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Abstract: We present a computational method for field-varying aberration recovery in optical
systems by imaging a weak (index-matched) diffuser. Using multiple images acquired under
plane wave illumination at distinct angles, the aberrations of the imaging system can be uniquely
determined up to a sign. Our method is based on a statistical model for image formation that
relates the spectrum of the speckled intensity image to the local aberrations at different locations in
the field-of-view. The diffuser is treated as a wide-sense stationary scattering object, eliminating
the need for precise knowledge of its surface shape. We validate our method both numerically
and experimentally, showing that this relatively simple algorithmic calibration method can be
reliably used to recover system aberrations quantitatively.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Aberrations are unavoidable in optical imaging systems; they distort incident wavefronts and
prevent diffraction-limited resolution. Significant effort and expense goes into correcting
aberrations, either physically or digitally. Particularly in computational imaging schemes (e.g.
Fourier ptychography [1–3]) where both phase and amplitude are recovered, digital correction
of aberrations is convenient [4]. We model aberrations using a real-valued function – the
wavefront error function (WEF) – which can be either space-invariant or locally space-invariant.
Image reconstruction methods that rely on accurate forward models (including aberrations) can
particularly benefit from digital aberration correction for improved accuracy, reliability and
effectiveness. Hence, there is a need for practical methods of aberration measurement.
Although there are existing methods that can accurately measure the WEF, many are com-

plicated, requiring expensive hardware or precisely calibrated test objects. Interferometric
techniques [5, 6] can be difficult to incorporate into existing optical systems. Pre-calibration
by imaging known test objects (e.g. pinholes, fluorescent beads) [7, 8] works well but requires
precise knowledge of the test object. Adaptive optics methods both measure and correct aberra-
tions [9–12]. Although there are advantages to physically (vs. digitally) correcting aberrations,
the hardware required is expensive and not compatible with all commercial systems.

Computational techniques for WEF measurement include the Zemlin tableau method, used in
transmission electron microscopy (TEM) to measure axial coma [13–16]. This involves imaging
amorphous media with various tilts to produce a tableau of diffractograms which can be used
to estimate the magnitudes of low-order aberrations. Other computational techniques seek to
jointly estimate both the object being imaged and the system aberrations [17], which only work
well if the object is suitable. Here, we aim to combine these two approaches, enabling use of
the Zemlin tableau method for higher-dimensional aberration models through optimization and
greatly simplifying the joint estimation problem by using a carefully chosen object.
We propose a computational method for quantitative WEF measurement, requiring only the

imaging of a weak scattering object (a diffuser) under several different angles of plane-wave
illumination. The procedure is outlined in Fig. 1. The exact surface shape of the diffuser need not
be known, but should satisfy the weak object approximation (WOA) [18–20] such that it can be
modeled by few statistical parameters [21, 22]. To create an inexpensive object that satisfies this,
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we partially index-match a diffuser with oil. With appropriate illumination angles, the spatial
spectra of the resulting intensity images uniquely specify the WEF. We use an optimization
procedure to solve the inverse problem and determine the WEF parameters from the raw data.
Our method has several advantages over existing techniques for WEF estimation. Unlike

interferometers or Shack-Hartmann wavefront sensors, we measure aberrations at the sensor
plane, thus avoiding any potential mismatch between different optical paths and enabling recovery
of field-varying aberrations. The only hardware requirements are steerable illumination and an
uncalibrated diffuser, which need not be precisely known a priori. This simple and versatile
method enables aberration calibration in systems where traditional techniques may be difficult to
apply, and the lowered cost of calibration may allow more routine analysis.
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Fig. 1. Overview of our wavefront error function (WEF) recovery procedure. (a) A weak
diffuser is placed in the image plane of the system to be characterized. (b) A calibration
speckle image is captured and its spectrum is used to estimate the statistical parameters of
the diffuser. (c) Speckle images are measured for N distinct illumination angles and their
spectra are shown. (d) Measurements are processed and input to (e) a nonlinear least-squares
problem in order to recover the Zernike coefficients and (f) reconstruct the WEF.

