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Viruses commonly hijack cellular translational machiner-
ies to synthesize viral proteins from their mRNAs using 
diverse strategies1. In addition, some viruses, exempli-

fied by members of the Reoviridae family, also enhance their gene 
expression using virally encoded proteins1–4. Among them, rota-
viruses and orbiviruses (for example, bluetongue virus (BTV)) 
use non-structural proteins for this purpose. Similar to cellular 
mRNAs, the 5′ termini of mRNAs of these viruses are capped by 
viral-encoded structural proteins. However, unlike cellular mRNAs 
and most eukaryotic viruses, the 3′ termini of these viral mRNAs 
lack a poly(A) tail, which is responsible for enhancing the rate of 
translation initiation and the stability of RNA. Thus, to specifi-
cally upregulate protein synthesis from viral mRNA, viral proteins 
must bind to viral mRNAs selectively over poly(A)-tailed cellular 
mRNAs. To accomplish this, BTV uses a viral-encoded protein, 
non-structural protein 1 (NS1), a 64-kDa protein, which does not 
bind to any poly(A)-tailed mRNA, but has specific binding affinity 
for the 3′ terminal sequences of BTV mRNAs to upregulate viral 
protein synthesis4. In rotavirus, the non-structural viral protein 
NSP3 substitutes the cellular poly(A)-binding protein and binds to 
the viral mRNAs via 3′ terminal sequences2. Although biochemical 
studies and structural studies of NSP3 fragments have yielded some 
understanding about how this protein may enhance viral mRNA 
synthesis, high-resolution structures for full-length rotavirus NSP3 
and BTV NS1, as well as a detailed molecular understanding of how 
these viral proteins function, are still lacking3,5–8.

BTV is transmitted by biting midges of the Culicoides genus to 
ruminants, and is endemic worldwide. BTV infection in sheep and 
cattle often causes high morbidity and mortality with substantial 
economic consequences. The BTV genome consists of 10 segments 
(S1–S10) of double-stranded RNA, which encode seven structural 

proteins and four non-structural proteins (NS1–NS4). NS1 is an 
early protein expressed in infected host cells at a high level. Within 
the host cytoplasm, multiple copies of NS1 rapidly assemble in tubu-
lar form, a hallmark of orbivirus infections. NS1 tubules can either 
be purified from BTV-infected cells or assembled from recombinant 
proteins9,10 for structural determination by cryo-electron micros-
copy (cryoEM) with helical reconstruction. A low-resolution (40 Å) 
three-dimensional (3D) reconstruction of NS1 tubules generated by 
recombinant NS1, was previously reported in 1992 (ref. 9). However, 
owing to technical limitations, efforts to sort out multiple helical 
forms to improve the resolution of NS1 helical reconstruction have 
been unsuccessful for the past three decades. As such, how NS1 
assembles into helical tubules and how such assemblies participate  
in BTV gene expression remain unclear.

Here, we report the near-atomic resolution structures of two NS1 
tubular forms obtained by cryoEM. The atomic model shows that each 
NS1 monomer contains two metal binding, zinc-finger-like motifs 
and an extended carboxy-terminal arm, which interacts with neigh-
bouring subunits to form tubules with variable diameters and helical 
configurations. The structure rationalizes many of the previous obser-
vations attributed to NS1 and suggests how tubules may form from a 
soluble pool of functional intermediates through coordination of zinc 
or other metal cations. Furthermore, structure-based mutagenesis of 
NS1, combined with reverse genetics, allowed us to determine that the 
non-tubular form of NS1 is also functional and to identify the critical 
residues involved in viral protein translation and replication, which 
may be shared by other members of the orbivirus family.

Results
Structure determination of NS1 tubules and atomic modelling. 
A challenge in the structural study of the BTV NS1 protein is its 
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variable tubular forms as recognized nearly 30 years ago9. Such vari-
ability makes indexing of the helical parameters difficult and has 
hitherto prevented achieving high-resolution 3D structures. As 
technology availed, here, we have improved the resolution of the 
structure (see details in Methods) and determined the multiple heli-
cal configurations of the tubules based on our film data, but were 
unable to reach a resolution that is sufficient for atomic modelling. 
NS1 tubules vary in two major helical settings: subunits per turn 
(19.xx, 20.xx, 21.xx, 22.xx; where xx means not fixed) and helical 
start number (1–3 helices). The diameter of the tubule increases as 
the integer part of the subunits per turn number increases, ranging 
from 500 Å to 523 Å, 547 Å, 580 Å for 19.2, 20.2, 21.2 and 22.2 sub-
units per turn, respectively. The single (1-start) helices are always 
y + 1/5 (y in [19.22]) subunits per turn, 2-start y + 4/7 subunits per 
turn and 3-start y + 1 subunits per turn. Thus, we observed, by com-
bination, 12 (4 × 3) different helical forms, although we do not rule 
out the existence of other forms of undetectable populations.

