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Dear Editor,
Aquareovirus (ARV, Reoviridae) causes hemorrhagic disease in the 
economically important golden shiner and grass carp of America 
and China, respectively (Nason et al., 2000; Fang et al., 2005). 
Reoviridae members are characterized by endogenous transcription 
of their multipartite genomes within capsids of 1–3 layers and are 
further classified based on the presence (Spinareovirinae subfamily, 9 
genera) or absence (Sedoreovirinae subfamily, 6 genera) of mRNA-cap-
ping turrets along the innermost layer (King et al., 2012). The inner-
most layer of reoviruses is always an icosahedral, T = 2*, inner capsid 
particle (ICP) or core, which is transcriptionally competent (Farsetta 
et al., 2000). Among turreted reoviruses, cytoplasmic polyhedrosis 
virus (CPV) has a single-layered capsid, which is equivalent to the ICP 
within double- or triple-layered reoviruses (Hill et al., 1999; Zhang et 
al., 1999; Yu et al., 2011). This simple structural organization makes 
CPV an attractive model to study turreted reoviruses, but renders it 
inadequate to describe possible impacts of shedding the external 
layers from the numerous, multi-layered Spinareovirinae members 
(Zhang et al., 2022). Here we used a sequential symmetry expansion 
and relaxation approach to resolve the first asymmetric reconstruc-
tion of the ARV ICP by cryoEM to 3.3 Å (Fig. S2). Comparison with 
existing ARV virion and infectious subvirion particle (ISVP) struc-
tures (Ding et al., 2018) reveals expansion of the ICP and concom-
itant conformational changes to the transcription related proteins.

Lacking the outer capsid proteins VP5 and VP7, the ARV ICP retains 
the icosahedral, T = 2*, inner capsid shell composed of 60 asymmetric 
dimers of the 1214-residue, wedge-shaped, VP3 capsid shell proteins 
(CSPs) and 120 symmetrically arranged copies of the clamp protein 
(VP6) which form the ICP frame and provide support, respectively 
(Fig. 1A). VP3 dimers (containing conformers VP3A and VP3B) encircle 
each 5-fold vertex; with VP3A conformers seated around the 5-fold 
vertex center, creating pores adjacent to each transcriptional enzy-
matic complex’s (TEC’s) template exit channel for direct transcript 

capping and release via VP1 turret proteins (TPs) (Fig. 1C and 1D). 
VP3B conformers partially intercalate between VP3A monomers, and 
form 3-fold vertices with neighboring decameric assemblies (Fig. 
1D). Absent conspicuous VP3 rearrangement, the internal volume 
of the ICP increased from 5.51 ×  107 Å3 to 6.02 ×  107 Å3, or about 
9.3% relative to the grass carp reovirus (GCRV) virion and ISVP with 
which golden shiner reovirus (GSRV) shares 96%–100% a.a. sequence 
identity (Fig. 1B) (McEntire et al., 2003; Ding et al., 2018; Wang et al., 
2018). By reducing the packaging density and thus viscosity of the 
genome, the enlarged ICP provides the rigid dsRNA segments greater 
freedom of movement and presumably reduces the energy required 
to initiate transcription (Demidenko and Nibert, 2009). The changes 
undergone by individual decamers includes a 10 Å rise away from 
the virion origin and subtle expansion of the CSPs (Movie S2). The 
observed expansion can be attributed to a non-uniform elongation 
of the CSP monomers approximately 6 Å radially from the icosa-
hedral 5-fold (I5) vertices, relative to their coated counterparts and 
differs between VP3 conformers (Movies S1 and S3).

