconstruction quality eventually deteriorates as

we decrease the dose budget, with the background becoming noticeably
more noisy. We cannot increase the regularization to compensate, as it
will over-smooth the reconstruction. For the dose level of 7000 elec-
trons/Å2, atoms that are too close to each other are smeared together
and missing sites increase. Noisy fluctuations in the background lead to
an increased number of false positive sites. The noise also causes loss of

contrast in the atomic potential intensity, which can be seen from the
intensity histogram; the distributions of two types of atoms are less
resolved when dose is decreased, making it harder to classify the species
of individual atoms. Finally, the RMS position estimation error in-
creases isotropically as we decrease the dose level.
Fig. 5 shows the example plots of cost function (Eq. (5)) vs itera-

tions. Despite the convergence, as we lower the dose budget, the pre-
dicted intensity of the reconstruction has more mismatch with the
measured intensity, causing the squared error to increase.

3.2. Effect of number of tilt and defocus measurements

Because total dose is distributed across measurements from all tilt
angles and defocus distances, we face a trade-off between number of tilt
angles (Nθ) and number of defocus planes (Nf). In this set of simula-
tions, we compare the performance of our method as we vary Nθ and Nf,
while keeping the total dose level constant (50,000 electrons/Å2). Fig. 6
shows reconstructions from three schenarios: 20 tilt angles (separated
by 9∘) with 9 defocus planes (20 nm-100 nm in steps of 10 nm), 60 tilt
angles with 3 defocus planes (20 nm, 45 nm, and 100 nm), and 180 tilt
angles with a single plane at 100 nm. These values give a good balance
between using larger defocus values to produce more contrast, but not
large enough to make image alignment difficult or lose resolution due
to coherence limits.
Comparing Fig. 6(a) and (b), we find that using fewer defocus

planes and more tilt angles results in a better reconstruction of the
sample’s structure and improved atom tracing. Particularly in the
amorphous SiO2 region, the number of missing sites is greatly reduced
by using more tilt angles. Given that phase can be recovered from a few
defocus planes [61], it is reasonable that 9 focus steps are not necessary.
However, more focus steps should help to better reconstruct the atomic
potential [61]. For the case of only one defocus plane (Fig. 6(c)), the
site intensity histograms show that the distributions of the silicon and
oxygen atoms are not as well resolved. Hence, the case in Fig. 6(b) gives
a good tradeoff between accurate structure recovery and good atom
classification.

Fig. 3. Varying dose. Phase contrast AET reconstructions of 1 Å thick 2D atomic potential slices of a simulated Si-SiO2 reconstruction in x y across multiple z
depths, using 60 tilt angles and 3 defocus values per angle. (a) Infinite dose (no noise), (b) 50,000 electrons/Å2, and (c) 7000 electrons/Å2 total dose. Lower dose
results in more noise, which causes errors and artifacts in the reconstruction. Each slice shows the square root of the reconstructed potential from 0 to 80 V and the tilt
axis is along the vertical direction. White arrows show location of reconstruction slices for the following sections in Fig. 4.
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3.3. Effect of missing tilt angles

When the tilt-rotation stage is capable of full-angle tomography,
isotropic resolution can be achieved in x, y, and z. However, often
projection angles are missing due to sample geometry or stage limita-
tions. This means that the coverage of the object’s Fourier spectrum is
incomplete [47], often described as a “missing wedge”. In this section,
we test our algorithm with missing wedges of 30∘ and 60∘ (see Fig. 7(b)
and (c), respectively). Across the accessible tilt angles, the angle se-
paration is constant, such that with constant total dose (50,000 elec-
tron/Å2) distributed across all acquisitions, the dose per image in-
creases with the size of the missing wedge.
We find that the missing wedge problem primarily impacts axial

resolution. As more angles are missed, the axial resolution deteriorates

along the missing wedge direction, increasing errors in atom tracing
and identification. Comparing the reconstructions in Fig. 7(a) and (c),
the portion of missing sites increases from 0.06% to 0.98%. Not only is
it harder to identify atoms, it is also more challenging to correctly
identify the 3D positions of each atom. The position error histogram in
Fig. 7(c) suggests that position estimate is less accurate in the axial
direction as we increase the missing wedge, while the accuracy in the
lateral directions are maintained.