We focused on the two most abundant classes of tubules with 
the following helical configurations: 20.2 subunits per turn, 1-start 
helical tubule (17.5%) and 20.58 subunits per turn, 2-start helical 
tubule (26.8%) (Fig. 1a). The tubule diameter increases from ~523 Å 
in the 1-start tubule to ~526 Å in the 2-start tubule. The tubules that 
belong to the same helical configuration appear to ‘breathe’ due to 
thermal motions—for four different classes of 3D classification, the 
radii of 20.58 tubules vary by up to ~5 Å (Fig. 1b). Such variability 
has necessitated exhaustive computational classification to reduce 
the number of particles in each homogeneous structural class. 
Thus, although a meaningful signal can be recognized to 3.8 Å in 
the power spectrum of electron-counting cryoEM images, the reso-
lution of the 3D reconstruction (Fig. 1c) from best class, obtained 
by merging 4,517 particles, is limited to ~4.0 Å, as judged from the 
structural features (Fig. 2a) and Fourier shell correlation analysis 
(Supplementary Fig. 1).

Structure reveals that the 2-start helical tubule is formed by 
pseudo-planar NS1 homodimers arranged into a thin-walled 
(~57 Å) tubule, containing 41.16 monomers per turn. Its archi-
tecture is stabilized laterally by packing interactions between 
neighbouring NS1 subunits of the same layer, and vertically by 
compact junctions between six monomers from two different layers  
(Fig. 1c). This helical arrangement differs from that reported previ-
ously9. Remarkably, the 1-start/2-start helical change in the tubule 
arrangement does not alter the monomeric structure in a noticeable 
manner, reminiscent of the formation of a carbon nanotube from 
graphene11. NS1 monomers interact with its neighbours through 
two interfaces: A and B (Fig. 1c). The dimers are packed together 
in the 1-start in an upright position with respect to the tubule axis 
(the angle between the dimer interface and the tubule axis is 18.8° 
and 20.7° in the 1-start and 2-start tubules, respectively). There are 
no major changes in subunit–subunit interactions between the two 
helical forms, and only a subtle shift in the arrangement of each 
subunit with its neighbours. These similarities and differences 
indicate an assembly mechanism of an NS1 tubule from a flat and 
flexible sheet, a process that allows different helical configuration 
to form.

Structure of the NS1 monomer. NS1 has no known structural 
homologues, and its repeating arrangement with entwined exten-
sions in the tubule created difficulties in de novo modelling. Some 
prominent structural features, such as aromatic side chains (Fig. 2a), 
and the visible C terminus provided key landmarks for model build-
ing. Subsequently, integration of a structural map with sequence-
based prediction and available functional data allowed us to 
complete a provisional model consisting of two of the three globular 
domains of the NS1 monomer. In retrospect, resolving key junctions 
at domain boundaries was challenging due to confusion caused 
by the previously unknown presence of metal ion coordination  
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Fig. 1 | NS1 tubules are dynamic. a, Schematic (left) and reconstructions (right) of a 2-start NS1 tubule and a 1-start NS1 tubule. b, Overlaid surface view of 
the density maps of the largest diameter class (magenta) and smallest diameter class (blue). Note the colour dominance of the small diameter class along 
the inside of the tubule, illustrating its smaller diameter. c, Zoomed-in view of a region of the cryoEM density map of the NS1 tubule at 4.0 Å. Individual 
monomers are coloured differently to distinguish the borders of interacting monomers. Monomer–monomer interfaces A and B are indicated.
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motifs. Such motifs created density branches that obscure chain trac-
ing. Once these two globular domains were assigned, the remaining 
globular domain and the C-terminal arm became readily assignable 
to the correct monomer, allowing de novo modelling and refine-
ment of the first NS1 atomic model (Fig. 2b).

Each NS1 monomer is organized into three domains (Fig. 2b): 
foot, body and head, with the amino terminus located in the foot 
domain and the C terminus extending far from the body domain 
through an ‘arm’. Monomers are arranged in the tubule in an alter-
nating head-to-foot orientation (Fig. 2c). The head domain consists 
of nine α-helices and two β-sheets. One of the β-sheets contains 
anti-parallel strands and the other, both anti-parallel and parallel 
strands. The body domain lies between the head domain and the 
foot domain. It comprises two β-sheets and six α-helices. The foot 
domain (residues 1–77) is composed of five α-helices, with two 
linker helices, h6L and h7L, traversing the body domain to reach 
the head domain (residues 136–337).

The C-terminal arm is necessary for tubule formation but not for 
virus replication. The NS1 C-terminal arm contains a 15-residue 
long α-helix (h23, residues 535–550) and connects to the globular 
body domain through helix 22 upstream (Fig. 2b). The hydropho-
bic arm extends from the body and occupies a hydrophobic groove 
on the neighbouring monomer, whereas its terminal helix displays 
a hydrophobic face to grasp the head domain of the neighbour-
ing monomer (Fig. 2c,d). Each monomer reaches out to join the 
neighbouring monomer and, in turn, is inter-linked by its partner 
(Fig. 2c). Furthermore, the hydrophobic β-strand section (residues 
522–526) of the C-terminal arm augments a β-sheet in the head 
domain of the neighbouring monomer formed by strands s2, s3 and 
s5 (Fig. 3a).

