
Yin et al. ResMath Sci (2019) 6:14
https://doi.org/10.1007/s40687-018-0177-6

RESEARCH

Blended coarse gradient descent for full
quantization of deep neural networks
Penghang Yin1†, Shuai Zhang2†, Jiancheng Lyu3†, Stanley Osher1, Yingyong Qi2 and Jack Xin3*

*Correspondence:
jxin@math.uci.edu|(949)-331-
6314
†P. Yin, S. Zhang and J. Lyu
contributed equally.
3Department of Mathematics,
University of California at Irvine,
Irvine, CA 92697, USA
Full list of author information is
available at the end of the article

Abstract

Quantized deep neural networks (QDNNs) are attractive due to their much lower
memory storage and faster inference speed than their regular full-precision
counterparts. To maintain the same performance level especially at low bit-widths,
QDNNs must be retrained. Their training involves piecewise constant activation
functions and discrete weights; hence, mathematical challenges arise. We introduce
the notion of coarse gradient and propose the blended coarse gradient descent
(BCGD) algorithm, for training fully quantized neural networks. Coarse gradient is
generally not a gradient of any function but an artificial ascent direction. The weight
update of BCGD goes by coarse gradient correction of a weighted average of the
full-precision weights and their quantization (the so-called blending), which yields
sufficient descent in the objective value and thus accelerates the training. Our
experiments demonstrate that this simple blending technique is very effective for
quantization at extremely low bit-width such as binarization. In full quantization of
ResNet-18 for ImageNet classification task, BCGD gives 64.36% top-1 accuracy with
binary weights across all layers and 4-bit adaptive activation. If the weights in the first
and last layers are kept in full precision, this number increases to 65.46%. As theoretical
justification, we show convergence analysis of coarse gradient descent for a
two-linear-layer neural network model with Gaussian input data and prove that the
expected coarse gradient correlates positively with the underlying true gradient.

Keywords: Weight/activation quantization, Blended coarse gradient descent,
Sufficient descent property, Deep neural networks

Mathematics Subject Classification: 90C35, 90C26, 90C52, 90C90

1 Introduction
Deep neural networks (DNNs) have seen enormous success in image and speech classifi-
cation, natural language processing, health sciences among other big data-driven applica-
tions in recent years. However, DNNs typically require hundreds ofmegabytes ofmemory
storage for the trainable full-precision floating-point parameters and billions of FLOPs
(floating-point operations per second) to make a single inference. This makes the deploy-
ment of DNNs on mobile devices a challenge. Some considerable recent efforts have
been devoted to the training of low-precision (quantized) models for substantial memory
savings and computation/power efficiency, while nearly maintaining the performance of
full-precision networks.Mostworks to date are concernedwithweight quantization (WQ)
[5,8,22,28,35,36]. In [13], He et al. theoretically justified for the applicability ofWQmod-

123

© Springer Nature Switzerland AG 2019.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-018-0177-6&domain=pdf
http://orcid.org/0000-0002-6438-8476

14 Page 2 of 23 Yin et al. ResMath Sci (2019) 6:14

els by investigating their expressive power. Some also studied activation function quanti-
zation (AQ) [4,17,18,26,28,37], which utilizes an external process outside of the network
training. This is different from WQ at 4 bit or under, which must be achieved through
network training. Learning activation function σ as a parametrized family (σ = σ (x,α))
and part of network training has been studied in [15] for parametric rectified linear unit
and was recently extended to uniform AQ in [6]. In uniform AQ, σ (x,α) is a step (or
piecewise constant) function in x, and the parameter α determines the height and length
of the steps. In terms of the partial derivative of σ (x,α) in α, a 2-valued proxy derivative
of the parametric activation function (PACT) was proposed [6], although we will present
an almost everywhere (a.e.) exact one in this paper.
The mathematical difficulty in training activation quantized networks is that the loss

function becomes a piecewise constant function with sampled stochastic gradient a.e.
zero, which is undesirable for back-propagation. A simple and effective way around this
problem is to use a (generalized) straight-through (ST) estimator or derivative of a related
(sub)differentiable function [1,16–18] such as clipped rectified linear unit (clipped ReLU)
[4]. The idea of ST estimator dates back to the perceptron algorithm [29,30] proposed in
1950s for learning single-layer perceptrons with binary output. For multilayer networks
with hard threshold activation (a.k.a. binary neuron), Hinton [16] proposed to use the
derivative of identity function as a proxy in back-propagation or chain rule, similar to
the perceptron algorithm. The proxy derivative used in backward pass only was referred
as straight-through estimator in [1], and several variants of ST estimator [4,17,18] have
been proposed for handling quantized activation functions since then. A similar situation,
where the derivative of certain layer composited in the loss function is unavailable for
back-propagation, has also been brought up byWang et al. [33] recently while improving
accuracies of DNNs by replacing the softmax classifier layer with an implicit weighted
non-local Laplacian layer. For the training of the latter, the derivative of a pre-trained
fully connected layer was used as a surrogate [33].
On the theoretical side, while the convergence of the single-layer perception algorithm

has been extensively studied [11,34], there is almost no theoretical understanding of the
unusual ‘gradient’ output from the modified chain rule based on ST estimator. Since this
unusual ‘gradient’ is certainly not the gradient of the objective function, then a question
naturally arises: How does it correlate to the objective function? One of the contributions
in this paper is to answer this question. Our main contributions are threefold:

1. Firstly, we introduce the notion of coarse derivative and cast the early ST estimators
or proxy partial derivatives of σ (x,α) in α including the 2-valued PACT of [6] as
examples. The coarse derivative is non-unique.We propose a 3-valued coarse partial
derivative of the quantized activation function σ (x,α) inα that can outperform the 2-
valued one [6] in network training.We find that unlike the partial derivative ∂σ

∂x (x,α)
which vanishes, the a.e. partial derivative of σ (x,α) in α is actually multi-valued
(piecewise constant). Surprisingly, this a.e. accurate derivative is empirically less
useful than the coarse ones in fully quantized network training.

2. Secondly, we propose a novel accelerated training algorithm for fully quantized net-
works, termed blended coarse gradient descent method (BCGD). Instead of correct-
ing the current full-precision weights with coarse gradient at their quantized val-
ues like in the popular BinaryConnect scheme [4,8,17,22,23,28,35,37], the BCGD

Yin et al. ResMath Sci (2019) 6:14 Page 3 of 23 14

weight update goes by coarse gradient correction of a suitable average of the full-
precision weights and their quantization. We shall show that BCGD satisfies the
sufficient descent property for objectives with Lipschitz gradients, while BinaryCon-
nect does not unless an approximate orthogonality condition holds for the iterates
[35].

3. Our third contribution is the mathematical analysis of coarse gradient descent for a
two-layer network with binarized ReLU activation function and i.i.d. unit Gaussian
data.We provide an explicit form of coarse gradient based on proxy derivative of reg-
ular ReLU and show that when there are infinite training data, the negative expected
coarse gradient gives a descent direction for minimizing the expected training loss.
Moreover, we prove that a normalized coarse gradient descent algorithm only con-
verges to either a global minimum or a potential spurious local minimum. This
answers the question.

The rest of the paper is organized as follows. In Sect. 2, we discuss the concept of coarse
derivative and give examples for quantized activation functions. In Sect. 3, we present
the joint weight and activation quantization problem and BCGD algorithm satisfying the
sufficient descent property. For readers’ convenience, we also review formulas on 1-bit,
2-bit and 4-bit weight quantization used later in our numerical experiments. In Sect. 4, we
give details of fully quantized network training, including the disparate learning rates on
weight and α. We illustrate the enhanced validation accuracies of BCGD over BinaryCon-
nect and 3-valued coarse α partial derivative of σ over 2-valued one and a.e. α partial
derivative in case of 4-bit activation and (1,2,4)-bit weights on CIFAR-10 image datasets.
We show top-1 and top-5 validation accuracies of ResNet-18 with all convolutional layers
quantized at 1-bit weight/4-bit activation (1W4A), 4-bit weight/4-bit activation (4W4A)
and 4-bit weight/8-bit activation (4W8A), using 3-valued and 2-valued α partial deriva-
tives. The 3-valued α partial derivative outperforms the 2-valued one with larger margin
in the low bit regime. The accuracies degrade gracefully from 4W8A to 1W4A while all
the convolutional layers are quantized. The 4W8A accuracies with either the 3-valued or
the 2-valued α partial derivatives are within 1% of those of the full-precision network. If
the first and last convolutional layers are in full precision, our top-1 (top-5) accuracy of
ResNet-18 at 1W4A with 3-valued coarse α-derivative is 4.7 % (3%) higher than that of
HWGQ [4] on ImageNet dataset. This is in part due to the value of parameter α being
learned without any statistical assumption.
Notations ‖ · ‖ denotes the Euclidean norm of a vector or the spectral norm of a matrix;
‖ · ‖∞ denotes the �∞-norm. 0 ∈ R

n represents the vector of zeros, whereas 1 ∈ R
n the

vector of all ones. We denote vectors by bold small letters and matrices by bold capital
ones. For any w, z ∈ R

n, w�z = 〈w, z〉 = ∑
i wizi is their inner product. w � z denotes

the Hadamard product whose i-th entry is given by (w � z)i = wizi.