3.4. Effect of regularization

Regularization allows us to use prior knowledge about the object to
refine the solution space and produce better quality reconstructions,
even with noisy data. Because low dose is required in order to preserve
sample structure during imaging, our raw data suffers from significant
(Poisson-distributed) noise. Here, we examine the effectiveness of three
different regularization techniques: pure positivity & real constraint,
LASSO regularization, and total variation (TV) regularization, as in-
troduced previously.
The results, shown in Fig. 8, suggest that regularization plays a

significant role in denoising with low-dose measurements. With only
real & positivity constraints, the background is too noisy to perform
accurate atom tracing and the position estimation error is large in all
dimensions. The intensity histogram in Fig. 8(a) shows that it also fails
to provide two resolved peaks that are needed to perform atom classi-
fication.
Both LASSO (Fig. 8(b)) and TV (Fig. 8(c)) regularization sig-

nificantly improve the quality of the reconstruction. The LASSO re-
construction produces sharp peaks, but shrinks some peak intensities as
well as sizes of the potential wells. This leads to a worse distribution of
peak intensities, making atomic species classification less accurate. The
peak position estimation results are also less accurate for LASSO than
TV, as shown in Table 1. Therefore we choose to use TV regularization
for our reconstructions.

Fig. 4. Varying dose. Phase contrast AET reconstructions in z y direction for (a) infinite electron dose, (b) 50,000 electrons/Å2, and (c) 7000 electrons/Å2 total
dose. We show (top row) a slice of the normalized reconstructed potential and (bottom row) the corresponding estimated atomic coordinates. Lower dose results in
more noise, causing errors in the volume reconstruction, atom identification, and atom classification.

Fig. 5. Cost function vs iterations to show convergence for various dose bud-
gets. Reconstruction becomes noisier as total dose is lowered, and cost function
increases. For each reconstruction, we ensure convergence is achieved.
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3.5. Vacancies in crystalline Si and amorphous SiO2

Our algorithm is capable of identifying single-atom defects or va-
cancies in the sample. Here, we validate this claim by simulating a Si-
SiO2 tip sample that contains vacancies. We simulate the vacancies and

defects by randomly removing approximately 5% of the atoms in the
original sample. Then, with the same geometry and experimental con-
figuration as in Fig. 4(b), we reconstruct the atomic potentials of the
defected sample. Fig. 9(a) shows the ground truth atomic potential after
the atoms have been removed. The reconstruction result is shown in

Fig. 6. Varying the number of tilt an-
gles and the number of defocus planes
while keeping a constant total dose.
Phase contrast AET reconstructions for
(a) 20 tilt angles with 9 defocus planes
linearly increasing from 20 nm to
100 nm, (b) 60 tilt angles with 3 de-
focus planes at 20 nm, 45 nm, and
100 nm, and (c) 180 tilt angles with
single defocus plane at 100 nm. The
case of 3 defocus planes and 60 tilt
angles gives minimal error, offering a
good trade-off between number of tilt
angles and defocus planes.

Fig. 7. The missing wedge problem in
the measurements primarily affects the
axial accuracy of our reconstructions.
All scenarios have the same total dose.
Phase contrast AET reconstructions for
(a) full tomography data with no
missing angle, (b) limited tomography
data with 30∘ missing angle, and (c)
limited tomography data with 60∘

missing angle.
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Fig. 9(c). We also refer to Fig. 9(b) for the case where no atoms are
removed. Samples can still be reconstructed when there are single-atom
defects present, because the algorithm does not assume any structural
priors.

3.6. Summary of reconstruction results

Table 1 summarizes all atom tracing and classification results. Note
that Figs. 4(b), 6(b), 7(a), and 8(c) are equivalent and are repeated for
convenience. We report mean 3D position error, portion of the atoms

Fig. 8. Regularization is important for image reconstruction quality. Phase contrast AET reconstructions using (a) real & positivity constraints only, (b) LASSO
regularization, and (c) total variation (TV) regularization. In this case, TV regularization provides the best performance.

Fig. 9. Phase contrast AET reconstructions with vacancies. (a) Ground truth atomic potential with vacancies. Reconstruction when (b) no vacancies are present, and
when (c) 5% of the atoms are removed in the crystalline region and amorphous region. The top row shows slices in z y direction, and the bottom row shows slices
in z x direction.
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correctly found, portion of false positives, and the portion of atoms
where the species are correctly labeled.