2. Methods

In this section, we first derive the forward model that specifies how aberrations manifest in the
images we collect. The model will assume a traditional imaging system that can be described
either by a single complex optical transfer function in the case of space invariant aberrations, or
local transfer functions in the case of spatially-varying aberrations. The phase of these functions
is the WEF, which we will parametrize using Zernike polynomials, enumerated by the standard
Noll indices [23]. Once the forward model is derived, we will formulate the objective function
for the inverse problem and describe how we solve it to recover the coefficients of the WEF.
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2.1. Forward model

We model the measured intensity image, I(x), in terms of the electric field, E , and the coherent
pupil function associated with the imaging system, P:

I(x) = |Ei(x)|2 = |P(x) ∗ Eo(x)|2, (1)

where x ∈ R2 is the spatial coordinate, ∗ denotes convolution and subscripts i and o indicate the
image and object planes, respectively [24]. Taking the Fourier transform of Eq. (1), we have

Î(u) = Êi(u) ∗ Ê∗i (−u) = P̂(u)Êo(u) ∗ P̂∗(−u)Ê∗o(−u), (2)

where u ∈ R2 is the NA-normalized spatial frequency coordinate and hatted quantities are related
to their counterparts by Fourier transform [25].
We refer to the complex-valued function P̂(u) as the band-limited pupil function. In our

analysis, we assume that it has no amplitude variation within the aperture since typical optical
elements (e.g. lenses, mirrors) have trivial absorption. Thus, the pupil is written as

P̂(u) = exp [iW(u)] · Circ(u), (3)

where i is the imaginary unit, the Circ(·) function is the characteristic function of the unit disk,
and the real-valued function W denotes the WEF.

If the weak scattering object (the diffuser) is illuminated by an angled plane wave, it causes a
Fourier domain shift of u0. The electric field at the object plane is then

Eo(x) = exp
[
i2π

(
uT

0 x
)]
· exp [iϕ(x)] . (4)

We then apply the weak object approximation to the object term of Eq. (4) [26]. This is a
linearization of the complex exponential, which implies that our object has trivial absorption and
small deviations in optical path length. Mathematically, we substitute exp [iϕ(x)] with 1 + iϕ(x)
and the Fourier transform of the resulting expression is

Êo(u) = δ(u − u0) + iϕ̂(u − u0). (5)

Substitution of Eq. (5) into Eq. (2) leads to our forward model (see Appendix A for details):

Î(u) = δ(u)
[
|P̂(u0)|2 + γ

]
+ iϕ̂(u)

[
P̂∗(u0)P̂(u + u0) − P̂(u0)P̂∗(−u + u0)

]
. (6)

For pupil recovery, we shall primarily be concerned with the latter term in Eq. (6). We define

Î�(u) = iϕ̂(u)
[
P̂∗(u0)P̂(u + u0) − P̂(u0)P̂∗(−u + u0)

]
, (7)

where Î� represents the DC-suppressed counterpart of Î. We introduce the symmetric and
anti-symmetric decomposition operators, denoted by S{·} and A{·}, respectively:

S
{

f (u + u0)
}
=

f (u + u0) + f (−u + u0)
2

, A
{

f (u + u0)
}
=

f (u + u0) − f (−u + u0)
2

. (8)

Using this notation and substituting Eq. (3), Eq. (7) simplifies to

Î�(u) = 2i exp
[
iA

{
W(u + u0)

}]
ϕ̂(u) sin

(
S

{
W(u + u0)

})
. (9)

We remark that this simplification requires both difference operands in Eq. (7) to be nonzero,
such that interference occurs and produces contrast in intensity. Since each instance of the pupil
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P̂ is band-limited by the Circ(·) function, the region where the interference condition is met is
given by the set U = {u : Circ(u + u0) = 1} ∩ {u : Circ(u − u0) = 1}. As a result, Eq. (9) is
valid only within the region where the pupils overlap, as shown in Fig. 1(d). Finally, by taking
the magnitude of both sides of Eq. (9), we arrive at our real-valued forward model,

| Î�(u)| = 2 |ϕ̂(u)|
��� sin (

S
{
W(u + u0)

})���, u ∈ U . (10)

Our model indicates that for plane-wave illumination, the output intensity spectrum is determined
by the symmetric component of the shifted WEF. We emphasize that this model only describes
the region of the spectrum where the pupil interferes with its conjugate. For off-axis illumination,
this is the region of overlap of the two shifted circles determined by the NA of the system.