Each ARV CSP is divided into three distinct domains which 
include the apical “tip” nearest the I5 vertices, the large carapace 
domain, and the small β-sheet rich dimerization domains (Fig. 
1D). The local shifts of CSP dimers reveal a non-uniform elonga-
tion of the apical and carapace domains, with the alpha helices 
migrating away from the I5 vertices and towards the icosahedral 
two-fold and three-fold (I2 and I3) vertices for VP3A and VP3B, 
respectively (Movie S2). In the apical domain helices 13 and 14 
and their conjoining loop (a.a. 490–518), which line the I5 tran-
script exit channel at the luminal side of the capsid, are largely 
unperturbed by the capsid shifts and help to maintain a consist-
ent pore diameter. By contrast, the other I5 adjacent elements 
of the apical domains move away from the I5 channel, and the 
helices 13 and 14 of VP3B migrate in a similar manner as the other 
secondary structural elements. Closer inspection reveals striking 
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Figure 1.  Asymmetric reconstruction of ARV ICP reveals architectural changes to capsid shell and polymerase enzyme. (A) CryoEM structures of ARV virion 
(left) (5VST) and ICP (right) with portion of their external layers removed along hemispheres to expose genome and TECs. (B) Table comparing volumetric 
difference between virion and ICP lumen. (C) Cross sectional view of Tropical Vertex featuring TEC and a turret. Layers of genome segments are numbered from 
1–5 based on proximity to capsid wall. (D) Ribbon Diagram of ICP capsid decamer (top right) and VP3A (left) and VP3B (right) conformers with “tip” (a.a. 486–830), 
“carapace” (a.a. 190–485, 831–976, and 1,144–1,214), and “dimerization” (a.a. 977–1,143) domains indicated and colored differently. (E) Comparison of the CryoEM 
density maps from polar and tropical vertices, highlighting the TEC (magenta and cyan) and surrounding RNA, shown semi-transparently and superposed 
with corresponding dsRNA models (colored by segment) and labeled “Rear Top”, “Rear bottom”, “Bound”, “Front bottom”, “Front top”, and “terminal” based on 
position. (F–H) Atomic model of ICP RdRp VP2 colored by domain including the N-terminal domain (1–387), C-terminal bracelet (902–1,274), and core (388–901) 
colored by subdomain, including the thumb (793–901), fingers (388–557 and 595–690), and palm (558–594 and 691–792) (F). (G) and (H) views from (F) are shown 
to demonstrate the difference between the ICP and ISVP of the template channel finger loop (G) and catalytically important priming loop (H). (I) Atomic model 
of RdRp cofactor VP4 colored by domains with newly resolved residues indicated (red) and division of RBD into Main and Tip subdomains (green separator). 
(J) Interactions of the polar and charged residues from the newly resolved NTPase residues with the adjacent RNA segment from boxed region in E (orange).
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conservation of VP3A residues adjacent to the I5 pore (a.a. 490–518, 
RMSD 464 Å) when compared to the quiescent virion and ISVP 
structures (Ding et al., 2018; Wang et al., 2018). Despite exhibiting 
outward movement, the secondary structural elements of CSPs 
which interface with the clamp and turret proteins interfaces 
appear to move as rigid bodies, presumably constrained by inter-
actions with the essential clamp and turret proteins (Movie S2).

Interactions of ARV inner and outer capsid proteins (VP3–VP5) 
are mediated through the clamp protein VP6, making it important 
for both stabilization against the genome and outer shell associa-
tion. Previous work has shown the related mammalian orthoreovi-
rus (MRV) ICPs can be recoated to form ISVPs (Farsetta et al., 2000), 
suggesting the ARV clamps remain in a VP5 receptive state following 
uncoating. Superimposition of ICP and virion clamp proteins reveal 
significant conformational similarity (RMSD 0.667 Å) despite their 
migration away from the I5 vertices in ICPs. While inconsequential 
for parental ARV particles, which irreversibly cleave VP5 during entry, 
this may provide a platform onto which VP5 can bind, compress nas-
cent core particles, and halt transcription inside ARV progeny.

Within ICPs, several dsRNA segments interact with each TEC 
and these interactions stabilize segments, enabling improved 
visualization of their major and minor grooves as observed in 
other RNA viruses (Fig. 1E) (Pan et al., 2021). Five major dsRNA 
segments are observed adjacent to each TEC and are labeled 
based on their positions relative to the TEC, with a 6th segment 
observed adjacent to the template entrance in polar vertices (Fig. 
1E). The VP2 RNA-dependent RNA polymerase (RdRp) is organized 
into the N-terminal domain (NTD), C-terminal bracelet (CTB), and 
RdRp core which is further differentiated into the thumb, fingers, 
and palm subdomains (Figs. 1F and S4) (Ding et al., 2018; Wang 
et al., 2018). The fingers house the NTP entry channel and, with 
the thumb, facilitate elongation and proofreading while the palm 
catalyzes phosphodiester bond formation between new NTPs and 
growing strands via the highly conserved D591, D740, and D741 
residues (Fig. S4B). The polymerase possesses several channels to 
funnel RNA templates and transcription products while the CTB 
of the inactive ICP does not occlude the template exit channel as 
in quiescent CPV (Fig. S4D and Movie S3) (Ding et al., 2018).