4. Conclusion

We have described a reconstruction algorithm for atomic electron
tomography, from a tilt series of defocused plane-wave HRTEM images.
Our nonlinear model takes into account multiple scattering of the
electron beam and uses slice-binning and fast rotation and propagation
algorithms to decrease the reconstruction time. We show that TV reg-
ularization improves the reconstruction quality. Using a simulated
sample with both crystalline Si and amorphous SiO2 in a core-shell tip
geometry, we have demonstrated accurate atomic reconstructions of
more than 60,000 atoms in a sample with a diameter up to 12 nm. Our
method is robust to low-dose measurements, works for a small number
of defocused images and can handle a large missing wedge of tilt angles.
Furthermore, we show that our fully coherent model also works with
partial coherent data, both temporally and spatially. The end result is
atomic-resolution tomographic reconstruction of nanoscale samples
containing both strongly and weakly-scattering elements, with either
crystalline or amorphous structures. All source codes will be released
publicly.
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Appendix A

A1. Robustness

In this section, we show the robustness of our algorithm by adding several system imperfections that are frequently encountered in real ex-
periments. Then, we use the proposed framework to reconstruct the 3D atomic potentials of the sample. Specifically, based on the tilt and defocus
configuration we have shown in Fig. 4(b), we upsample the object and add partially coherent illumination to the measurements.

A1.1. Upsampling
First, we use a voxel size (0.1 Å) finer than the sensor pixel size (0.5 Å) to generate simulated measurements with accurate diffraction effects. For

an object of the same volume (24nm)3, this increases the number of voxels from 4803 to 24003. We then use the multislice model to propagate the
electron wave through the finer-grid volume. At the image plane, we bin the pixels to the pixel size of 0.5 Å.

A1.2. Defocus spread
Next, we simulate the effect of chromatic aberration in the electron beam. In particular, we use a Gaussian spread of focal planes for each tilt and

defocus to approximate the effect. A defocus spread of 8 Å is reported in [69], so we choose a somewhat larger Gaussian defocus spread of 20 Å with
standard deviation of 10 Å. At the image plane, we use Gaussian weighting to incoherently sum the measurements.

A1.3. Spatial coherence
We incorporate spatial partial coherence by simulating a 2D Gaussian spread of input scattering angles for each tilt and defocus. Referring to the

work in [33], which reported a angular spread of 200 µrad, we choose a Gaussian angle spread of 400 µrad with standard deviation of 200 µrad. At
the image plane, we use a 2D Gaussian weighting to incoherently sum the measurements.

Table 1
Summary of atom tracing results, out of 62,402 sites in the tip region with a radius ≤ 12 nm diameter.

Figure(s) Total dose Nθ Nf Tilt span Regularizer Position error Atoms found False positives Correct species

4(a) Infinite 60 3 180∘ TV 12.51 pm 99.98% 0.00% 98.63%
4(b) 50,000 electron/Å2 60 3 180∘ TV 13.91 pm 99.94% 0.25% 96.44%
4(c) 7000 electron/Å2 60 3 180∘ TV 21.62 pm 95.24% 9.72% 79.79%
6(a) 50,000 electron/Å2 20 9 180∘ TV 19.11 pm 72.48% 1.26% 82.71%
6(b) 50,000 electron/Å2 60 3 180∘ TV 13.91 pm 99.94% 0.25% 96.44%
6(c) 50,000 electron/Å 180 1 180∘ TV 14.30 pm 99.97% 0.90% 91.15%
7(a) 50,000 electron/Å2 60 3 180∘ TV 13.91 pm 99.94% 0.25% 96.44%
7(b) 50,000 electron/Å2 60 3 150∘ TV 14.34 pm 99.75% 0.44% 94.67%
7(c) 50,000 electron/Å 60 3 120∘ TV 15.84 pm 99.02% 2.02% 90.50%
8(a) 50,000 electron/Å2 60 3 180∘ Positive 18.65 pm 97.81% 1.82% 46.81%
8(b) 50,000 electron/Å2 60 3 180∘ Lasso 14.17 pm 99.78% 0.73% 92.53%
8(c) 50,000 electron/Å2 60 3 180∘ TV 13.91 pm 99.94% 0.25% 96.44%
A.10 50,000 electron/Å2 60 3 180∘ TV 10.59 pm 99.95% 1.59% 97.54%
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Combining all of the effects above, we simulate a series of measurements, which we then use to reconstruct with the fully-coherent framework
outlined in 3. Fig. A.10 shows a reconstructed slice. Despite some reconstruction artifacts, we are able to achieve similar atom identification accuracy
comparing with the case in Fig. 4(b), as shown in Table 1. However, clearly the reconstruction artifacts indicated by yellow arrows contribute to the
higher false positive rate during atom tracing, so caution should be taken when dealing with real measurements in the future.