2.2. Diffuser as a calibration object

Equation (10) suggests that the object must be known in order to recover the WEF; however, we
can avoid this by using an object with a random surface whose statistics are known (or can be
measured via calibration). Our partially index-matched holographic diffuser (Edmund Optics 10◦,
#54-493) has uncorrelated surface roughness with significant power in high spatial frequencies,
extending at least to the band-limit of the optical system being characterized (see Fig. 2). This
leads to an efficient model for the object as the product of a deterministic window function and a
stationary random signal [21]. Hence, our calibration step is reduced to the estimation of a few
parameters, which can be recovered directly. Stationarity also eliminates the need for precise
alignment of the diffuser in the imaging system, an advantage over techniques that use known
test objects. Mathematically, the diffuser can be modeled by:

|ϕ̂(u)| = |ϕ̂d(u)|η(u), (11)

where |ϕ̂d(u)| is a radially-symmetric Gaussian window function, and η(u) ∼ Rayleigh(σ)
is a single realization of Rayleigh-distributed white noise, independent for each pixel. As a
consequence of stationarity, arbitrary lateral motion of the diffuser will change the values of η(u)
but not the distribution parameter σ. We will assume in this section that the window function
and distribution parameter are known; in practice, we estimate them from a simple single-image
calibration procedure (outlined in Appendix B).
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Fig. 2. (a) Measured phase, ϕ(x), of a section of a 10◦ holographic diffuser (prior to index
matching). (b) Spectrum of full intensity measurement (DC-suppressed and zeroed outside
normalized cutoff frequency) displays rings due to defocus. (c) Radial average of spectrum.
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We may now substitute Eq. (11) into Eq. (10) and collect known quantities on the left-hand
side of the equation. This implies division of the spectrum of each measurement by the known
window function, thus isolating the sinusoidal signal from the multiplicative noise (due to diffuser
speckle). For the j-th illumination angle, we then have a processed measurement, Mj , given by

Mj(u) ≡
| Î�, j(u)|
2 |ϕ̂d(u)|

= η(u)
��� sin (

S
{
W(u + u j )

})���, u ∈ Uj . (12)

At this point, we see that each processed measurement depends only on the WEF, and the diffuser
only appears via the multiplicative noise term η(u).

2.3. Inverse problem

Next, we detail our inverse problem approach to recovering the WEF. For efficient computation,
we rewrite the argument of the sinusoid in Eq. (12) as a linear operator, Aj ∈ Rm×n, which acts
on the WEF’s Zernike coefficients, c ∈ Rn. The following is a description of the construction of
Aj . The map from W(u) → W(u + u j ), where u j is a known shift due to illumination angle,
can be represented by a linear operator on Zernike coefficients, Σj ∈ Rn×n. If the illumination
angle is unknown, it can be estimated from the acquired image using a procedure outlined in [27].
We then take the symmetric part of W(u + ui) by selecting only the coefficients of symmetric
basis polynomials. If sj is an indicator that the j-th basis function is symmetric, then this
operation is given by diag(s) ∈ Rn×n. Finally, we evaluate the resulting coefficients on a grid
of m pixels through the evaluation map, Ψ ∈ Rm×n. We now define the design matrix for the
j-th illumination angle by Aj ≡ Ψ diag(s)Σj . Using these matrices and vectorizing the intensity
spectrum, window function and white noise, we rewrite Eq. (12) as:

mj ≡
| Î�, j |
2 |ϕ̂d |

= η ·
��� sin (

Ψdiag(s)Σjc
)��� = η ·

��� sin (
Ajc

)��� . (13)

Based on Eq. (7), aberrations of orders zero and one (piston, tip, and tilt) do not appear in the
spectrum and thus cannot be estimated. As a result, corresponding rows and columns of the
matrices defined above are omitted to avoid degeneracy in the solution space.