Previous biochemical studies12 have shown that the C-terminal 
10 amino acids are essential for tubule formation, suggesting that 
the C-terminal helix is involved in tubule formation. To investi-
gate this, two C-terminal deletion mutants, Δ20 (Δ532–552) and 
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Fig. 2 | Structure of the NS1 monomer. a, Superposition of the cryoEM densities (grey mesh) and their corresponding atomic models (ribbon and sticks) 
for three selected regions of NS1, illustrating the quality of the cryoEM densities that supports atomic modelling based on amino acid side chains.  
b, Secondary structure schematic and domain architecture (left) mapped to the atomic model (shown as a ribbon diagram to the right) of an NS1 
monomer. c, Space-filling surface rendering of an NS1 dimeric building subunit of both tubular forms. d, Coulombic surface rendering of the NS1 monomer 
showing the C-terminal arm handshake. Note the hydrophobic groove in the head domain and the hydrophobic inner surface of the C-terminal arm. 
Surface colouring is based on the residue charge properties (red, negative; blue, positive).
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Δ30 (Δ522–552) were generated using the NS1-encoding gene S5 
(Fig. 3a), and their effects on virus replication were assessed using 
reverse genetics13. Both mutant viruses were recovered success-
fully (Fig. 3b), indicating that virus replication was not significantly  

hampered. However, we did not observe the characteristic cyto-
plasmic distinct granular distribution of NS1 (left panels in Fig. 3b)  
exhibited in wild-type transfected or virus-infected cells, but rather 
diffuse patterns of NS1 present throughout the cytoplasm (middle 
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Fig. 3 | C-terminal arm deletion mutations demonstrate that the non-tubular form of NS1 is the functional form. a, Ribbon diagram inter-NS1 interface 
showing the locations of the two C-terminal arm deletion mutants. The β-sheet augmentation and handshake grip region of the C-terminal arm are 
highlighted in red. Residues for the deletion mutants are labelled. b, Immunofluorescence analysis showing the intracellular localization of wild-type (WT) 
or mutated NS1 (Δ20 and Δ30) in cells transfected with NS1-capped mRNA (top panels) or infected by mutant viruses (bottom panels). NS1: rabbit 
anti-NS1 primary antibody and anti-rabbit Alexa 488-coupled secondary antibody; NS2: component of the viral inclusion bodies, mouse anti-NS2 primary 
antibody and anti-mouse Alexa 546-coupled secondary; nuclei, blue (Hoechst staining). Experiments were repeated twice independently with similar 
results. c, Transmission electron microscopy analysis of sections of cells infected with wild-type and mutant viruses as indicated. Viral inclusion bodies are 
indicated (black arrows). Tubules (yellow arrow) are only present in the cytoplasm of cells infected by the wild-type virus. Scale bars, 200 nm. Sectioning 
data are the result of one experiment. d, Growth curves of viruses. Virus titres were determined in triplicates. e, Quantification of Renilla luciferase 
expression by wild-type or mutant NS1. Luciferase activity was detected 24 h after cells were co-transfected with S10-Rluc and wild-type or mutated 
NS1-capped mRNA. Bars represent the averages of at least three independent experiments (wild type, n = 7; mutants, n = 3). Distribution of the data and 
respective P values are indicated (one-tailed t-test: two-sample assuming equal variance, confidence level of 95%). w/o, without.
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and right panels in Fig. 3b). However, there was no obvious difference 
in the plaque phenotype between mutant viruses and the wild-type 
virus (Supplementary Fig. 4), although no tubules were observed 
by electron microscopy of infected cells (Fig. 3c). Nonetheless, the 
growth rate of the mutant viruses decreased slightly compared to 
the wild-type virus (Fig. 3d). Using a reporter RNA assay4, we tested 
both Δ20 and Δ30 for their ability to specifically enhance viral pro-
tein expression, as described in Methods. In each case, expression 
of the reporter was detected (Fig. 3e), indicating that NS1 func-
tion was not perturbed by the C-terminal deletion. The recovery 
of these mutant viruses demonstrates that the C-terminal arm and 
its β-sheet augmentation role are required for tubule formation, but 
not for the function of NS1 in protein expression, demonstrating 
that the non-tubular form of NS1 is functional. The characteristic 
shape of this C-terminal arm linking another monomer suggests 
that it facilitates dimer formation.

NS1 contains two zinc-finger-like motifs that are important for 
virus replication and tubule formation. Each NS1 monomer con-
tains two zinc-finger-like motifs: motif 1 and motif 2 (Fig. 4a). Both 
motifs have a tetrahedral arrangement of side-chain rotamers and 
a strong density at the centre of the tetrahedron, characteristic of 
metal coordination in typical zinc-finger motifs. The putative metal 
ion coordination site of motif 1 is formed by a tetrahedral arrange-
ment of C30, H32, C37 and C43 (Fig. 4a, orange panel). In the tubu-
lar form, pairs of foot domains, head domains and C-terminal arms 
cage motif 1 in tubular NS1, rendering it inaccessible from both out-
side and inside the tubule. By contrast, motif 1 in both NS1 mono-
mer (Fig. 4a) and NS1 dimer (Fig. 2c) forms are readily accessible. 
The tetrahedral metal ion coordination site of motif 2 is located at 
the junction between the head and body domains and is formed by 
C337, C340, H375 and H398 (Fig. 4a, yellow panel). Its secondary 
structure arrangement is reminiscent of, but distinct from, typical 
Cys2His2 zinc fingers, which exhibit a αββ architecture. H375 and 
H398 reside on separate strands of a three-stranded β-sheet, and are 
connected by a loop and strand. C337 and C340 are located on h16 
at the base of the head domain.