2 Activation quantization
In a network with quantized activation, given a training sample of input Z and label u, the
associated sample loss is a composite function of the form:

�(w,α; {Z, u}) := �(wl ∗ σ (wl−1 ∗ · · ·w2 ∗ σ (w1 ∗ Z,α1) · · · ,αl−1); u), (1)

where wj contains the weights in the j-th linear (fully connected or convolutional) layer,
‘∗’ denotes either matrix–vector product or convolution operation; reshaping is necessary

14 Page 4 of 23 Yin et al. ResMath Sci (2019) 6:14

to avoid mismatch in dimensions. The j-th quantized ReLU σ (xj ,αj) acts element-wise
on the vector/tensor xj output from the previous linear layer, which is parameterized by a
trainable scalar αj > 0 known as the resolution. For practical hardware-level implemen-
tation, we are most interested in uniform quantization:

σ (x,α) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ 0,

kα, if (k − 1)α < x ≤ kα, k = 1, 2, . . . , 2ba − 1,
(
2ba − 1

)
α, if x >

(
2ba − 1

)
α,

(2)

where x is the scalar input, α > 0 the resolution, ba ∈ Z+ the bit-width of activation and k
the quantization level. For example, in 4-bit activation quantization (4A), we have ba = 4
and 2ba = 16 quantization levels including the zero.
Given N training samples, we train the network with quantized ReLU by solving the

following empirical risk minimization

min
w,α

f (w,α) := 1
N

N∑

i=1
�
(
w,α; {Z(i), u(i)}

)
. (3)

In gradient-based training framework, one needs to evaluate the gradient of the sample
loss (1) using the so-called back-propagation (a.k.a. chain rule), which involves the com-
putation of partial derivatives ∂σ

∂x and ∂σ
∂α

. Apparently, the partial derivative of σ (x,α) in
x is almost everywhere (a.e.) zero. After composition, this results in a.e. zero gradient of �
with respect to (w.r.t.) {wj}l−1

j=1 and {αj}l−2
j=1 in (1), causing their updates to become stagnant.

To see this, we abstract the partial gradients ∂�
∂wl−1

and ∂�
∂αl−2

, for instances, through the
chain rule as follows:

∂�

∂wl−1
(w,α; {Z, u}) = σ (xl−2,αl−2) ◦ ∂σ

∂x
(xl−1,αl−1) ◦ w�

l ◦ ∇�(xl ;u)

and
∂�

∂αl−2
(w,α; {Z, u}) = ∂σ

∂α
(xl−2,αl−2) ◦ w�

l−1 ◦ ∂σ

∂x
(xl−1,αl−1) ◦ w�

l ◦ ∇�(xl ;u),

where we recursively define x1 = w1 ∗ Z, and xj = wj ∗ σ (xj−1,αj−1) for j ≥ 2 as the
output from the j-th linear layer, and ‘◦’ denotes some sort of proper composition in the
chain rule. It is clear that the two partial gradients are zeros a.e. because of the term
∂σ
∂x (xl−1,αl−1). In fact, the automatic differentiation embedded in deep learning platforms
such as PyTorch [27] would produce precisely zero gradients.
To get around this, we use a proxy derivative or so-called ST estimator for back-

propagation. By overloading the notation ‘≈’, we denote the proxy derivative by

∂σ

∂x
(x,α) ≈

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ 0,

1, if 0 < x ≤ (2ba − 1
)
α,

0, if x >
(
2ba − 1

)
α.

The proxy partial derivative has a nonzero value in the middle to reflect the overall
variation of σ , which can be viewed as the derivative of the large-scale (step-back) view of
σ in x (Fig. 1), or the derivative of the clipped ReLU [4]:

σ̃ (x,α) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ 0,

x, if 0 < x ≤ (2ba − 1)α,
(
2ba − 1

)
α, if x >

(
2ba − 1

)
α.

(4)

Yin et al. ResMath Sci (2019) 6:14 Page 5 of 23 14

Fig. 1 Left: plot of 2-bit quantized ReLU σ (x,α) in x . Right: plot of the associated clipped ReLU σ̃ (x,α) in x

On the other hand, we find the a.e. partial derivative of σ (x,α) w.r.t. α to be

∂σ

∂α
(x,α) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ 0,

k, if (k − 1)α < x ≤ kα, k = 1, 2, . . . , 2ba − 1;

2ba − 1, if x >
(
2ba − 1

)
α.

Surprisingly, this a.e. derivative is not the best in terms of accuracy or computational cost
in training, as will be reported in Sect. 4. We propose an empirical 3-valued proxy partial
derivative in α as follows:

∂σ

∂α
(x,α) ≈

⎧
⎪⎪⎨

⎪⎪⎩

0, if x ≤ 0,

2(ba−1), if 0 < x ≤ (2ba − 1
)
α,

2ba − 1, if x >
(
2ba − 1

)
α.

Themiddle value 2ba−1 is the arithmetic mean of the intermediate k values of the a.e. par-
tial derivative above. Similarly, amore coarse 2-valued proxy, same as PACT [6] whichwas
derived differently, follows by zeroing out all the nonzero values except their maximum:

∂σ

∂α
(x,α) ≈

⎧
⎨

⎩

0, if x ≤ (2ba − 1
)
α,

2ba − 1, if x >
(
2ba − 1

)
α.

This turns out to be exactly the partial derivative
∂σ̃

∂α
(x,α) of the clipped ReLU defined in

(4).
We shall refer to the resultant composite ‘gradient’ of f through the modified chain

rule and averaging as coarse gradient. While given the name ‘gradient,’ we believe it is
generally not the gradient of any smooth function. It, nevertheless, somehow exploits the
essential information of the piecewise constant function f , and its negation provides a
descent direction for theminimization. In Sect. 5, we will validate this claim by examining
a two-layer network with i.i.d. Gaussian data.We find that when there are infinite number
of training samples, the overall training loss f (i.e., population loss) becomes pleasantly
differentiable whose gradient is non-trivial and processes certain Lipschitz continuity.
More importantly, we shall show an example of expected coarse gradient that provably
forms an acute angle with the underlying true gradient of f and only vanishes at the
possible local minimizers of the original problem.

14 Page 6 of 23 Yin et al. ResMath Sci (2019) 6:14

During the training process, the vector α (one component per activation layer) should
be prevented from being either too small or too large. Due to the sensitivity of α, we
propose a two-scale training and set the learning rate of α to be the learning rate of weight
w multiplied by a rate factor far less than 1, which may be varied depending on network
architectures. That rate factor effectively helps quantized network converge steadily and
prevents α from vanishing.

3 Full quantization
Imposing the quantized weights amounts to adding a discrete set-constraint w ∈ Q to
the optimization problem (3). Suppose M is the total number of weights in the network.
For commonly used bw-bit layer-wise quantization, Q ⊂ R

M takes the form of Q1 ×
Q2 · · · × Ql , meaning that the weight tensor in the j-th linear layer is constrained in the
form wj = δjqj ∈ Qj for some adjustable scaling factor δj > 0 shared by weights in the
same layer. Each component of qj is drawn from the quantization set given by {± 1} for
bw = 1 (binarization) and {0,± 1, · · · ,± (2bw−1 − 1)} for bw ≥ 2. This assumption on Q
generalizes those of the 1-bit BWN [28] and the 2-bit TWN [22]. As such, the layer-wise
weight and activation quantization problem here can be stated abstractly as follows

min
w,α

f (w,α) subject to w ∈ Q = Q1 × Q2 · · · × Ql , (5)

where the training loss f (w,α) is defined in (3). Different from activation quantization, one
bit is taken to represent the signs. For ease of presentation, we only consider the network-
wise weight quantization throughout this section, i.e., weights across all the layers share
the same (trainable) floating scaling factor δ > 0, or simply,Q = R+ ×{± 1}M for bw = 1
andQ = R+ × {0,± 1, . . . ,± (2bw−1 − 1)

}M for bw ≥ 2.

3.1 Weight quantization

Given a float weight vector wf , the quantization of wf is basically the following optimiza-
tion problem for computing the projection of wf onto setQ

projQ(wf) := arg min
w∈Q ‖w − wf ‖2. (6)

Note thatQ is a non-convex set, so the solution of (6) may not be unique. When bw = 1,
we have the binarization problem

min
δ,q

‖δ q − wf ‖2 subject to δ > 0, q ∈ {± 1}M . (7)

For bw ≥ 2, the projection/quantization problem (6) can be reformulated as

min
δ,q

‖δ q − wf ‖2 subject to δ > 0, q ∈
{
0,± 1, · · · ,± (2bw−1 − 1)

}M
. (8)

It has been shown that the closed form (exact) solution of (7) can be computed at O(M)
complexity for (1-bit) binarization [28] and atO(M log(M)) complexity for (2-bit) ternar-
ization [36]. An empirical ternarizer of O(M) complexity has also been proposed [22]. At
wider bit-width bw ≥ 3, accurately solving (8) becomes computationally intractable due
to the combinatorial nature of problem [36].
Problem (8) is basically a constrained K -means clustering problem of 1-D points [35]

with the centroids being δ-spaced. It in principle can be solved by a variant of the classical
Lloyd’s algorithm [25] via an alternating minimization procedure. It iterates between the
assignment step (q-update) and centroid step (δ-update). In the i-th iteration, fixing the

Yin et al. ResMath Sci (2019) 6:14 Page 7 of 23 14

Fig. 2 Ternarization of two weights. The one-dimensional subspacesLi ’s constitute the constraint set
Q = R+ × {0,± 1}2. When updated with small learning rate, BC keeps searching among the subspaces (left),
whereas PGD can get stagnated in L1 (right)

scaling factor δi−1, each entry of qi is chosen from the quantization set, so that δi−1qi is
as close as possible to wf . In the δ-update, the following quadratic problem

min
δ∈R ‖ δ qi − wf ‖2

is solved by δi = (qi)�wf
‖qi‖2 . Since quantization (6) is required in every iteration, to make this

procedure practical, we just perform a single iteration of Lloyd’s algorithm by empirically
initializing δ to be 2

2bw−1‖wf ‖∞, which is derived by setting

δ

2

(
(2bw−1 − 1) + 2bw−1

)
= ‖wf ‖∞.