A2. Heavy atoms

In this section, we demonstrate that the proposed framework can also be generalized to recover the electrostatic potential distribution of samples
that contain both light and heavy atoms. Without loss of generality, we replaced the silicon atoms in the previously synthesized sample with
Tungsten atoms, which have larger electrostatic potentials, and thus induces stronger dynamical scattering. The sample closely resembles the one
demonstrated in [6]. From the sample, we simulated the measurements using the same configuration as that of Fig. 4(b). Fig. A.11 shows the
reconstructed potentials of the Tungsten sample.
As shown in Fig. A.11(b), while we recover most of the atoms in the Tungsten tip, the reconstruction quality degrades towards the center of the

tip, which corresponds to the thickest region of the needle. These artifacts are due to the large amount of accumulated dynamical scattering. As a
result, these artifacts in the reconstruction will contribute to error in future atom localization and identification.

A3. Gradient derivation

In this section, we derive the details of our approach to solve for the inverse problem in vectorized notation. First, we discretize the coordinate
system into Nx and Ny pixels for = x yr ( , ) respectively. We sample all 2D functions at these discrete coordinates. Then, we raster-scanned the samples

Fig. A1. Phase contrast AET reconstructions for partial coherence with finer sampling during image calculation formalism. Yellow arrows show reconstruction
artifacts due to partial coherence.

Fig. A2. Phase contrast AET reconstructions for tungsten crystalline and tungsten oxide amorphous structure.
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into column vectors in N Nx y. In addition, linear operators , , can be represented by matrices ×H P F, , N N N Nx y x y

For a given tilt angle θk and defocus fj measurement, the error function in (5) can be expressed as:

=e e ek j k j k j,
2

,
†

, (A.1)

where =e I Î ,k j k j k j, , , and ( · )† is the hermitian adjoint of a matrix or a vector. Ik,j is the measured intensity of the image, and Îk j, is the estimated
intensity through Algorithm 1.
Because the multislice propagation model assumes that the atomic potentials of each layer is independent of each other, we calculate the

derivative of ek j,
2 with respect to every layer of the potentials Wm separately by applying the chain rule:
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Next, we show the calculation of e
W

k j
m
, using backpropagation. Following (1) and (3), the derivative of ek,j with respect to the mth layer Wm is:
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where ( · )* denotes complex conjugate, diag( · ) is an operator that puts a vector into the diagonal of a square matrix. Next, we list out the differential
terms in the chain rule in (A.3):

=
(| | )

(| | )
1
2

diag 1
| |

,exit,k,j
2 1/2

exit,k,j
2

exit,k,j (A.4)

=
+

HP
diag( * )

diag( * ) ,
N

f
exit,k,j exit,k,j

1
exit,k,j

z
j

(A.5)

=+ P tdiag( ),N

N
z N

1z

z
Nz z

(A.6)

=+

t
P diag( ), andm

m
z N

1
m z (A.7)

= it
W

tdiag( ).m

m
m (A.8)

Combining the terms and apply the complex conjugate operator mentioned in (A.2), we arrive at the gradient of ek j,
2 with respect to Wm:
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Notice that computing the gradient is almost equivalent to applying the adjoint operators of the forward propagation to the residual error, hence the
name back propagation.
If we consider all defocus measurements at tilt angle θk, the gradient then becomes:
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Notice that in (A.10), the last term is equivalent to an amplitude substitution as a result of using amplitude-based cost function in (5), and it coincides
with the well-known Gerchberg-Saxton type update term [64].
During back propagation, terms such as =r{ ( )}m m

N
1

z and W will be used. However, since they were calculated once in the forward measurement,
caching them in the forward propagation is recommended to avoid redundant computation. The specific steps for efficiently computing the gradient
are in Algorithms 2 and 3.