Next, we consider the diffuser surface uncertainty, η, which acts as a realization of multiplicative
noise. Although regularized likelihood functions have be formulated for this case [28], they
usually involve computing logarithms, which is unstable for signals containing zeros (e.g. sine).
Instead, we treat η as additive noise and formulate a least-squares problem by approximating the
Rayleigh noise distribution as a Gaussian distribution of equal mean and variance:

η ·
��� sin (

Ajc
)��� ≈ ( E[η] + v ) ��� sin (

Ajc
)��� , v ∼ N

(
0,

4 − π
2

σ2
)
. (14)

The expectation is computed using an unbiased estimator: E[η] = σ̂
(
π
2
)1/2 leading to:

η ·
��� sin (

Ajc
)��� ≈ E[η] · ��� sin (

Ajc
)��� + v ��� sin (

Ajc
)���, (15)

in which the latter term can be treated as heteroscedastic additive noise [29], with aberration-
dependent variance proportional to

��� sin (
Ajc

)���2. If the aberrations are approximately known a
priori, a weighted nonlinear least-squares (NLS) fit will be more robust to the changing noise
variance across the field-of-view. However, we do not generally have this prior knowledge, so we
use an unweighted NLS cost function, which in practice is suitably accurate.

Finally, we use the known (or estimated) illumination angles to define the interference regions
Uj for each measurement. The characteristic functions, 1[Uj], for each of these sets is a binary
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vector in Rm which determines whether a particular pixel of a spatial spectrum should contribute
to the cost function. Using the approximations above, we formulate a cost function that penalizes
inconsistency between the measurements and our forward model applied to a candidate WEF.
The resulting optimization problem can be written as

c? = argmin
c

K∑
j=1

 1[Uj] ◦
(
mj − σ

( π
2

)1/2 ��� sin (
Ajc

)��� ) 2
, (16)

where ◦ indicates element-wise (Hadamard) multiplication and the minimizer, c?, gives the
Zernike coefficients of the recovered WEF.
To solve the optimization problem in Eq. (16), we use Newton’s method with step size

determined by backtracking line search (see Appendix C) [30]. Since our objective function is
non-convex, this method is not guaranteed to converge to the global minimum for any particular
initialization. Therefore, we initialize the algorithm with multiple random points within a
neighborhood of bounded total root mean square (RMS) wavefront error (‖c‖2), obtain the local
minimum from each initialization, and report the local minimum with the lowest cost.
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Fig. 3. WEF reconstruction from simulated data. (a) Example intensity measurement; (b)
WEF with 18 random Zernike coefficients (Noll indices 4-21); (c) spectra of 4 intensity
images with illumination angles described by azimuthal angle θ and deflection angle φ; (d)
processed spectra, Mj (u), as in Eq. (13); (e) spectra produced by the forward model using
the true WEF coefficients; (f) spectra produced by the forward model using the recovered
WEF coefficients; (g) recovered WEF coefficients demonstrate accurate recovery (3.11%
relative error) of 5th order WEF using four input images and reasonable initialization values.
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3. Numerical simulations

To test our method against ground truth data, we created a simulation of the entire procedure,
including object calibration and aberration recovery. First, we generate the electric field of a
weak scattering object as described in [21] and a random set of Zernike coefficients for the
WEF. We simulate a single defocused on-axis measurement via the angular spectrum method
and perform object calibration, as described in Appendix B. In this case, one measurement uses
on-axis illumination, and the other three have an axial deflection angle of 0.3◦ and azimuthal
angles of 0◦, 45◦ and 90◦. The simulated diffuser has Gaussian parameter σ=5 µm (close to
that of a 10◦ diffuser with magnification of 1) and phase scaled to the range

[
− π

12,
π
12

]
. The

spectra of the simulated measurements are visibly distinct (see Fig. 3(c)). Using these images,
we performed the processing routines outlined in Sec. 2.2-2.3 to recover the WEF parameters.