This makes the large components in wf well clustered.
First introduced in [8] by Courbariaux et al., the BinaryConnect (BC) scheme has drawn

much attention in training DNNs with quantized weight and regular ReLU. It can be
summarized as

wt+1
f = wt

f − η∇f (wt), wt+1 = projQ
(
wt+1
f

)
,

where {wt} denotes the sequence of the desired quantized weights, and {wt
f } is an auxiliary

sequence of floating weights. BC can be readily extended to full quantization regime by
including the update ofαt and replacing the true gradient∇f (wt) with the coarse gradients
from Sect. 2. With a subtle change to the standard projected gradient descent algorithm
(PGD) [7], namely

wt+1
f = wt − η∇f (wt), wt+1 = projQ

(
wt+1
f

)
,

BC significantly outperforms PGD and effectively bypasses spurious the local minima in
Q [23]. An intuitive explanation is that the constraint set Q is basically a finite union of
isolated one-dimensional subspaces (i.e., lines that pass through the origin) [35]. Since
wt
f is obtained near the projected point wt , the sequence {wt

f } generated by PGD can get
stuck in some line subspace easily when updated with a small learning rate η; see Fig. 2
for graphical illustrations.

14 Page 8 of 23 Yin et al. ResMath Sci (2019) 6:14

3.2 Blended gradient descent and sufficient descent property

Despite the superiority of BC over PGD, we point out a drawback in regard to its con-
vergence. While Yin et al. provided the convergence proof of BC scheme in the recent
papers [35], their analysis hinges on an approximate orthogonality condition which may
not hold in practice; see Lemma 4.4 and Theorem 4.10 of [35]. Suppose f has L-Lipschitz
gradient.1 In light of the convergence proof in Theorem 4.10 of [35], we have

f (wt+1) − f (wt) ≤ −1
2

(
1
η
(
∥
∥
∥wt+1 − wt

f

∥
∥
∥
2 −

∥
∥
∥wt − wt

f

∥
∥
∥
2
) − L

∥
∥wt+1 − wt∥∥2

)

. (9)

For the objective sequence {f (wt)} to bemonotonically decreasing and {wk} converging to
a critical point, it is crucial to have the sufficient descent property [12] hold for sufficiently
small learning rate η > 0:

f (wt+1) − f (wt) ≤ −c ‖wt+1 − wt‖2, (10)

with some positive constant c > 0.
Since wt = arg minw∈Q ‖w − wt

f ‖2 and wt+1 ∈ Q, it holds in (9) that

1
η

(∥
∥
∥wt+1 − wt

f

∥
∥
∥
2 −

∥
∥
∥wt − wt

f

∥
∥
∥
2
)

≥ 0.

Due to non-convexity of the set Q, the above term can be as small as zero even when
wt and wt+1 are distinct. So it is not guaranteed to dominate the right-hand side of (9).
Consequently given (9), the inequality (10) does not necessarily hold. Without sufficient
descent, even if {f (wt)} converges, the iterates {wt} may not converge well to a critical
point. To fix this issue, we blend the ideas of PGD and BC and propose the following
blended gradient descent (BGD)

wt+1
f = (1 − ρ)wt

f + ρwt − η∇f (wt), wt+1 = projQ(wt+1
f) (11)

for some blending parameter ρ � 1. In contrast, the blended gradient descent satisfies
(10) for small enough η.

Proposition 1 For ρ ∈ (0, 1), the BGD (11) satisfies

f (wt+1) − f (wt) ≤ −1
2

(
1 − ρ

η

(∥
∥
∥wt+1 − wt

f

∥
∥
∥
2 −

∥
∥
∥wt − wt

f

∥
∥
∥
2
)

+
(

ρ

η
− L
)

‖wt+1 − wt‖2
)

.

Choosing the learning rate η small enough so that ρ/η ≥ L + c. Then, inequality (10)
follows from the above proposition, which will guarantee the convergence of (11) to a
critical point by using similar arguments as in the proofs from [35].

Corollary 1 The blended gradient descent iteration (11) satisfies the sufficient descent
property (10).

4 Experiments
We tested BCGD, as summarized in Algorithm 1, on the CIFAR-10 [20] and ImageNet
[9,21] color image datasets. We coded up the BCGD in PyTorch platform [27]. In all
experiments, we fix the blending factor in (11) to be ρ = 10−5. All runs with quantization

1This assumption is valid for the population loss function; we refer readers to Lemma 2 in Sect. 5.

Yin et al. ResMath Sci (2019) 6:14 Page 9 of 23 14

Algorithm 1One iteration of BCGD for full quantization
Input: mini-batch loss function ft (w,α), blending parameter ρ = 10−5, learning rate ηtw for the
weights w, learning rate ηtα for the resolutions α of AQ (one component per activation layer).
Do:
Evaluate the mini-batch coarse gradient (∇̃w ft , ∇̃αft) at (wt ,αt) according to section 2.
wt+1
f = (1 − ρ)wt

f + ρwt − ηtw∇̃w ft (wt ,αt) // blended gradient update for weights
αt+1 = αt − ηtα∇̃αft (wt ,αt) // ηtα = 0.01 · ηtw
wt+1 = projQ(wt+1

f) // quantize the weights as per section 3.1

Table1 CIFAR-10 validation accuracies in%with the a.e. α derivative

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC 92.13 91.74 88.12 89.78 91.51

VGG-11+ BCGD 88.74 90.08 91.38

ResNet-20 + BC 92.41 91.90 89.23 90.89 91.53

ResNet-20 + BCGD 90.10 91.15 91.56

Bold values indicate higher accuracies in the comparison

Table2 CIFAR-10 validation accuracies with the 3-valued α derivative

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC 92.13 92.08 89.12 90.52 91.89

VGG-11 + BCGD 89.59 90.71 91.70

ResNet-20 + BC 92.41 92.14 89.37 91.02 91.71

ResNet-20 + BCGD 90.05 91.03 91.97

Bold values indicate higher accuracies in the comparison

are warm started with a float pre-trained model, and the resolutions α are initialized by
1

2ba−1 of the maximal values in the corresponding feature maps generated by a random
mini-batch. The learning rate for weight w starts from 0.01. Rate factor for the learning
rate of α is 0.01, i.e., the learning rate for α starts from 10−4. The decay factor for the
learning rates is 0.1. The weights w and resolutions α are updated jointly. In addition, we
used momentum and batch normalization [19] to promote training efficiency. Wemainly
compare the performances of the proposed BCGD and the state-of-the-art BC (adapted
for full quantization) on layer-wise quantization. The experiments were carried out on
machines with 4 Nvidia GeForce GTX 1080 Ti GPUs.
The CIFAR-10 dataset consists of 60,000 32 × 32 color images of 10 classes, with 6,000

images per class. The dataset is split into 50,000 training images and 10,000 test images.
In the experiments, we used the testing images for validation. The mini-batch size was
set to be 128, and the models were trained for 200 epochs with learning rate decaying
at epoch 80 and 140. In addition, we used weight decay of 10−4 and momentum of 0.95.
The a.e derivative, 3-valued and 2-valued coarse derivatives of α are compared on the
VGG-11 [31] and ResNet-20 [14] architectures, and the results are listed in Tables 1, 2
and 3, respectively. It can be seen that the 3-valued coarse α derivative gives the best
overall performance in terms of accuracy. Figure 3 shows that in weight binarization,
BCGD converges faster and better than BC.
ImageNet (ILSVRC12) dataset [9] is a benchmark for large-scale image classification

task,whichhas 1.2million images for training and50, 000 for validationof 1,000 categories.
We set mini-batch size to 256 and trained the models for 80 epochs with learning rate

14 Page 10 of 23 Yin et al. ResMath Sci (2019) 6:14

Table 3 CIFAR-10 validation accuracies with the 2-valued α derivative (PACT [6])

Network Float 32W4A 1W4A 2W4A 4W4A

VGG-11 + BC 92.13 91.66 88.50 89.99 91.31

VGG-11 + BCGD 89.12 90.00 91.31

ResNet-20 + BC 92.41 91.73 89.22 90.64 91.37

ResNet-20 + BCGD 89.98 90.75 91.65

Bold values indicate higher accuracies in the comparison

Fig. 3 CIFAR-10 validation accuracies versus epoch numbers with a.e. α derivative and 1W4A quantization
on VGG-11 (left) and ResNet-20 (right), with (orange) and without (blue) blending which speeds up training
toward higher accuracies

Table 4 ImageNet validation accuracies with BCGD on ResNet-18. The accuracies are for
quantized weights across all layers otherwise

Float 1W4A 4W4A 4W8A

3 valued 2 valued 3 valued 2 valued 3 valued 2 valued

Top-1 69.64 64.36/65.46∗ 63.37/64.57∗ 67.36 66.97 68.85 68.83

Top-5 88.98 85.65/86.36∗ 84.93/85.75∗ 87.76 87.41 88.71 88.84

*Starred accuracies are with first and last convolutional layers in float precision as in [4].