Our RdRp structure reveals several local architectural changes 
within these RdRp channels when compared to the ISVP (Fig. 1F–H, 
and Movie S3). Viewed down the template entry channel, a positively 
charged finger domain loop extends into the template entry channel 
in the ICP, widening to accommodate nucleic acids (Fig. 1G, Movie 
S3). From within the channel, the priming loop—thought to sepa-
rate template and transcript strands—shifts away from the tran-
script exit channel and orients the catalytically important serine 
residues towards the would-be incoming template (Fig. 1H, Movie 
S3). This migration away from the CTB widens the mRNA exit chan-
nel, likely promoting exit through the adjacent I5 pores and turrets. 
From the external TEC view, the RdRp expansion along the capsid 
lumen appears linked to the radial expansion of the capsid beneath 
it (Movie S3). This contrasts with the VP4 NTPase which undergoes 
a unidirectional shift, consistent with the radial expansion of its 
associated CSP monomers (Movie S3). These movements may be 
linked to the asymmetric association of the TEC along the expand-
ing decameric subunit. As VP4 is situated primarily atop the VP31 
dimer it moves along with VP31 dimer elongation, whereas the VP2, 
seated atop VP31–4, is drawn in several directions based on uniform 
expansion of the capsid and the proportion of RdRp associated with 
each conformer pair (Fig. 2A and 2B). As uncoating is necessary to 
synthesize complete viral transcripts (Farsetta et al., 2000), these 
subtle conformational changes in the TECs described here may be 
essential to carrying out efficient viral transcription.

Situated beneath 11 of 12 I5 vertices in ARV are TECs, heterodi-
mers of RdRp and NTPase (Figs. 1A and S3A). NTPase has an RNA-
binding domain (RBD) with its “tip” and “main” subdomains, an 
NTPase domain, and a C-terminal domain (CTD) (Figs. 1I and S5) 
(Ding et al., 2018). The previously missing tip and much of the 
main subdomains are now observed extending away from the TEC 
core towards the template exit channel (Fig. S5). This separation 
may accommodate dynamic RNA interactions throughout tran-
scription. The newly modeled N-terminal residues also reveal a 
flexible region homologous to that of ARV’s MRV cousin but of a 
distinct fold (Pan et al., 2021), with extensive genome segment 
interactions (Fig. 1J).

The N-terminal residues of VP3A conformers were shown to 
associate with and lie along the exterior of the TEC, on both RdRp 
and NTPase (Ding et al., 2018), and were suggested to anchor the 
TEC into place. The newly modeled VP3A N-terminal residues 
include the previously unresolved residues 108–152 (VP3A1–4) 
which contain Zn-finger domains (a.a. 116–141) (Fig. 2B and 2E), 
and conform to a traditional Cys2His2 nucleic acid binding motif 
(Fig. 2E) (Yu et al., 2011) Here four newly resolved Zn-fingers 
(VP3A1–4) lie along the TEC, with VP3A2–4 situated along an RdRp 
cleft opposite the NTPase, and VP3A1 seated along the VP4 NTPase 
domain forming a four-pronged setting that anchors the TEC 
complex to the capsid shell (Fig. 2D). The VP3A3 Zn-finger also con-
tacts the rear bottom genome segment (Fig. 2E), which suggests 
involvement in transcription initiation as observed in rotavirus 
(Ding et al., 2019). ARV VP3s are thus multifunctional, promoting 
TEC assembly and stability while maintaining genome organi-
zation in the quiescent particles. Despite expansion of the cap-
sid shell, the Zn-fingers are positioned as in ISVP, suggesting the 
Zn-fingers function independent of the capsid shell. This may be 
enabled by the flexible linker within the CSP N-terminal domains 
(a.a. 142-190), which extend to accommodate capsid expansion, 
while maintaining their TEC association and without altering 
genome organization or TEC activation state (Movie S3).