To test the robustness of our method, we simulated datasets for WEFs with random coefficients
for aberrations (up to order 3) and magnitudes from 0.2π-6π radians RMS, covering the typical
range of aberrations for diffraction-limited imaging systems. A dataset consists of 4 intensity
images (500×500 pixels) with illumination angles as specified and basic system information (e.g.
wavelength, NA). For each magnitude, we generated 100 datasets with distinct WEFs.

Computation was implemented in MATLAB R2018a on a laptop (Intel Core i7-7700HQ
processor 2.8 GHz, 16 GB of RAM). The average time to process all measurements was 0.9
seconds. The average time to recover the WEF from processed measurements using 100 random
initializations and 100 iterations of Newton’s method for each was 14.5 seconds. The reported
run time reflects serial processing of initializations, but parallel processing would further reduce
the run time. As shown in Fig. 4, at least one of the 100 initializations converged to within 5%
relative error for roughly 95% of all WEFs with a magnitude of at most π radians RMS.
As the magnitude of the wavefront error increases above π radians RMS, the fraction of

successfully recovered WEFs rapidly decreases to just 1% for 6π radians RMS aberrations.
Despite this limitation, even in the case of strong aberrations, convergence is highly probable if the
initialization is sufficiently close to the true coefficient vector. To demonstrate this, we performed
a second set of simulations using only the 6π radian RMS WEFs, generating initializations by
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Fig. 4. (a) Fraction of distinct WEFs successfully recovered as aberrations increase. Success
is defined as convergence to within 5% relative error of ground truth for at least one of 100
initializations generated by 0-mean normally-distributed noise. Random initializations for
small aberration magnitudes are likely to converge, with the probability decreasing as the
aberration magnitude increases. (b) Fraction of distinct WEFs successfully recovered for
the case of large aberrations (all 6π radians RMS) with increasing initialization distance.
100 initializations are generated by adding 0-mean normally-distributed noise of increasing
magnitude to the true solution. This demonstrates that initializations with as much as
3π radians RMS error converge with high probability, suggesting that modestly accurate
initializations will enable fitting to large aberrations.
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adding increasingly strong normally-distributed noise to the true coefficients; this can be thought
of as initializing with partial prior information. The results are shown in Fig. 4(b), where we
see that convergence is highly probable if the initialization is within 3π radians RMS of the true
solution, which represents 50% accuracy. These results suggest that our procedure will work
well with no prior knowledge for sufficiently weak aberrations, and will require either many
initializations or a modestly accurate initial guess for stronger aberrations. Such a guess can be
obtained, for example, via ray-tracing using an ideal model of the system.

4. Experimental results

To demonstrate the accuracy of our method experimentally, we constructed the setup shown in
Fig. 5. The key features of the system are adjustable-angle laser illumination, a holographic
diffuser with index-matching oil in the object plane, and a deformable mirror (DM) in the Fourier
plane to generate knownWEFs for validation testing. It is important for the deviation in refractive
index between the diffuser and the oil to be small, so that the weak object approximation is valid.
In our experiment, we have ndiffuser = 1.5805 and noil = 1.5890.

DM

BS

HeNe Laser

632 nm

Diffuser

(a)

(b)(c)(d)

(e)

Fig. 5. Experimental setup. (a) Melles-Griot HeNe laser (632 nm), (b) 4f system with mirror
tilt used to control illumination angle at the object (diffuser) plane; (c) 10◦ holographic
diffuser (Edmund Optics, #54-493) index-matched with oil; (d) Deformable Mirror (Iris
AO PTT111, 7 mm pupil diameter, gold-coated) in Fourier plane to introduce controlled
aberrations; (e) ThorLabs DCC1240C CMOS camera (1280 × 1024 pixels, 5.3 µm pixels).