Table 5 ImageNet validation accuracies with BCGD on ResNet-34. The accuracies are for
quantized weights across all layers

Float 1W4A 4W4A 4W8A

3 valued 2 valued 3 valued 2 valued 3 valued 2 valued

Top-1 73.27 68.43 67.51 70.81 70.01 72.07 72.18

Top-5 91.43 88.29 87.72 90.00 89.49 90.71 90.73

decaying at epoch 50 and 70. The weight decay of 10−5 and momentum of 0.9 were used.
The ResNet-18 accuracies 65.46%/86.36% at 1W4A in Table 4 outperformed HWGQ [4]
where top-1/top-5 accuracies are 60.8%/83.4%with non-quantized first/last convolutional
layers. The results inTables 4 and 5 show that using the 3-valued coarseα partial derivative
appears more effective than the 2 valued one as quantization bit precision is lowered. We
also observe that the accuracies degrade gracefully from 4W8A to 1W4A for ResNet-18
while quantizing all convolutional layers. Again, BCGD converges much faster than BC
toward higher accuracy as illustrated by Fig. 4.

5 Analysis of coarse gradient descent for activation quantization
As a proof of concept, we analyze a simple two-layer network with binarized ReLU acti-
vation. Let σ be the binarized ReLU function, the same as hard threshold activation [16],
with the bit-width ba = 1 and the resolution α ≡ 1 in (2):

Yin et al. ResMath Sci (2019) 6:14 Page 11 of 23 14

Fig. 4 ImageNet validation accuracies (left: top-1, right: top-5) versus number of epochs with 3-valued
derivative on 1W4A quantization on ResNet-18 with (orange) and without (blue) blending which substantially
speeds up training toward higher accuracies

σ (x) =
⎧
⎨

⎩

0 if x ≤ 0,

1 if x > 0.

We define the training sample loss by

�(v,w;Z) := 1
2

(
v�σ (Zw) − (v∗)�σ (Zw∗)

)2
,

where v∗ ∈ R
m and w∗ ∈ R

n are the underlying (nonzero) teacher parameters in the
secondandfirst layers, respectively. Sameas in the literature that analyzes the conventional
ReLU nets [3,10,24,32], we assume the entries of Z ∈ R

m×n are i.i.d. sampled from the
standard normal distribution N (0, 1). Note that �(v,w;Z) = �(v,w/c;Z) for any scalar
c > 0. Without loss of generality, we fix ‖w∗‖ = 1.

5.1 Population loss minimization

Suppose we have N independent training samples {Z(1), . . . ,Z(N)}, then the associated
empirical risk minimization reads

min
v∈Rm,w∈Rn

1
N

N∑

i=1
�(v,w;Z(i)). (12)

The major difficulty of analysis here is that the empirical risk function in (12) is still
piecewise constant and has a.e. zero partial w gradient. This issue can be resolved by
instead considering the following population loss minimization [3,10,24,32]:

min
v∈Rm,w∈Rn

f (v,w) := EZ [�(v,w;Z)] . (13)

Specifically, in the limitN → ∞, the objective function f becomes favorably smooth with
non-trivial gradient. For nonzero vector w, let us define the angle between w and w∗ by

θ (w,w∗) := arccos
(

w�w∗

‖w‖‖w∗‖
)

= arccos
(
w�w∗

‖w‖
)

,

then we have

Lemma 1 If every entry of Z is i.i.d. sampled from N (0, 1), ‖w∗‖ = 1 and ‖w‖ �= 0, then
the population loss is

f (v,w) = 1
8

[

v�(I + 11�)v − 2v�
((

1 − 2
π

θ (w,w∗)
)

I + 11�
)

v∗

+ (v∗)�
(
I + 11�)v∗] . (14)

14 Page 12 of 23 Yin et al. ResMath Sci (2019) 6:14

Moreover, the gradients of f (v,w) w.r.t. v and w are

∂f
∂v

(v,w) = 1
4
(
I + 11�)v − 1

4

((

1 − 2
π

θ (w,w∗)
)

I + 11�
)

v∗ (15)

and

∂f
∂w

(v,w) = − v�v∗

2π‖w‖

(
I − ww�

‖w‖2
)
w∗

∥
∥
∥
(
I − ww�

‖w‖2
)
w∗
∥
∥
∥
, for θ (w,w∗) ∈ (0,π), (16)

respectively.

When w �= 0, the possible (local) minimizers of problem (13) are located at

1. Stationary points where the gradients defined in (15) and (16) vanish simultaneously
(which may not be possible), i.e.,

v�v∗ = 0 and v = (I + 11�)−1
((

1 − 2
π

θ (w,w∗)
)

I + 11�
)

v∗. (17)

2. Non-differentiable points where θ (w,w∗) = 0 and v = v∗, or θ (w,w∗) = π and
v = (I + 11�)−1(11� − I)v∗.

Among them, {(v,w) : v = v∗, θ (w,w∗) = 0} are the global minimizers with f (v,w) = 0.

Proposition 2 If (1�v∗)2 < m+1
2 ‖v∗‖2, then

{

(v,w) ∈ R
m+n : v = (I + 11�)−1

(−(1�v∗)2

(m + 1)‖v∗‖2 − (1�v∗)2
I + 11�

)

v∗,

θ (w,w∗) = π

2
(m + 1)‖v∗‖2

(m + 1)‖v∗‖2 − (1�v∗)2

}

gives the stationary points obeying (17). Otherwise, problem (13) has no stationary points.

The gradient of the population loss,
(

∂f
∂v ,

∂f
∂w

)
(v,w), holds Lipschitz continuity under a

boundedness condition.

Lemma 2 For any (v,w) and (ṽ, w̃) withmin{‖w‖, ‖w̃‖} = c > 0 andmax{‖v‖, ‖ṽ‖} =
C, there exists a constant L > 0 depending on c and C, such that

∥
∥
∥
∥

(
∂f
∂v

,
∂f
∂w

)

(v,w) −
(

∂f
∂v

,
∂f
∂w

)

(ṽ, w̃)
∥
∥
∥
∥ ≤ L‖(v,w) − (ṽ, w̃)‖.

5.2 Convergence analysis of normalized coarse gradient descent

The partial gradients ∂f
∂v and

∂f
∂w , however, are not available in the training.What we really

have access to are the expectations of the sample gradients, namely

EZ

[
∂�

∂v
(v,w;Z)

]

andEZ

[
∂�

∂w
(v,w;Z)

]

.

If σ was differentiable, then the back-propagation reads
∂�

∂v
(v,w;Z) = σ (Zw)

(
v�σ (Zw) − (v∗)�σ (Zw∗)

)
(18)

and
∂�

∂w
(v,w;Z) = Z�(σ ′(Zw) � v

)(
v�σ (Zw) − (v∗)�σ (Zw∗)

)
. (19)

Yin et al. ResMath Sci (2019) 6:14 Page 13 of 23 14

Now that σ has zero derivative a.e., which makes (19) inapplicable. We study the coarse
gradient descent with σ ′ in (19) being replaced by the (sub)derivative μ′ of regular ReLU
μ(x) := max(x, 0). More precisely, we use the following surrogate of ∂�

∂w (v,w;Z):

g(v,w;Z) = Z�(μ′(Zw) � v
)(
v�σ (Zw) − (v∗)�σ (Zw∗)

)
(20)

with μ′(x) = σ (x), and consider the following coarse gradient descent with weight nor-
malization:⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

vt+1 = vt − ηEZ
[

∂�
∂v (v

t ,wt ;Z)
]
,

wt+ 1
2 = wt − ηEZ

[
g(vt ,wt ;Z)

]
,

wt+1 = wt+1/2

‖wt+1/2‖ .
(21)

Lemma 3 The expected gradient of �(v,w;Z) w.r.t. v is

EZ

[
∂�

∂v
(v,w;Z)

]

= ∂f
∂v

(v,w)= 1
4
(
I + 11�)v − 1

4

((

1 − 2
π

θ (w,w∗)
)

I + 11�
)

v∗.

(22)

The expected coarse gradient w.r.t. w is2

EZ
[
g(v,w;Z)

]
= h(v, v∗)

2
√
2π

w
‖w‖ − cos

(
θ (w,w∗)

2

)
v�v∗
√
2π

w
‖w‖ + w∗
∥
∥
∥ w

‖w‖ + w∗
∥
∥
∥
, (23)

where h(v, v∗) = ‖v‖2 + (1�v)2 − (1�v)(1�v∗)+ v�v∗. In particular,EZ[∂�
∂v (v,w;Z)] and

EZ[g(v,w;Z)] vanish simultaneously only in one of the following cases

1. Equation (17) is satisfied according to Proposition 2.
2. v = v∗, θ (w,w∗) = 0, or v = (I + 11�)−1(11� − I)v∗, θ (w,w∗) = π .