To verify that these motifs are divalent metal ion coordination 
motifs, we treated tubules with chelating agent and examined the 
structural changes. The integrity of tubules was compromised by 
such treatment, leading to fluffy aggregates, which can be restored 
by divalent cations, including Zn2+ (Fig. 4b). This observation indi-
cates that the presence of divalent metal ions may be important for 
the maintenance of tubular NS1 and that the conversion between 
the tubular and non-tubular forms is reversible by the removal and 
addition of metal cations.

To determine the importance of these putative zinc-binding 
motifs, substitution mutations (C30S, C43S and H32A in motif 1 
and C340S, H375A and H398A in motif 2) were generated by site-
directed mutagenesis in the viral genome. Each mutation in motif 
1 and motif 2 failed to recover viruses by reverse genetics, although 
a virus was recovered successfully when nearby residues were 
mutated (KR34-35AA) (Supplementary Fig. 4). Expression of NS1 
in each case was visualized by immunofluorescence, although their 
cytoplasmic distribution was diffused (middle and bottom rows in 
Fig. 4c). By contrast, the wild-type NS1 and the positive control 
KR34-35AA NS1 mutant showed the same characteristic cytoplas-
mic distribution (top row, Fig. 4c). Given that zinc fingers are often 
involved in nucleic acid binding, it is possible that either of the metal 
ion coordination motifs is important for structural stability and/or 
related to the ability of NS1 to selectively upregulate viral mRNA in 
host cells4. However, mutations in motif 1 had no significant effect 
on the upregulation of the reporter expression, except the H32A 
mutant, which showed only a slight decrease in the transfected cells 
(Fig. 4d, orange bars). By contrast, all mutations in motif 2 had dras-
tic effects (up to 21 fold) on the luciferase expression (Fig. 4d, yellow 

bars), indicating that motif 2 is particularly important to upregulate 
viral gene translation, although both metal ion coordination motifs 
are necessary to maintain the characteristic tubular structure.

Intra-layer monomer–monomer interactions. Two large binding 
surfaces spanning the length of the NS1 protein are presented by 
each monomer to its two neighbouring monomers within the same 
layer. These interfaces (A and B) include a mixture of hydrophobic 
and charged residues (Figs. 1c and 5a), dictating extensive interac-
tions between monomers of the same layer. Interface B revealed 
many interactions, including a possible disulfide bond formation 
between C364 of one monomer and C364 of the other monomer 
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Fig. 4 | NS1 contains two putative zinc-finger motifs, which are important 
for virus replication and tubule formation. a, Ribbon diagram of an NS1 
monomer showing the locations (left) and details (insets) of putative  
metal ion-binding motifs 1 and 2. The four residues implicated in the 
tetrahedral coordination in each motif are labelled in the insets.  
b, CryoEM micrographs of well-structured tubules (control), of disrupted 
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twice independently with similar results. c, Immunofluorescence analysis 
showing the intracellular localization of wild-type or mutated NS1 (motif 
1: C30S, C43S and H32A; motif 2: C340S, H375A and H398A) in cells 
transfected with the respective capped mRNA. The KR34-35AA mutant 
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in the same layer around a sideway two-fold symmetry axis (Fig. 
5b). Previous studies using recombinant NS1 protein showed that 
a C364S mutant formed tubules similar to wild-type NS1 (ref. 14). 
To investigate in the context of virus infection, we created the same 
mutation in the viral genome and successfully recovered the C364S 

mutant virus with a similar plaque phenotype to the wild-type virus 
(Fig. 5c). Cells infected with plaque-purified wild-type or C364S 
mutant viruses showed efficient viral replication, although the intra-
cellular localization of NS1 C364S was slightly affected (Fig. 5d).  
Taken together, these results indicate that such a disulfide bond is 
unlikely to be critical to tubule formation and suggest that interface 
B is complex and will need further studies.