We tested the accuracy of our method by applying different aberration functions to the DM,
acquiring images from 3 different illumination angles, and then passing the images into our
reconstruction algorithm. Each aberration function is a single Zernike polynomial whose
magnitude is significantly larger than the imaging system’s native aberrations. Although only a
single Zernike polynomial is applied to the DM at a time, we fit all Zernike coefficients of orders
2 and 3 (Noll indices 4-10). For experimental data, we modify the reconstruction procedure to
remove a small neighborhood of low frequencies, as well as the DC, from each spectrum, since
correlated surface roughness produces a peak of finite width. We also do not know the exact
illumination angles, and so these are estimated using [27].
Table 1 and Fig. 6 summarize the results of our experiments, using the two initialization

methods discussed in Sec. 3. The left columns of the table and Fig. 6(a) show results initialized
with coefficients centered around the expected aberration coefficients, with added noise. An
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Fig. 6. Experimental fit to aberrations Z5, Z6, Z7 and Z9 using (a) 200 centered ini-
tializations (actual coefficients plus zero-mean white noise) and (b) 10,000 zero-mean
random initializations. Bars and points of a single color represent recovered and actual
coefficients, respectively, for a particular aberration magnitude. Recovered values of Z5 and
Z6 demonstrate the most accurate recovery, while Z7 and Z9 (polynomials of higher degree)
incur larger relative error, especially when initializations have zero mean. The relative error
increases when fringe contrast in the measurements is low.

Table 1. `2-Reconstruction Error∗ for Second- and Third-Order Aberrations
Centered Init. Error Zero-mean Init. Error

Magnitude Z5 Z6 Z7 Z9 Z5 Z6 Z7 Z9

1.0 1.37 0.57 1.37 1.06

2.0 0.40 0.45 2.45 0.77 0.40 0.45 2.36 2.69

3.0 0.43 0.45 1.70 0.79 0.42 0.46 2.99 0.79

4.0 0.47 0.47 1.51 0.97 0.48 0.47 4.60 0.95

5.0 0.44 0.50 1.50 1.11 0.44 0.51 5.15 1.12

*Error calculated as ‖ctrue − crecovered ‖22 and expressed in π × radians RMS

accuracy of 0.4π-0.5π radians RMS compared to the expected aberrations is achieved for both
oblique and vertical astigmatism (Noll indices Z5 and Z6, respectively), while a somewhat
larger error of 0.5π-π radians RMS is achieved for vertical trefoil (Z9) and π-2π radians RMS
for vertical coma (Z7). The error is calculated as the RMS difference between the recovered
coefficients and the coefficients written to the DM. Similar performance is achieved for Z5 and
Z6 via random initialization, shown in the right columns of Table 1 and Fig. 6(b). However,
results for Z9 are somewhat degraded and those for Z7 are significantly worse. Differences in
performance among the aberrations seem to be related to the fringe contrast in experimental
measurements, shown in Fig. 7, where we see that Z5 and Z6 have high contrast, Z9 has lower
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Fig. 7. Experimental fit to (a) oblique astigmatism (Z5), (b) vertical astigmatism (Z6), (c)
vertical coma (Z7), and (d) vertical trefoil (Z9). (Left column) Input polynomial coefficient
written to DM plotted vs. recovered coefficient in π radians RMS. (Right) Examples of
measured and reconstructed intensity spatial spectra for 3 illumination angles and aberrations
of varying magnitude (π radians RMS). Rows (a) and (b) show excellent quantitative
agreement between expected and recovered coefficients. Rows (c) and (d) are somewhat
worse, likely due to lower contrast in the interference fringes at the edges of the pupil.
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contrast, and Z7 has substantially less contrast, particularly at the edge of the pupil. In all cases,
Fig. 7 shows agreement between the measured and best-fit intensity spectra in areas with high
fringe contrast, demonstrating the accuracy of our model and the capabilities of our solver.

4.1. Experimental limitations

It is important to note several experimental limitations of our method. First, we can see that
the experimental spectra in Fig. 7 appear significantly more noisy than the simulated spectra in
Fig. 3, which tends to reduce the accuracy of the fit. Another limitation is that by changing the
angle of illumination, it is only possible to recover aberration coefficients with sign ambiguity. It
is evident from Eq. (16) that replacing c with −c does not alter the cost. This problem can be
solved by acquiring images at multiple defocus distances, but for simplicity, we consider only the
case of modulating illumination angle for aberration recovery up to a sign. As system aberrations
become more significant, the region of attraction of the true solution generally becomes smaller,
as demonstrated in Fig. 4. Finally, use of unweighted least-squares, as discussed in section
2.3, is not statistically optimal in that it is an unbiased but not minimum-variance estimator.
The variance can be reduced by formulating a weighted least-squares problem to address the
heteroscedasticity of the noise, with weights determined either by an estimate of the denoised
signal (e.g. using median-filtering) or by iterative reweighting.