What is interesting is that the coarse partial gradient EZ[g(v,w;Z)] = 0 is properly
defined at global minimizers of the population loss minimization problem (13) with
v = v∗, θ (w,w∗) = 0, whereas the true gradient ∂f

∂w (v,w) does not exist there. Our key
finding is that the coarse gradientEZ[g(v,w;Z)] has positive correlation with the true gra-
dient ∂f

∂w (v,w), and consequently, −EZ[g(v,w;Z)] together with −EZ
[

∂�
∂v (v,w;Z)

]
gives

a descent direction in algorithm (21).

Lemma 4 If θ (w,w∗) ∈ (0,π) and ‖w‖ �= 0, then the inner product between the expected
coarse and true gradients w.r.t. w is

〈

EZ
[
g(v,w;Z)

]
,
∂f
∂w

(v,w)
〉

= sin (θ (w,w∗))
2(

√
2π)3‖w‖ (v�v∗)2 ≥ 0.

Moreover, the following lemma asserts thatEZ[g(v,w;Z)] is sufficiently correlated with
∂f
∂w (v,w), which will secure sufficient descent in objective values {f (vt ,wt)} and thus the
convergence of {(vt ,wt)}.
Lemma 5 Suppose ‖w‖ = 1 and ‖v‖ ≤ C. There exists a constant A > 0 depending on
C, such that

∥
∥
∥EZ

[
g(v,w;Z)

]∥
∥
∥
2 ≤ A

(∥
∥
∥
∥

∂f
∂v

(v,w)
∥
∥
∥
∥

2
+
〈

EZ
[
g(v,w;Z)

]
,
∂f
∂w

(v,w)
〉)

.

2We redefine the second term as 0 in the case θ (w,w∗) = π .

14 Page 14 of 23 Yin et al. ResMath Sci (2019) 6:14

Equipped with Lemmas 2 and 5, we are able to show the convergence result of iteration
(21).

Theorem 1 Given the initialization (v0,w0) with ‖w0‖ = 1, and let {(vt ,wt)} be the
sequence generated by iteration (21). There exists η0 > 0, such that for any step size
η < η0, {f (vt ,wt)} is monotonically decreasing, and both

∥
∥
∥EZ

[
∂�
∂v (v

t ,wt ;Z)
]∥
∥
∥ and

‖EZ[g(vt ,wt ;Z)]‖ converge to 0, as t → ∞.

Remark 1 Combining the treatment of [10] for analyzing two-layer networks with reg-
ular ReLU and the positive correlation between EZ [g(w, v;Z)] and ∂f

∂w (v,w), one can
further show that if the initialization (v0,w0) satisfies (v0)�v∗ > 0, θ (w0,w∗) < π

2 and
(1�v∗)(1�v0) ≤ (1�v∗)2, then {(vt ,wt)} converges to the global minimizer (v∗,w∗).

6 Concluding remarks
We introduced the concept of coarse gradient for activation quantization problem of
DNNs, for which the a.e. gradient is inapplicable. Coarse gradient is generally not a gradi-
ent but an artificial ascent direction. We further proposed BCGD algorithm, for training
fully quantized neural networks. The weight update of BCGD goes by coarse gradient
correction of a weighted average of the float weights and their quantization, which yields
sufficient descent in objective and thus acceleration. Our experiments demonstrated that
BCGD is very effective for quantization at extremely low bit-width such as binarization.
Finally, we analyzed the coarse gradient descent for a two-layer neural networkmodelwith
Gaussian input data and proved that the expected coarse gradient essentially correlates
positively with the underlying true gradient.

Author details
1Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095, USA, 2Qualcomm AI
Research, San Diego, CA 92121, USA, 3Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA.

Acknowledgements
This work was partially supported by NSF Grants DMS-1522383, IIS-1632935; ONR Grant N00014-18-1-2527, AFOSR Grant
FA9550-18-0167, DOE Grant DE-SC0013839 and STROBE STC NSF Grant DMR-1548924.

Appendix
A. Additional preliminaries

Lemma 6 Let z be a Gaussian random vector with entries i.i.d. sampled from N (0, 1).
Given nonzero vectors w and w̃ with angle θ , we have

E
[
1{z�w>0}

] = 1
2
, E

[
1{z�w>0, z�w̃>0}

] = π − θ

2π
,

and3

E
[
z1{z�w>0}

] = 1√
2π

w
‖w‖ , E

[
z1{z�w>0, z�w∗>0}

] = cos(θ/2)√
2π

w
‖w‖ + w̃

‖w̃‖∥
∥
∥ w

‖w‖ + w̃
‖w̃‖
∥
∥
∥
.

Proof The third identity was proved in Lemma A.1 of [10]. To show the first one, since
Gaussian distribution is rotation invariant, without loss of generality we assume w =
[w1, 0, 0�]� with w1 > 0, thenE

[
1{z�w>0}

] = P(z1 > 0) = 1
2 .

3Same as in Lemma 3, we redefine E
[
z1{z�w>0, z�w∗>0}

] = 0 in the case θ (w,w∗) = π .

Yin et al. ResMath Sci (2019) 6:14 Page 15 of 23 14

We further assume w̃ = [w̃1, w̃2, 0�]�. It is easy to see

E
[
1{z�w>0, z�w̃>0}

] = P(z�w > 0, z�w̃ > 0) = π − θ

2π
,

which is the probability that z forms an acute angle with both w and w∗.
Toprove the last identity,weuse polar representationof 2-DGaussian randomvariables,

where r is the radius and φ is the angle with dPr = r exp(−r2/2)dr and dPφ = 1
2π dφ.

Then,E
[
zi1{z�w>0, z�w∗>0}

] = 0 for i ≥ 3. Moreover,

E
[
z11{z�w>0, z�w∗>0}

] = 1
2π

∫ ∞

0
r2 exp

(

− r2

2

)

dr
∫ π

2

− π
2 +θ

cos(φ)dφ = 1 + cos(θ)
2
√
2π

and

E
[
z21{z�w>0, z�w∗>0}

] = 1
2π

∫ ∞

0
r2 exp

(

− r2

2

)

dr
∫ π

2

− π
2 +θ

sin(φ)dφ = sin(θ)
2
√
2π

.

Therefore,

E
[
z1{z�w>0, z�w∗>0}

]= cos(θ/2)√
2π

[cos(θ/2), sin(θ/2), 0�]� = cos(θ/2)√
2π

w
‖w‖ + w̃

‖w̃‖∥
∥
∥ w

‖w‖ + w̃
‖w̃‖
∥
∥
∥
,

where the last equality holds because w
‖w‖ and

w̃
‖w̃‖ are two unit-normed vectors with angle

θ . ��

Lemma 7 For any nonzero vectors w and w̃ with ‖w̃‖ ≥ ‖w‖ = c > 0, we have

1. |θ (w,w∗) − θ (w̃,w∗)| ≤ π
2c‖w − w̃‖.

2.

∥
∥
∥
∥
∥
∥

1
‖w‖

(
I−ww�

‖w‖2
)
w∗

∥
∥
∥
(
I−ww�

‖w‖2
)
w∗
∥
∥
∥

− 1
‖w̃‖

(
I− w̃w̃�

‖w̃‖2
)
w∗

∥
∥
∥
(
I− w̃w̃�

‖w̃‖2
)
w∗
∥
∥
∥

∥
∥
∥
∥
∥
∥

≤ 1
c2 ‖w − w̃‖.

Proof 1. Since by Cauchy–Schwarz inequality,
〈

w̃,w − cw̃
‖w̃‖

〉

= w̃�w − c‖w̃‖ ≤ 0,

we have

‖w̃ − w‖2 =
∥
∥
∥
∥

(

1 − c
‖w̃‖

)

w̃ −
(

w − cw̃
‖w̃‖

)∥
∥
∥
∥

2
≥
∥
∥
∥
∥

(

1 − c
‖w̃‖

)

w̃
∥
∥
∥
∥

2
+
∥
∥
∥
∥w − cw̃

‖w̃‖
∥
∥
∥
∥

2

≥
∥
∥
∥
∥w − cw̃

‖w̃‖
∥
∥
∥
∥

2
= c2

∥
∥
∥
∥

w
‖w‖ − w̃

‖w̃‖
∥
∥
∥
∥

2
. (24)

Therefore,

|θ (w,w∗) − θ (w̃,w∗)| ≤ θ (w, w̃) = θ

(
w

‖w‖ ,
w̃

‖w̃‖
)

≤ π sin

⎛

⎝
θ
(

w
‖w‖ ,

w̃
‖w̃‖
)

2

⎞

⎠ = π

2

∥
∥
∥
∥

w
‖w‖ − w̃

‖w̃‖
∥
∥
∥
∥ ≤ π

2c
‖w−w̃‖,

where we used the fact sin(x) ≥ 2x
π

for x ∈ [0, π
2] and the estimate in (24).