Discussion
In this study, we obtained an atomic model of BTV NS1, derived 
from a near-atomic resolution cryoEM helical reconstruction of 
NS1 tubules. The observation of multiple, dynamic classes of tubules 
indicate that NS1 monomers are able to assemble with some degree 
of flexibility, without affecting the monomeric structure. This ability 
to form tubules of variable helical forms and diameter suggests that 
tubule formation is a robust process capable of initiating in various 
configurations. The helical reconstruction shows that the immuno-
genic C terminus is located along the tubule surface, consistent with 
several previous studies, which indicated to this localization12,15. The 
location of the C terminus rationalizes the ability of NS1 tubules to 
serve as effective immunogen delivery vehicles, capable of carry-
ing large peptides without disrupting the tubular structure15–17. The 
structure-based mutagenesis studies showed that deleting the NS1 
C-terminal arm abrogated tubule formation, but still could recover 
infectious virus and retained the ability to regulate viral protein 
expression as confirmed by a reporter assay. Thus, the non-tubular 
form of NS1 is sufficient for virus replication and for upregulating 
viral mRNA translation. Although the tubular form is not required 
for upregulating viral RNA translation, tubule formation during 
BTV infection had been reported to reduce cytopathic effects, sug-
gesting that NS1 tubules may play a role in cellular pathogenesis18,19.

Our NS1 structure shares no recognizable similarity with any 
published structures. During rotavirus infection, the non-structural 
viral protein NSP3A acts like cellular poly(A)-binding protein 1 and 
binds to the 3′ end of viral mRNA2. Motifs implicated in dimer-
ization, RNA binding and interaction with eukaryotic translation 
initiation factor 4G1 (eIF4G1) have been mapped in rotavirus NSP3 
(ref. 3), and although both N-terminal and C-terminal domain 
structures of NSP3 were described, neither significant sequence 
identity nor structural similarity between BTV NS1 and rotavirus 
NSP3 can be recognized7,8. A human cellular protein conserved in 
mammals, termed rotavirus ‘X’-associated non-structural protein 
(RoXaN), has been shown to form a ternary complex with eIF4G 
and rotavirus NSP3 (ref. 5), thereby promoting interaction between 
cytoplasmic poly(A)-binding protein and viral RNA6. Surprisingly, 
RoXaN bears some sequence similarity to BTV NS1 at the solvent-
exposed regions except for the C-terminal arm, with 94 identical 
and 177 similar amino acid residues (Supplementary Fig. 2). Given 
that NS1 is known to selectively upregulate viral protein synthesis 
by binding to the 3′ end of viral mRNA4, we speculate that NS1 may 
mimic some function of RoXaN, plausibly promoting interaction 
between viral mRNA and eIF4G or other components of the host 
translation machinery to upregulate viral protein synthesis.

Our atomic structure of BTV NS1 reveals two zinc-finger-like 
motifs with tetrahedral arrangements, motif 1 and motif 2, and our 
functional studies revealed that the tubule structure was signifi-
cantly affected by chelating agent treatment. Remarkably, RoXaN 
possesses five similar motifs (C3H1 and C2H2 types). The first of 
these five motifs is localized to a region with 100% identity with 
BTV NS1’s motif 2 (337-CQLCY-341; Supplementary Fig. 2b), 
which is necessary for NS1 to fulfil its upregulation function of viral 
mRNA translation. By contrast, the region around motif 1 of BTV 
NS1 aligns with RoXaN only in a limited manner (Supplementary 
Fig. 2b). Zinc-finger motifs are known to stabilize protein structure, 
or to bind to nucleic acids, or to mediate protein–protein interac-
tions20,21. Our data show that, although motif 2 plays a major role for 
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showing intra-layer β-sheet augmentation involving the head domain 
of one monomer and the C-terminal arm of the other monomer. Yellow 
inset, atomic models of sample intra-layer packing between the head 
domain of one monomer and the foot domain of another monomer. 
Monomer–monomer interfaces A and B are indicated. b, Putative disulfide 
bond between monomers of the same layer. Black inset, atomic models of 
the C364 side-chain position and orientation. c, Recovery of the C364S 
mutant virus by reverse genetics compared to the wild-type virus. Plaques 
(white) indicative of recovered viruses were visualized by crystal violet 
staining. Similar plaque phenotypes were observed for the wild-type and 
mutant viruses. d, Intracellular localization of wild-type or C364S mutant 
NS1. Immunofluorescence analysis showed similar viral inclusion bodies 
(indicative of similar viral recovery) but partially affected intracellular 
NS1 localization in cells infected with the mutant virus compared to those 
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Experiments were repeated twice independently with similar results (c,d).
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the upregulation of viral protein translation, the integrity of both 
motifs is probably essential for maintaining the stability of the NS1 
structure. In addition, typical granulated patterns observed in the 
cells transfected with wild-type NS1 were not present in the mutant 
NS1-transfected cells, consistent with our conclusion that these 
motifs are likely to be important for the tubule stability. However, 
how NS1 zinc-finger motifs upregulate BTV replication awaits fur-
ther investigation. Nevertheless, we do not rule out possibilities that 
these motifs bind alternatively to some other, unidentified metal 
ions22. Selection pressure has forced organisms to evolve complex 
regulation processes for gene expression regulation, through mul-
tiple levels of control and involving many molecules of nucleic acids 
and proteins. Facing the scarcity of resources, a simple organism 
such as a virus has to employ different strategies to regulate its gene 
expression, including using multiple oligomeric states of a single 
protein. Considering the fact that the tubules, purified from BTV-
infected cells, assemble in variable helical forms that can be con-
verted to non-helical forms by the level of zinc or other divalent 
cations, we hypothesize that BTV might employ a negative-feedback 
mechanism to regulate viral protein translation by sequestering the 
functional non-tubular form of NS1 into tubular assemblies. This 
process may involve regulation of the local concentration of metal 
ions. As BTV is a model virus system for many double-stranded 
RNA viruses, these findings offer a rare glimpse into the regulatory 
aspect of the viral life cycle23, while simultaneously providing a trove 
of information on both tubular and non-tubular forms of NS1 and 
the relationship between the two forms. It opens the door to new 
possibilities in structure–function relationship studies to allow fur-
ther understanding of NS1–host cell machinery interaction.