A4. Slice-Binning

In both the forward and back propagation, the major bottleneck in computation is the Fourier transform. The number of Fourier transform
performed is proportional to the number of slices in z. Since complete tomography without missing angles achieves isotropic resolution, the number
of slices in z should match the number of pixels reconstructed in x and y, so the number of slices along the beam direction should be equally as dense,
causing very heavy computation.
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In this section, we describe our application of the slice-binning in the tomography algorithm [70]. With slice-binning, at every tilt angle we
increase the thickness of each slice (i.e. reducing axial resolution per angle). As a result, while total thickness of the sample remains constant, the
total number of slices is reduced, along with the computation time. However, because tomography allows us to capture information about each voxel
from multiple angles, the redundant information from the other tilt angles allows us to still reconstruct the object at atomic resolution isotropically.
In particular, we sum the 2D projected potentials of NB consecutive layers at each angle:
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=
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where ⌈ · ⌉ is the ceiling function, and
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We then compute both the forward model and back propagation using this binned potential. After the gradient is calculated, we distribute the
gradient to the full volume by applying the adjoint operator, †:
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In the simulations shown in the results section, we bin every 10 slices. Since the pixel size in z is 0.5 Å, the effective slice separation becomes 5 Å,
which is sufficient to recover atomic resolution in the 2D parallel directions. This combined with many tilt angles will produce atomic resolution in
3D with pixel size of (0.5 Å)3 (Fig. A.12).

However, the reconstruction quality deteriorates as we gradually increase the number of slices being binned NB. Therefore, the extent to which
we can bin the slices is of special interest. The precise mathematical error analysis is not available due to the non-linearity of the multislice method,
and so to estimate an upper bound for slice-burring we use the 3D CTF of the imaging system by assuming single or weakly scattering [41]. Then, we
are able to linearize the problem to obtain an estimate of the error. In a traditional imaging system with numerical aperture = xNA / , where Δx is
the pixel size, the axial resolution can be characterized as:

=z /(1 1 NA ).2 (A.14)

Based on Nyquist sampling criterion, the maximum thickness for every slice should be less than Δz to support the axial resolution at every angle
(Fig. A.13).

Fig. A3. Plot of cost function vs iterations to show convergence for various binning factors (NB).

Fig. A4. Plot of relative time savings (left y-axis) and relative error of reconstruction (right y-axis) vs slice binning factors (NB).
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We test the effectiveness and fundamental limit of the proposed slice-binning method. Here, we exponentially increase NB to examine the effect it
has on reconstruction error, computation time, and convergence behavior of the algorithm.
To simplify our discussion, all datasets in the validation process are generated from 60 uniformly separated tilt angles with 3 defocus planes,

assuming infinite dose. We do not apply any regularization methods as they alter the convergence behavior depending on the choice of the reg-
ularization parameter.

A5. List of symbols

In this second we list all of the symbols defined and used in the article for reader’s convenience, shown in Table A.2.

Data availability: The forward simulation and reconstruction algorithms are implemented in Python, using Arrayfire package for GPU calcu-
lations. Atom tracing including position refinement and species determination, as well as visualizations were generated using Matlab codes. The
atomic coordinates, reconstructed volumes, and the implementations are available online at https://github.com/yhren1993/3DPhaseContrastAET.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ultramic.2019.112860.

Table A1
List of symbols.

Symbol Description

Coordinates = q qq ( , )x y Frequency coordinates

= x yr ( , ) Spatial domain lateral coordinates
z Spatial domain axial coordinate
Indices
j Defocus index
k Tilt angle index
m Slice index in axial direction
s Iteration counter
Constantsi Imaginary unit, where =i 12

Ik,j 2D true intensity measurement of kth tilt and jth

defocus
NB Slice-binning factor
Nf Number of defocus measurements per tilt
Ns Number of optimization iterations
Nx, Ny Number of lateral pixels
Nz Number of slices in axial direction
Nθ Number of tilt angles
α Optimization step size
β Optimization acceleration factor
τ Optimization regularization parameter
λ Electron wavelength
σ Beam-sample interaction parameter
ψ0 2D collimated electron beam
Variablesek,j 2D residual error between estimated and true

measurement of kth tilt and jth defocus
fj jth defocus distance
gm 2D gradient update for Wm

Îk j,
2D estimated intensity measurement of kth tilt and jth

defocus
rk,j 2D intermediate residual error
tm( · ) 2D transmittance function corresponding to Wm

U 3D optimization acceleration momentum
V 3D volume of projected slices
Vm 2D mth projected slice of V
W Rotated 3D volume of projected slices
Wm 2D mth projected slice of W
θk kth tilt angle
Δzm Separation distance between Wm and +Wm 1
ϕm 2D residual error backpropagated to mth layer
ψm 2D electron beam forward propagated to mth layer
ψexit 2D exit wave
Operators {·} Binning operator (subscript denotes binning factor)

{·} Finite difference
{·} Fourier transform
{·} System transfer function
{·} Free space propagation (subscript denotes distance)
{·} Rotation operator (subscript denotes tilt angle)
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