Atop each I5 vertex sits a pentameric turret, composed of five 
copies of VP1 TPs (Figs. 1A and 2F) with their axial channels reaching 
the nascent mRNA translocating pores of the TEC (Reinisch et al., 
2000). When ARV ICP and virion turrets are compared, we observe 
an axial extension of the TPs and widening of the axial channels 
(Fig. 2G and 2H). Local alignment of the 5 TP domains reveals the 
enzymatic guanylyltransferase (GTase) and methyltransferase I & 
II (MTase I & II) domains remain stable (RMSD 0.842 Å and 0.907 
Å respectively) while domain separation occurs along the flexible 
linker regions between the GTase, MTase, and flap domains (Fig. 
2H). This separation is enabled by the absence of the VP5 layer that 
would otherwise clash with the ICP turret conformation (Fig. 2G). 
Despite MRV possessing a similar double layered architecture, anal-
ogous TP shifts are not observed when the MRV ICP and complete 
virions are compared (Reinisch et al., 2000; Pan et al., 2021).

CPV and MRV virions both have spike proteins which occupy 
the turret channel and serve dual roles, mediating cell entry, and 
preventing premature transcript escape (Fig. 2F) (Pan et al., 2021; 
Zhang et al., 2022). As ARV lacks a spike protein homologue, we 
investigated the flap domains that line the turret exit channel. 
From virion to ICP, the two C-terminal IG domains undergo an 
outward shift of 14 Å and counterclockwise twist when viewed 
from within the I5 channel and originates at the flexible linker 
region (a.a. 1129) (Fig. 2I). This finding, coupled with the changes 
to capsid and TEC architecture, suggests a regulatory mechanism 
of transcription wherein uncoating yields a particle whose capsid 
better accommodates genome transcription and whose capping 
enzymes are widened, or primed, for transcript export.
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Figure 2.  Asymmetric interactions of VP3A N-termini with TEC and nucleic acids and conformational changes of the capping enzyme turret in uncoated 
virus. (A and B) CryoEM map of polar decamer and attached TEC (left) with dimer pairs colored based on TEC association (A), and corresponding atomic model 
(B). Note the RNA is only shown in the atomic model (B) and not shown in the cryoEM density for clarity. (C) Superposition of VP3A proteins from each dimer 
pair, with N-terminal residues colored to match dimer pairs from (A). (D) Depiction of TEC along decamer lumen with N-terminal surfaces of VP3A CSPs colored 
according to dimer pair in (A, left), and hand shape added to improve visualization of Zn-fingers grasping TEC. (E) Side views of atomic model as indicated 
by eye symbols in (B), with VP3A N-termini colored as in (C), and magnified view of VP3A3 Zn-finger domain interacting with both RdRp (magenta) and rear 
bottom dsRNA (cyan). (F) comparison of CPV before and after detachment, where the Receptor binding spike remains attached to the turret and corresponding 
region of ARV virion and ICP. (G) Magnified view of turret pores from ARV virion (top) and ICP (bottom) with I5 symmetrical axis indicated with pentagon and 
line segment. (H) Atomic structure of the ARV turret protein VP1 from virion (left) and ICP (right) with superimposition of MTase domains (center) to show 
difference, with domains depicted (top) with the primary sequence number and corresponding color scheme. (I) magnified view of boxed region from (H), with 
solid color of non-flap domains used to highlight virion to ICP differences. (J) Schematic demonstrating the confirmational changes differences undergone by 
ARV turrets (green) from virion to ISVP and ICP, which coincide with the loss of outer capsid proteins VP5 and VP7 (translucent yellow and purple).
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In summary, this work provides the first near-atomic reso-
lution asymmetric reconstruction of an ICP from a turreted, 
multi-layered reovirus particle. The structure reveals subtle but 
functionally important conformational changes compared to the 
structures of coated ARV. These changes in the internal capsid 
volume, along-side a widening of TEC nucleotide channels and 
extension of the 5ʹ-cap synthesizing turret proteins create an 
architectural environment conducive to endogenous transcrip-
tion. Therefore, the specialized outer capsid layers serve as a use-
ful transcriptional regulator, ensuring transcription requires not 
only the presence of cofactors, but also loss of outer capsid layers 
which occurs upon cell entry.

Supplementary information
The online version contains supplementary material available at 
https://doi.org/10.1093/procel/pwad002.
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