Methods
Cells and viruses. BSR cells (BHK-21 subclone) were cultured in DMEM 
supplemented with 5% (v/v) FBS at 35 °C in 5% CO2.

Wild-type and mutant BTV viruses were recovered by reverse genetics as 
previously described13 (see below). Each recovered virus was plaque purified, 
amplified in BSR cells and harvested at 100% cytopathic effect between 2 and 
3 days. Viruses were titrated either using a plaque assay or a TCID50 (50% tissue 
culture infectious dose) assay.

Tubule purification. BSR cells were infected with wild-type or mutant BTV1 
at multiplicity of infection of 0.5 during 1 h. Viral inoculum was subsequently 
removed and cells were incubated in 1% FBS culture medium for 44 h until 100% 
cytopathic effect. Supernatant and cells were harvested and clarified for 10 min at 
4,500 r.p.m. Cell pellets were resuspended in pre-chilled lysis buffer (100 mM Tris 
HCl, pH 7.5, 50 mM NaCl, 10 mM EDTA and 0.1% NP-40 (Sigma)), incubated 
at 4 °C for 10 min and spun down at 4,000 r.p.m. 5 min at 4 °C. Supernatants were 
kept on ice and lysis was repeated once. Supernatants were pooled and loaded on 
a 40% w/v sucrose cushion in 20 mM Tris HCl, pH 7.5, and 150 mM NaCl buffer. 
Ultracentrifugation was carried out at 28,000 r.p.m. at 4 °C for 2 h. The pellet was 
resuspended overnight in 20 mM Tris HCl, pH 7.5, and 150 mM NaCl buffer prior 
to vitrification for cryoEM sample preparation.

CryoEM. Optimization for sample distribution and ice thickness was performed 
in an FEI TF20 cryoEM equipped with a TVIPS 16 MP CCD camera, first by 
negative stain and then by cryoEM. High-resolution cryoEM images were recorded 
in a Titan Krios instrument over a 10-year period in an effort to improve the 
resolution of the structure. Two different types of cryoEM micrographs were 
recorded and processed in this effort. Prior to the advent of direct electron 
detectors, we recorded cryoEM images on photographic films (film data set). 
However, after exhaustive efforts and 2,087 films, we were unable to improve our 
3D structure to be better than a 4.5-Å resolution. For this reason, when electron 
counting became available to us, we imaged the same tubules again in a Gatan K2 
Summit direct electron camera attached to an energy filter. The direct electron 
detector data set of cryoEM images was collected as movies in an FEI Titan Krios 
microscope (operated at 300 kV) equipped with a Gatan imaging filter (the slit was 
not inserted) and a K2 Summit direct electron camera in counting mode using the 
Leginon software package24 for automation. The target defocus value was set to 
2.0 µm under focus. Each movie contains 50 frames with 5 frames per second, with 
a total accumulated dosage of 60 electrons per Å2. The dose rate is measured at 6 
electrons per Å2 per second in the Digital Micrograph software package, which is 
calibrated to 7.5 electrons per Å2 per second compared to our initial efforts with 
films25,26. A total of 5,006 movies were collected over two sessions.

Image processing for the film data. Micrographs recorded on Kodak SO163 
photographic films were digitized and screened to select tubules that are non-
overlapping, intact and free of ice contamination. Tubule particles were manually 
selected with EMAN27 helixboxer with a box width of 640 and was segmented 
according to a 10% overlapping scheme. A total of 218,238 segments were selected 
from images from all sessions. The contrast transfer function parameters of these 
movies were determined by CTFFIND3 (ref. 28). The determined defocus range 
was 0.6–3.1 µm.

We carried out reference-free 2D classifications (tier I) of these particles by 
EMAN refine2d.py. The resulting class averages show different tube diameters. 
We further classified these classes manually by their diameters (four different 
diameters). For each meta-class (tier II), all class-average images were transformed 
into Fourier space so that their amplitude images (layer line images) were 
translated into real-space images. These images were classified again in 2D (tier 
III, 10 classes). For every tier II class, we noticed that there are three modes (tier 
IV) of peri-meridian reflections in the 10 (tier III) class averages. These four 
tiered classification suggested that there are 12 (4 × 3) different helical forms in the 
population of particles.