5. Conclusion

We have presented a self-calibrated computational method for aberration recovery in imaging
systems using only a weak scattering object (a diffuser). Adopting a statistical model of the
object allows a simplified forward model for image formation, relating the system aberrations to
the spatial spectra of acquired intensity images. Measurements at different illumination angles
provide sufficient diversity for uniquely specifying the WEF. This simple and inexpensive method
can be used to reliably characterize optical imaging systems, including ones where traditional
techniques may be incompatible.
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Appendix A: Derivation of forward model

We substitute Eq. (5) into Eq. (2), resulting in an expression for the spectrum of measured
intensity. Since convolution distributes over addition, we can write this expression as the sum of
four convolutions, as follows:

Î(u) =
[
δ(u − u0)P̂(u) ∗ δ(−u − u0)P̂∗(−u)

]
+ j

[
δ(−u − u0)P̂∗(−u) ∗ ϕ̂(u − u0)P̂(u)

]
− j

[
δ(u − u0)P̂(u) ∗ ϕ̂∗(−u − u0)P̂∗(−u)

]
+

[
ϕ̂(u − u0)P̂(−u) ∗ ϕ̂∗(−u − u0)P̂∗(−u)

]
.

(17)

Since the weak phase of the object is noise-like (see Fig. 2) and hence, uncorrelated, we can
assume that the interactions between the phase of the object and itself, captured by the fourth term
in Eq. (17), contribute only to the DC frequency through some scalar γ. As such, simplification
of the above results in

Î(u) = δ(u)
[
P̂(u0)P̂∗(u0) + γ

]
+ iP̂∗(u0)

[
ϕ̂(u)P̂(u + u0)

]
− iP̂(u0)

[
ϕ̂∗(−u)P̂∗(−u + u0)

]
. (18)

Since ϕ(x) is a real-valued function, we know that its Fourier transform, ϕ̂(u), satisfies conjugate
symmetry. Using this fact, we can factor Eq. (18) to obtain

Î(u) = δ(u)
[
|P̂(u0)|2 + γ

]
+ iϕ̂(u)

[
P̂∗(u0)P̂(u + u0) − P̂(u0)P̂∗(−u + u0)

]
. (19)

The remaining steps are given in section 2.1.

Appendix B: Object calibration

From a single calibration image taken on-axis with several Rayleigh lengths of defocus, we
perform a parametrized joint object-pupil reconstruction to characterize the diffuser. We formulate
a 3-parameter nonlinear least-squares problem to recover the amplitude and standard deviation of
|ϕ̂d | and the defocus, which is the dominant term of the pupilW(u) in the calibration measurement.
This problem can be efficiently and accurately solved using derivative-free simplex search due
to its low dimensionality and the radial symmetry of the defocus kernel. The average runtime
of this step is 1.3 seconds using the computer with specifications given in section 3. Examples
of simulated data and fitted functions can be seen in Fig. 8. We then divide the spectrum
of the measurement by the deterministic terms where division is numerically stable to obtain
independent samples of white noise drawn from the Rayleigh distribution:

| Î�(u)|
2 |ϕ̂d(u)|

��� sin (
S

{
W(u)

})��� = η(u) ∼ Rayleigh(σ) (20)

Finally, we obtain an unbiased estimate of the Rayleigh parameter, σ̂, from K samples of η(u),
using the following unbiased estimator [31]:

σ̂ =
©«

K∑
j=1

η(u j )2

2K
ª®¬

1/2
4KK!(K − 1)!

√
K

(2K)!
√
π

≈ ©«
K∑
j=1

η(u j )2

2K
ª®¬

1/2
e1√K
√

K − 1

(
K − 1

K

)K
,

where the approximation is made using Stirling’s formula [32]. A histogram of isolated white
noise and the fitted distribution are shown in Fig. 8.