14 Page 16 of 23 Yin et al. ResMath Sci (2019) 6:14

2. Since
(
I − ww�

‖w‖2
)
w∗ is the projection of w∗ onto the complement space of w and

likewise for
(
I− w̃w̃�

‖w̃‖2
)
w∗, the angle between

(
I− ww�

‖w‖2
)
w∗ and

(
I− w̃w̃�

‖w̃‖2
)
w∗ is equal to

the angle between w and w̃. Therefore,
〈 (

I − ww�
‖w‖2

)
w∗

∥
∥
∥
(
I − ww�

‖w‖2
)
w∗
∥
∥
∥
,

(
I − w̃w̃�

‖w̃‖2
)
w∗

∥
∥
∥
(
I − w̃w̃�

‖w̃‖2
)
w∗
∥
∥
∥

〉

=
〈

w
‖w‖ ,

w̃
‖w̃‖

〉

,

and thus
∥
∥
∥
∥
∥
∥

1
‖w‖

(
I − ww�

‖w‖2
)
w∗

∥
∥
∥
(
I − ww�

‖w‖2
)
w∗
∥
∥
∥

− 1
‖w̃‖

(
I − w̃w̃�

‖w̃‖2
)
w∗

∥
∥
∥
(
I − w̃w̃�

‖w̃‖2
)
w∗
∥
∥
∥

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥

w
‖w‖2 − w̃

‖w̃‖2
∥
∥
∥
∥

= ‖w − w̃‖
‖w‖‖w̃‖ ≤ 1

c2
‖w − w̃‖.

The second equality above holds because
∥
∥
∥
∥

w
‖w‖2 − w̃

‖w̃‖2
∥
∥
∥
∥

2
= 1

‖w‖2 + 1
‖w̃‖2 − 2〈w, w̃〉

‖w‖2‖w̃‖2 = ‖w − w̃‖2
‖w‖2‖w̃‖2 .

��

B. Proofs

Proof of Proposition 1 We rewrite the update (11) as

wt+1 = arg min
w∈Q 〈w,∇f (wt)〉 + 1 − ρ

2η
‖w − wt

f ‖2 + ρ

2η
‖w − wt‖2.

Since wt , wt+1 ∈ Q, we have

〈wt+1,∇f (wt)〉 + 1 − ρ

2η
‖wt+1 − wt

f ‖2 + ρ

2η
‖wt+1 − wt‖2

≤ 〈wt ,∇f (wt)〉 + 1 − ρ

2η
‖wt − wt

f ‖2,

or equivalently,

〈wt+1 − wt ,∇f (wt)〉 + 1 − ρ

2η

(∥
∥
∥wt+1 − wt

f

∥
∥
∥
2 −

∥
∥
∥wt − wt

f

∥
∥
∥
2
)

+ ρ

2η
‖wt+1 − wt‖2 ≤ 0. (25)

On the other hand, since f has L-Lipschitz gradient, the descent lemma [2] gives

f (wt+1) ≤ f (wt) + 〈∇f (wt),wt+1 − wt〉 + L
2
‖wt+1 − wt‖2. (26)

Combining (25) and (26) completes the proof. ��
Proof of Lemma 1 We first evaluate EZ

[
σ (Zw)σ (Zw)�

]
, EZ

[
σ (Zw)σ (Zw∗)�

]
and

EZ
[
σ (Zw∗)σ (Zw∗)�

]
. Let Z�

i be the i-th row vector of Z. Since w �= 0, using Lemma 6,
we have

EZ
[
σ (Zw)σ (Zw)�

]

ii
= E

[
σ (Z�

i w)σ (Z�
i w)

]
= E

[
1{Z�

i w>0}
]

= 1
2
,

and for i �= j,

EZ
[
σ (Zw)σ (Zw)�

]

ij
= E

[
σ (Z�

i w)σ (Z�
j w)

]
= E

[
1{Z�

i w>0}
]
E
[
1{Z�

j w>0}
]

= 1
4
.

Yin et al. ResMath Sci (2019) 6:14 Page 17 of 23 14

Therefore, EZ
[
σ (Zw)σ (Zw)�

] = EZ
[
σ (Zw∗)σ (Zw∗)�

] = 1
4
(
I + 11�). Furthermore,

EZ
[
σ (Zw)σ (Zw∗)�

]

ii
= E

[
1{Z�

i w>0,Z�
i w∗>0}

]
= π − θ (w,w∗)

2π
,

and EZ
[
σ (Zw)σ (Zw∗)�

]
ij = 1

4 . So,

EZ
[
σ (Zw)σ (Zw∗)�

]
= 1

4

((

1 − 2θ (w,w∗)
π

)

I + 11�
)

.

We thus have proved (14) by noticing that

f (v,w) = 1
2

(
v�EZ[σ (Zw)�σ (Zw)]v − 2v�EZ[σ (Zw)�σ (Zw∗)]v∗

+(v∗)�EZ[σ (Zw∗)�σ (Zw∗)]v∗) .

Next, since (15) is trivial, we only show (16). Since θ (w,w∗) = arccos
(
w�w∗
‖w‖

)
is differen-

tiable w.r.t. w at θ (w,w∗) ∈ (0,π), we have

∂f
∂w

(v,w) = v�v∗

2π
∂θ

∂w
(w,w∗) = −v�v∗

2π
‖w‖2w∗ − (w�w∗)w

‖w‖3
√
1 − (w�w∗)2

‖w‖2

= − v�v∗

2π‖w‖

(
I − ww�

‖w‖2
)
w∗

∥
∥
∥
(
I − ww�

‖w‖2
)
w∗
∥
∥
∥
.

��

Proof of Proposition 2 Suppose v�v∗ = 0 and ∂f
∂v (v,w) = 0, then by Lemma 1,

0 = v�v∗ = (v∗)�(I + 11�)−1
((

1 − 2
π

θ (w,w∗)
)

I + 11�
)

v∗. (27)

From (27), it follows that

2
π

θ (w,w∗)(v∗)�(I + 11�)−1v∗ = (v∗)�(I + 11�)−1
(
I + 11�) v∗ = ‖v∗‖2. (28)

On the other hand, from (27) it also follows that
(
2
π

θ (w,w∗) − 1
)

(v∗)�(I + 11�)−1v∗ = (v∗)�(I + 11�)−11(1�v∗) = (1�v∗)2

m + 1
,

where I is an m-by-m identity matrix, and we used (I + 11�)1 = (m + 1)1. Taking the
difference of the two equalities above gives

(v∗)�(I + 11�)−1v∗ = ‖v∗‖2 − (1�v∗)2

m + 1
.

By (28), we have θ (w,w∗) = π
2

(m+1)‖v∗‖2
(m+1)‖v∗‖2−(1�v∗)2 , which requires

π

2
(m + 1)‖v∗‖2

(m + 1)‖v∗‖2 − (1�v∗)2
< π , or equivalently, (1�v∗)2 <

m + 1
2

‖v∗‖2.

Otherwise, ∂f
∂v (v,w) and ∂f

∂w (v,w) do not vanish simultaneously, and there is no critical
point. ��

14 Page 18 of 23 Yin et al. ResMath Sci (2019) 6:14

Proof of Lemma 2 It is easy to check that ‖I + 11�‖ = m + 1. Invoking Lemma 7.1 gives

∥
∥
∥
∥

∂f
∂v

(v,w) − ∂f
∂v

(ṽ, w̃)
∥
∥
∥
∥ = 1

4

∥
∥
∥
∥
(
I + 11�)(v − ṽ) + 2

π
(θ (w,w∗) − θ (w̃,w∗))v∗

∥
∥
∥
∥

≤ 1
4

(

(m + 1)‖v − ṽ‖ + 2‖v∗‖
π

|θ (w,w∗) − θ (w̃,w∗)|
)

≤ 1
4

(

(m + 1)‖v − ṽ‖ + ‖v∗‖
c

‖w − w̃‖
)

≤ 1
4

(

m + 1 + ‖v∗‖
c

)

‖(v,w) − (ṽ, w̃)‖.

Using Lemma 7.2, we further have

∥
∥
∥
∥

∂f
∂w

(v,w) − ∂f
∂w

(ṽ, w̃)
∥
∥
∥
∥ =

∥
∥
∥
∥
∥
∥
∥

v�v∗

2π‖w‖

(
I − ww�

‖w‖2
)
w∗

∥
∥
∥
(
I − ww�

‖w‖2
)
w∗
∥
∥
∥

− ṽ�v∗

2π‖w̃‖

(
I − w̃w̃�

‖w̃‖2
)
w∗

∥
∥
∥
(
I − w̃w̃�

‖w̃‖2
)
w∗
∥
∥
∥

∥
∥
∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
∥
∥

v�v∗

2π‖w‖

(
I − ww�

‖w‖2
)
w∗

∥
∥
∥
(
I − ww�

‖w‖2
)
w∗
∥
∥
∥

− v�v∗

2π‖w̃‖

(
I − w̃w̃�

‖w̃‖2
)
w∗

∥
∥
∥
(
I − w̃w̃�

‖w̃‖2
)
w∗
∥
∥
∥

∥
∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥
∥

v�v∗

2π‖w̃‖

(
I − w̃w̃�

‖w̃‖2
)
w∗

∥
∥
∥
(
I − w̃w̃�

‖w̃‖2
)
w∗
∥
∥
∥

− ṽ�v∗

2π‖w̃‖

(
I − w̃w̃�

‖w̃‖2
)
w∗

∥
∥
∥
(
I − w̃w̃�

‖w̃‖2
)
w∗
∥
∥
∥

∥
∥
∥
∥
∥
∥
∥

≤ |v�v∗|
2πc2

‖w − w̃‖ + ‖v∗‖
2πc

‖v − ṽ‖

≤ (C + c)‖v∗‖
2πc2

‖(v,w) − (ṽ, w̃)‖.