We indexed every tier IV class average as previously described by David 
DeRosier (http://www.biomachina.org/courses/structures/download/derosier_
handout_02.pdf) and ref. 29. Basically, the three modes of peri-meridian reflections 
put (0,1) at n = 1, 2 and 3, respectively (one-, two- and three-start helices). 
Surprisingly, for all helices, the pitches are roughly the same, being ~88–89 Å; 
however, their l numbers are different. The selection rule for all three helical form 
of class 2 diameter helices (tier II), as determined from (0,1) and (1,0) reflections 
are (l = −5n + 101 m; n = 20, l = 1 and n = −1, l = 5), (l = −7n + 144 m; n = 20, 
l = 4 and n = 2, l = 14) and (l = −11n + 232 m; n = 20, l = 12 and n = −3, l = 33) 
(Supplementary Fig. 3). Other helical forms can be deduced in a similar way.

We sorted the particles according to their tier IV class identities and calculated 
a volume for each of them by EMAN-based IHRSR25,30. Further image processing 
steps were performed with Relion v1.2 with IHRSR31. The selected particles for tier 
II class 2–tier IV class 1 (20.2 dimers per turn, tier IV grand rank #4), tier II class 
2–tier IV class 2 (20.57 dimers per turn, tier IV grand rank #5), tier II class 3–tier 
IV class 1 (21.2 dimers per turn, tier IV grand rank #7) and tier II class 2–tier IV 
class 2 (21.57 dimers per turn, tier IV grand rank #8) were refined with Relion v1.2, 
respectively. The final resolutions for resulting maps are in the 4.5–5.0-Å range, 
marginally unsuitable for atomic modelling.

Image processing for the direct electron detector data. Frames within each 
movie were aligned to correct for drift as previously described32, except that an 
iterative alignment scheme was used as previously described elsewhere33. Aligned 
frames were averaged to generate two average micrographs for different purposes: 
one by averaging the 1st to 50th frames for particle selection and determination 
of contrast transfer function parameters, and the other by averaging 3rd to 20th 
frames for structure refinement. Contrast transfer function parameters were 
determined by CTFFIND3 (ref. 28), and those with very large and very small 
underfocus values were discarded. The determined defocus ranges for included 
data were 1.2–4 µm for session 1 and 1.5–3.5 µm for session 2.

Tubule particles were manually selected the same way as with the film data set 
except for a 720 box width and was segmented according to a 10% overlapping 
scheme; a total of 87,190 segments were selected for images from both sessions. We 
cleaned up the particles using Relion v1.4 Class2D.

For each session, all particles were subjected to a Class3D run with 12 classes 
for the separation of the 12 helical forms. For each helical form, particles from the 
two sessions were combined. We further analysed the helical forms of 20.2 dimers 
per turn (grand rank #4) and 20.57 dimers per turn (grand rank #5), respectively.

For each of the two selected helical forms, a Class3D run with five classes 
was done to separate particles at different stages of thermal breathing of the tube. 
Only the class with the most particles—incidentally, the class with the medium 
diameter—was included for further processing, respectively.

We initially used Refine3D in Relion v2.0 to refine the structures. However, 
given the signal-to-noise-ratio-based regularization intrinsic to the Relion 
algorithm, a working resolution control was not satisfactory, as there are too many 
helically related copies, and signal-to-noise ratio compensation that worked for 
previous studies with less helically related copies31 did not work properly. Thus, we 
used Class3D with one class to refine the structures and manually adjusted T factor 
(--tau_fudge) and healpix order so that the refinement could progress.

We then first averaged the two monomers in the dimers from the 1-start helical 
form with Chimera34. The monomers were automatically averaged in the 2-start 
helical form as dihedral (D2) symmetry was imposed during refinement. We then 
averaged the dimers across two helical forms with Chimera34.

Atomic model building. The backbone of the NS1 monomer was traced using 
Coot35. The PHYRE2 (ref. 36) prediction server was used to partially guide 
backbone tracing. The backbone coordinates were then changed to peptide and 
subsequently mutated to the correct sequence. The initial N terminus assignment 
was corrected to account for a twofold symmetry axis. The subsequent model 
went through manual regularization using Coot37, before undergoing real-space 
refinement through PHENIX38. The output was analysed using the Molprobity39 
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integration in Coot and had its clashscore and geometry improved manually. The 
structure was then subjected to geometry_minimization in PHENIX and then fed 
to real-space refinement with simulated annealing, using MolProbity functions 
built into PHENIX to track model quality and agreement with the density map 
throughout refinement. The final model was checked for fitting errors manually 
in Coot and UCSF Chimera34. All structural figures were generated using UCSF 
Chimera.

Plasmids. The plasmids used in this study were pCAGGS BTV1 protein expression 
plasmids (pCAG-VP1, pCAG-VP3, pCAG-VP4, pCAG-VP6 and pCAG-NS2) and 
T7 plasmids for BTV transcripts as previously described13.