Appendix C: Derivatives of cost function

For the j-th measured image, Mj(u), we define

ej = Mj(u) − σ
( π
2

)1/2 ��� sin (
Ajc

)���.
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Fi�ed model (damped defocus kernel)
Measurement radial average Residual noise
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Fig. 8. (a) Simulated calibration procedure, in which the window function of the scatterer
spectrum is estimated from a low-order (defocus only) model. (b) The Rayleigh noise
parameter is estimated from the residuals upon dividing the measured spectrum by the
damped defocus kernel in regions where division is stable.

Then the first derivative of cost function, Eq. (16), is given by

∇c f = −2σ
( π
2

)1/2 K∑
j=1

eT
j diag

(
cos

(
Ajc

)
◦ sgn

(
sin

(
Ajc

) ) )
Aj .

The Hessian matrix for the cost function is given by

∇2
c f = 2σ

( π
2

)1/2 K∑
j=1

AT
j diag

(
cos2 (

Ajc
)
+ ej ◦ sin

(
2Ajc

)
◦ sgn

(
sin

(
Ajc

) ) )
Aj .

It is important to note here that the expressions derived above are generalized derivatives [33].
The forward model is not differentiable at points where sin

(
Ajc

)
= 0 due to the absolute value

operation. However, since this operation is applied point-wise, we can treat each occurrence
of zero as an isolated discontinuity and use the notion of generalized gradients to choose a
subgradient for these points [34]. By using the signum function, we define this subgradient to
be zero at non-differentiable points. As a result, the algorithm will only fail to make a valid
update when c = 0. As long as the algorithm is not initialized here, this point will be avoided
with probability one.

Appendix D: Selection of illumination angles

Although it is difficult to rigorously analyze the selection of measurements for nonlinear least
squares, in the limiting case of small aberrations, we make the approximation of sin(x) ≈ x, and
the problem reduces to linear least-squares, with the design matrix:

A =

©«

A1

A2

...

AK

ª®®®®®®®¬
.

In this case, the expected error on the coefficient vector, δc is given by:

E
[
‖δc‖22

]
= Tr

[
A†Σ(A†)T

]
,
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where Σ is the measurement error covariance matrix and A† is the pseudo-inverse of A. Since
measurements are independent, this is a diagonal matrix whose entries depend on the specific
aberration. However, taking expectations over aberrations, Σ reduces to a scaled identity matrix,
meaning that selecting measurements to minimize the metric Tr

[
(ATA)−1] will provide a set of

measurements that is robust to arbitrary aberrations.
We evaluated this metric for sample planes consisting of 3-8 equally-spaced angles at a range of

radii. As shown in Fig. 9(a), the optimal radius is about 0.25 for any number of images. Taking the
uniformly-spaced sample plans at the optimal radius for each number of images as initializations,
no significant further improvement in the metric can be achieved via gradient-based optimization,
meaning that these sample plans are at least locally optimal.
To evaluate these sample plans, we ran our reconstruction algorithm on the 100 random

aberrations of magnitude π radian RMS. First, we initialize at the true coefficient value to
quantify how the number of images impacts the accuracy. As shown in Fig. 10(a), the error
scales approximately as 1√

N
, as would be expected for a linear least-squares fit. Next, we ran

the optimization for 100 random initializations for each aberration. Fig. 10(b) shows that the
frequency of convergence improves significantly with additional images.

0.1 0.2 0.3 0.4 0.5
10-4

10-3

10-2

3 4 5 6 7 8
0

1

2

3

4

5

6
10-4

(a) (b)

3 Images
4 Images
5 Images
6 Images
7 Images
8 Images

Uniformly spaced
Op�mized angles

Fig. 9. (a) Trace[(ATA)−1] evaluated for sample plans consisting of uniformly-spaced
angles at radii varying from 0.05-0.5 of the pupil. (b) Uniformly-spaced sample plans with
optimized radii (blue) and gradient-based optimization from these initializations.
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Fig. 10. (a) Initializing at the true coefficients to evaluate how coefficient error scales with the
number of images. (b) Initializing randomly to evaluate how the probability of convergence
scales with the number of images.
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