Combining the two inequalities above validates the claim. ��

Proof of Lemma 3 Equation (22) is true because ∂�
∂v (v,w;Z) is linear in v. To show (23), by

(20) and the fact that μ′ = σ , we have

EZ [g(v,w;Z)] = EZ

[(m∑

i=1
viσ (Z�

i w) −
m∑

i=1
v∗
i σ (Z

�
i w

∗)
)(m∑

i=1
Ziviσ (Z�

i w)
)]

= EZ

[(m∑

i=1
vi1{Z�

i w>0} −
m∑

i=1
v∗
i 1{Z�

i w∗>0}

)(m∑

i=1
1{Z�

i w>0}viZi

)]

.

Invoking Lemma 6, we have

E
[
Zi1{Z�

i w>0,Z�
j w>0}

]
=
⎧
⎨

⎩

1√
2π

w
‖w‖ if i = j,

1
2
√
2π

w
‖w‖ if i �= j,

(29)

and

E
[
Zi1{Z�

i w>0,Z�
j w∗>0}

]
=

⎧
⎪⎨

⎪⎩

cos(θ (w,w∗)/2)√
2π

w
‖w‖ +w∗
∥
∥
∥ w

‖w‖ +w∗
∥
∥
∥

if i = j,

1
2
√
2π

w
‖w‖ if i �= j.

(30)

Yin et al. ResMath Sci (2019) 6:14 Page 19 of 23 14

Therefore,

EZ [g(v,w;Z)] =
m∑

i=1
v2i E

[
Zi1{Z�

i w>0}
]

+
m∑

i=1

m∑

j=1
j �=i

vivjE
[
Zi1{Z�

i w>0,Z�
j w>0}

]

−
m∑

i=1
viv∗

i E
[
Zi1{Z�

i w>0,Z�
i w∗>0}

]

−
m∑

i=1

m∑

j=1
j �=i

viv∗
j E
[
Zi1{Z�

i w>0,Z�
j w∗>0}

]

= 1
2
√
2π

(
‖v‖2 + (1�v)2

) w
‖w‖

− cos
(

θ (w,w∗)
2

)
v�v∗
√
2π

w
‖w‖ + w∗
∥
∥
∥ w

‖w‖ + w∗
∥
∥
∥

− 1
2
√
2π

(
(1�v)(1�v∗) − v�v∗) w

‖w‖ ,

which is exactly (23). ��

Proof of Lemma 4 Notice that (I− ww�
‖w‖2)w = 0 and ‖w∗‖ = 1, if θ (w,w∗) �= 0,π , then we

have
〈

EZ
[
g(v,w;Z)

]
,
∂f
∂w

(v,w)
〉

= cos
(

θ (w,w∗)
2

)
(v�v∗)2

(
√
2π)3

〈
1

‖w‖

(
I − ww�

‖w‖2
)
w∗

∥
∥
∥
(
I − ww�

‖w‖2
)
w∗
∥
∥
∥
,

w∗
∥
∥
∥ w

‖w‖ + w∗
∥
∥
∥

〉

= cos
(

θ (w,w∗)
2

)
(v�v∗)2

(
√
2π)3

‖w‖2 − (w�w∗)2

‖‖w‖2w∗ − w(w�w∗)‖ ‖w + ‖w‖w∗‖
= cos

(
θ (w,w∗)

2

)
(v�v∗)2

(
√
2π)3

‖w‖2 − (w�w∗)2
√‖w‖4 − ‖w‖2(w�w∗)2

√
2(‖w‖2 + ‖w‖(w�w∗))

= cos
(

θ (w,w∗)
2

)
(v�v∗)2

4(
√

π‖w‖)3
‖w‖2 − (w�w∗)2

√‖w‖2 − (w�w∗)2
√‖w‖ + (w�w∗)

= cos
(

θ (w,w∗)
2

) (v�v∗)2
√
1 − w�w∗

‖w‖
4(

√
π)3‖w‖

= cos
(

θ (w,w∗)
2

)
(v�v∗)2

√
1 − cos(θ (w,w∗))

4(
√

π)3‖w‖
= sin (θ (w,w∗))

2(
√
2π)3‖w‖ (v�v∗)2.

��

Proof of Lemma 5 Denote θ := θ (w,w∗). By Lemma 1, we have

∂f
∂v

(v,w) = 1
4
(
I + 11�)v − 1

4

((

1 − 2θ
π

)

I + 11�
)

v∗.

14 Page 20 of 23 Yin et al. ResMath Sci (2019) 6:14

Since ‖w‖ = 1, Lemma 3 gives

EZ
[
g(v,w;Z)

]
= h(v, v∗)

2
√
2π

w − cos
(

θ

2

)
v�v∗
√
2π

w + w∗

‖w + w∗‖ , (31)

where

h(v, v∗) = ‖v‖2 + (1�v)2 − (1�v)(1�v∗) + v�v∗

= v� (I + 11�) v − v�(11� − I)v∗

= v� (I + 11�) v − v�
(

11� +
(

1 − 2θ
π

)

I
)

v∗ + 2
(

1 − θ

π

)

v�v∗

= 4v� ∂f
∂v

(v,w) + 2
(

1 − θ

π

)

v�v∗, (32)

and by Lemma 4,
〈

EZ
[
g(v,w;Z)

]
,
∂f
∂w

(v,w)
〉

= sin (θ)
2(

√
2π)3

(v�v∗)2.

Hence, for some A depending only on C , we have

∥
∥
∥EZ

[
g(v,w;Z)

]∥
∥
∥
2

=
∥
∥
∥
∥
∥

2v� ∂f
∂v (v,w)√
2π

w + cos
(

θ

2

)
v�v∗
√
2π

(

w − w + w∗

‖w + w∗‖
)

+
(

1 − θ

π
− cos

(
θ

2

))
v�v∗
√
2π

w
∥
∥
∥
∥

2

≤ 6C2

π

∥
∥
∥
∥

∂f
∂v

(v,w)
∥
∥
∥
∥

2
+ cos2

(
θ

2

)
3(v�v∗)2

2π

∥
∥
∥
∥w − w + w∗

‖w + w∗‖
∥
∥
∥
∥

2

+
(

1 − θ

π
− cos

(
θ

2

))2 3(v�v∗)2

2π

≤ 6C2

π

∥
∥
∥
∥

∂f
∂v

(v,w)
∥
∥
∥
∥

2
+ cos2

(
θ

2

)
3θ2

8π
(v�v∗)2

+
(

1 − θ

π
− cos

(
θ

2

))2 3(v�v∗)2

2π

≤ 6C2

π

∥
∥
∥
∥

∂f
∂v

(v,w)
∥
∥
∥
∥

2
+ 3π

8
cos2

(
θ

2

)

sin2
(

θ

2

)

(v�v∗)2 + 3 sin(θ)
2π

(v�v∗)2

≤ A
(∥
∥
∥
∥

∂f
∂v

(v,w)
∥
∥
∥
∥

2
+
〈

EZ
[
g(v,w;Z)

]
,
∂f
∂w

(v,w)
〉)

,

where the equality is due to (31) and (32), the first inequality is due to Cauchy-Schwarz
inequality, the second inequality holds because the angle between w and w+w∗

‖w+w∗‖ is θ
2 and

∥
∥
∥w − w+w∗

‖w+w∗‖
∥
∥
∥ ≤ θ

2 , whereas the third inequality is due to sin(x) ≥ 2x
π
, cos(x) ≥ 1 − 2x

π
,

and
(

1 − 2x
π

− cos(x)
)2

≤
(

cos(x) − 1 + 2x
π

)(

cos(x) + 1 − 2x
π

)

≤ sin(x)(2 cos(x)) = sin(2x),

for all x ∈ [0, π
2]. ��

Yin et al. ResMath Sci (2019) 6:14 Page 21 of 23 14

Proof of Theorem 1 To leverage Lemmas 2 and 5, we would need the boundedness of
{vt}. Due to the coerciveness of f w.r.t v, there exists C0 > 0, such that ‖v‖ ≤ C0 for
any v ∈ {v ∈ R

m : f (v,w) ≤ f (v0,w0) for some w}. In particular, ‖v0‖ ≤ C0. Using
induction, suppose we already have f (vt ,wt) ≤ f (v0,w0) and ‖vt‖ ≤ C0. If wt = ±w∗,
then wt+1 = wt+2 = · · · = ±w∗, and the original problem reduces to a quadratic
program in terms of v. So {vt} will converge to v∗ or (I+ 11�)−1(11� − I)v∗ by choosing
a suitable step size η. In either case, we have

∥
∥
∥EZ

[
∂�
∂v (v

t ,wt ;Z)
]∥
∥
∥ and

∥
∥
∥EZ

[
g(vt ,wt ;Z)

]∥
∥
∥

both converge to 0. Else if wt �= ±w∗, we define for a ∈ [0, 1] that

vt (a) := vt − a(vt+1 − vt) = vt − aηEZ

[
∂�

∂v
(vt ,wt ;Z)

]

and

wt (a) := wt − a(wt+1/2 − wt) = wt − aηEZ
[
g(vt ,wt ;Z)

]
,

which satisfy

vt (0) = vt , vt (1) = vt+1, wt (0) = wt , wt (1) = wt+1/2.