Site-directed mutagenesis. Site-directed mutagenesis of BTV1 NS1 was performed 
using the T7 segment 5 (encoding NS1) template and the following mutagenic 
primers (5′–3′):

C30S (CCACAATGGACTAGCAGTCATCTAAAAAGG),
�C43S (GGAATTGTTTATTCAATGGGATGAGTGTTAAACAAAATTTTGA
GAGAGC),
H32A (CAATGGACTTGCAGTGCTCTAAAAAGGAATTG),
�KR34-35AA 
(GGACTTGCAGTCATCTAGCAGCGAATTGTTTATTCAATGG),
C340S (GCATACATGTCAGCTGAGCTACTTGAAACACTC),
C364S (CATCAGAACTAACTGGGTCTTCGCCATTCAAGACGG),
H375A (GTGAAGATTGAGGAAGCTGTGGGAAATGATTCG),
H398A (GGCAGGATCGGAGATGCTTATTATACTACAAATTG),
Δ20 (GCTGGGTTCGCGGCACCTGCGTAGTTACTGACTTCTGTT),
Δ30 (CCCTATGCTATGCAGAAAAGTAGTTACTGACTTCTGTTTTCTG).
Mutagenic bases are underlined. Obtained mutants were subsequently 

sequenced using an internal NS1 primer to confirm the presence of the desired 
mutation(s).

Synthesis of NS1-capped mRNAs. Synthetic single-stranded RNAs were prepared 
by run-off in vitro transcription from T7 PCR products using T7 RNA polymerase. 
Transcripts were prepared with anti-reverse cap analogue using the mMESSAGE 
mMACHINE T7 Ultra Kit (Ambion) as previously described13. Transcripts were 
analysed by electrophoresis in 1% agarose in morpholinepropanesulfonic acid in 
the presence of formaldehyde.

Transfection of BSR cells. Seventy per cent confluent BSR monolayers in 12-
well plates were transfected with 500 ng mRNA transcripts using Endofectin 
(GeneCopoeia), according to the manufacturer’s instructions. Cells were 
subsequently incubated at 35 °C in 5% CO2 8–24 h after transfection.

Reporter RNA transcript preparation and quantification of reporter 
expression. Reporter RNAs were prepared and the quantification of reporter 
expression was performed as previously described4 with slight modifications. 
Briefly, the pS10-Rluc plasmid clone containing the 5′ 152 nucleotides and 3′ 
149 nucleotides of BTV-1 segment 10 fused with the Renilla luciferase gene 
was digested with restriction enzymes, and synthetic capped single-stranded 
RNAs were prepared by run-off in vitro transcription using the mMESSAGE 
mMACHINE T7 Ultra Kit (Ambion). BSR 96-well monolayers were transfected 
with 150 ng capped S5 RNA wild-type or mutant and 150 ng capped S10-Rluc 
reporter RNA. Renilla luciferase expression in the transfected cell lysates was 
quantified in triplicates 24 h after transfection with a Turner Biosystems Glomax 
luminometer with Promega’s dual luciferase reporter assay system according to the 
manufacturer’s instructions.

Recovery of viruses by reverse genetics. Reverse genetics was performed as 
previously described13. Briefly, at day 1, 70–80% confluent BSR monolayers 
were transfected with pCAG-VP1, pCAG-VP3, pCAG-VP4, pCAG-VP6 and 
pCAG-NS2 (120 ng each) using Endofectin (GeneCopoeia), according to the 
manufacturer’s instructions, and incubated at 35 °C in 5% CO2 overnight. At day 2, 
the cells were transfected with each BTV1 exact copies RNA transcripts (S5 wild 
type or mutated) using Endofectin (GeneCopoeia), overlaid with 1% agarose 
and incubated for 3 days at 35 °C in 5% CO2. Visible plaques were picked up and 
resuspended in 1% FBS containing medium, and/or cells were subsequently fixed 
with 10% formaldehyde and stained with crystal violet.

Immunofluorescence assays. BSR cells were grown on coverslips and either 
transfected with capped mRNA or infected with wild-type or mutant viruses. 
Eight to ten hours post-transfection or infection, cells were fixed with 4% 
paraformaldehyde (Sigma) solution, permeabilized with 0.5% Triton X-100 
(Sigma), blocked with 1% BSA (Sigma) and subsequently stained using rabbit 
anti-NS1 and/or mouse anti-NS2 primary antibodies, and anti-rabbit Alexa 488 or 
anti-mouse Alexa 546 coupled secondary antibodies (Thermo Fisher Scientific). 
Nuclei were stained using Hoechst 33342 (Thermo Fisher Scientific). Images 
were acquired using an ×100 oil objective and a Zeiss Axiovert LSM510 confocal 
microscope supplied with the LSM510 software.

Cell sectioning analysis. BSR cells were infected at multiplicity of infection of 5 
and were processed for cell sectioning at 16 h post-infection. Briefly, monolayers 
were fixed in 2% paraformaldehyde, 1.5% glutaraldehyde and 0.1 M sodium 
cacodylate buffer (pH 7.3) and post-fixed in 1% osmium tetroxide, 1.5% potassium 
ferrocyanide and 0.2 M sodium cacodylate buffer. Cells were dehydrated in 
increasing concentrations of ethanol and embedded in epoxy resin (TAAB 
Laboratories Equipment). Ultrathin sections were stained with lead citrate.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The atomic models and cryoEM density map that support the findings of this study 
have been deposited in the Protein Data Bank and Electron Microscopy Data Bank 
with accession numbers 6N9Y and EMD-0383, respectively.
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