Let us fix 0 < c < 1 and C ≥ C0. By the expressions of EZ
[

∂�
∂v (v

t ,wt ;Z)
]
and

EZ
[
g(vt ,wt ;Z)

]
given in Lemma 3 and since ‖wt‖ = 1, for sufficiently small η̃ depending

on C0, with η ≤ η̃, it holds that ‖vt (a)‖ ≤ C and ‖wt (a)‖ ≥ c for all a ∈ [0, 1]. Possibly at
some point a0 where θ (wt (a0),w∗) = 0 or π , such that ∂f

∂w (v
t (a0),wt (a0)) does not exist.

Otherwise,
∥
∥
∥

∂f
∂w (v

t (a),wt (a))
∥
∥
∥ is uniformly bounded for all a ∈ [0, 1]/{a0}, which makes

it integrable over the interval [0, 1]. Then, we have

f (vt+1,wt+1) = f (vt+1,wt+1/2) = f (vt + (vt+1 − vt),wt + (wt+1/2 − wt))

= f (vt ,wt) +
∫ 1

0

〈
∂f
∂v

(vt (a),wt (a)), vt+1 − vt
〉

da

+
∫ 1

0

〈
∂f
∂w

(vt (a),wt (a)),wt+1/2 − wt
〉

da

= f (vt ,wt) +
〈
∂f
∂v

(vt ,wt), vt+1 − vt
〉

+
〈

∂f
∂w

(vt ,wt),wt+1/2 − wt
〉

+
∫ 1

0

〈
∂f
∂v

(vt (a),wt (a)) − ∂f
∂v

(vt ,wt), vt+1 − vt
〉

da

+
∫ 1

0

〈
∂f
∂w

(vt (a),wt (a)) − ∂f
∂w

(vt ,wt),wt+1/2 − wt
〉

da

≤ f (vt ,wt) −
(

η − Lη2

2

)∥
∥
∥
∥

∂f
∂v

(vt ,wt)
∥
∥
∥
∥

2

− η

〈
∂f
∂w

(vt ,wt),EZ
[
g(vt ,wt ;Z)

]〉

+ Lη2

2

∥
∥
∥EZ

[
g(vt ,wt ;Z)

]∥
∥
∥
2

≤ f (vt ,wt) −
(

η − (1 + A)
Lη2

2

)∥
∥
∥
∥

∂f
∂v

(vt ,wt)
∥
∥
∥
∥

2

−
(

η − ALη2

2

) 〈
∂f
∂w

(vt ,wt),EZ
[
g(vt ,wt ;Z)

]〉

. (33)

The third equality is due to the fundamental theorem of calculus. In the first inequality, we
called Lemma 2 for (vt ,wt) and (vt (a),wt (a)) with a ∈ [0, 1]/{a0}. In the last inequality,

14 Page 22 of 23 Yin et al. ResMath Sci (2019) 6:14

we used Lemma 5. So when η < η0 := min
{

2
(1+A)L , η̃

}
, we have f (vt+1,wt+1) ≤ f (v0,w0)

and thus ‖vt+1‖ ≤ C0.
Summing up the inequality (33) over t from 0 to ∞ and using f ≥ 0, we have

η

∞∑

t=0

(

1−(1 + A)
Lη

2

)∥
∥
∥
∥

∂f
∂v

(vt ,wt)
∥
∥
∥
∥

2
+
(

1 − ALη

2

) 〈
∂f
∂w

(vt ,wt),EZ
[
g(vt ,wt ;Z)

]〉

≤ f (v0,w0) < ∞.

Hence,

lim
t→∞

∥
∥
∥
∥

∂f
∂v

(vt ,wt)
∥
∥
∥
∥ = 0

and

lim
t→∞

〈
∂f
∂w

(vt ,wt),EZ
[
g(vt ,wt ;Z)

]〉

= 0.

Invoking Lemma 5 again, we further have

lim
t→∞

∥
∥
∥EZ

[
g(vt ,wt ;Z)

]∥
∥
∥ = 0,

which completes the proof. ��

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 August 2018 Accepted: 14 December 2018 Published online: 2 January 2019

References
1. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional

computation. arXiv preprint arXiv:1308.3432 (2013)
2. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
3. Brutzkus, A., Globerson, A.: Globally optimal gradient descent for a ConvNet with Gaussian inputs. arXiv preprint

arXiv:1702.07966 (2017)
4. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-wave Gaussian quantization. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
5. Carreira-Perpinán, M.: Model compression as constrained optimization, with application to neural nets. Part I:

general framework. arXiv preprint arXiv:1707.01209 (2017)
6. Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I.J., Srinivasan, V., Gopalakrishnan, K.: Pact: parameterized clipping

activation for quantized neural networks. arXiv preprint arXiv:1805.06085 (2018)
7. Combettes, P.L., Pesquet, J.C.: Stochastic approximations and perturbations in forward–backward splitting for

monotone operators. Pure Appl. Funct. Anal. 1, 13–37 (2016)
8. Courbariaux, M., Bengio, Y., David, J.: Binaryconnect: training deep neural networks with binary weights during

propagations. In: Conference on Neural Information Processing Systems (NIPS), pp. 3123–3131 (2015)
9. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)
10. Du, S.S., Lee, J.D., Tian, Y., Poczos, B., Singh, A.: Gradient descent learns one-hidden-layer CNN: don’t be afraid of

spurious local minimum. arXiv preprint arXiv:1712.00779 (2018)
11. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Mach. Learn. 37(3), 277–296

(1999)
12. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J.

Optim. 2(1), 21–42 (1992)
13. He, J., Li, L., Xu, J., Zheng, C.: ReLu deep neural networks and linear finite elements. arXiv preprint arXiv:1807.03973

(2018)
14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet

classification. In: IEEE International Conference on Computer Vision (ICCV) (2015)
16. Hinton, G.: Neural networks for machine learning, coursera. Coursera, video lectures (2012)
17. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training neural networks

with weights and activations constrained to +1 or −1. arXiv preprint arXiv:1602.02830 (2016)

http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1702.07966
http://arxiv.org/abs/1707.01209
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1712.00779
http://arxiv.org/abs/1807.03973
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1602.02830

Yin et al. ResMath Sci (2019) 6:14 Page 23 of 23 14

18. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks
with low precision weights and activations. J. Mach. Learn. Res. 18, 1–30 (2018)

19. Ioffe, S., Szegedy, C.: Normalization: accelerating deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167 (2015)

20. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)
21. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances

in Neural Information Processing Systems, pp. 1097–1105 (2012)
22. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)
23. Li, H., De, S., Xu, Z., Studer, C., Samet, H., Goldstein, T.: Training quantized nets: a deeper understanding. In: NIPS, pp.

5813–5823 (2017)
24. Li, Y., Yuan, Y.: Convergence analysis of two-layer neural networks with ReLu activation. In: Advances in Neural

Information Processing Systems, pp. 597–607 (2017)
25. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)
26. Park, E., Ahn, J., Yoo, S.: Weighted-entropy-based quantization for deep neural networks. In: IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 5456–5464 (2017)
27. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic

differentiation in PyTorch. Technical report (2017)
28. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: ImageNet classification using binary convolutional

neural networks. In: European Conference on Computer Vision (ECCV) (2016)
29. Rosenblatt, F.: The Perceptron, a Perceiving and Recognizing Automaton Project Para. Cornell Aeronautical

Laboratory, Buffalo (1957)
30. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, Washington (1962)
31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2015)
32. Tian, Y.: An analytical formula of population gradient for two-layered ReLu network and its applications in

convergence and critical point analysis. arXiv preprint arXiv:1703.00560 (2017)
33. Wang, B., Luo, X., Li, Z., Zhu, W., Shi, Z., Osher, S.J.: Deep neural nets with interpolating function as output activation.

arXiv preprint arXiv:1802.00168 (2018)
34. Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc. IEEE

78(9), 1415–1442 (1990)
35. Yin, P., Zhang, S., Lyu, J., Osher, S., Qi, Y., Xin, J.: Binaryrelax: a relaxation approach for training deep neural networks

with quantized weights. SIAM J. Imaging Sci. (to appear). arXiv preprint arXiv:1801.06313 (2018)
36. Yin, P., Zhang, S., Qi, Y., Xin, J.: Quantization and training of low bit-width convolutional neural networks for object

detection. J. Comput. Math. (to appear). arXiv preprint arXiv:1612.06052 (2018)
37. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: training low bitwidth convolutional neural networks

with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1703.00560
http://arxiv.org/abs/1802.00168
http://arxiv.org/abs/1801.06313
http://arxiv.org/abs/1612.06052
http://arxiv.org/abs/1606.06160

	Blended coarse gradient descent for full quantization of deep neural networks
	Abstract
	1 Introduction
	2 Activation quantization
	3 Full quantization
	3.1 Weight quantization
	3.2 Blended gradient descent and sufficient descent property

	4 Experiments
	5 Analysis of coarse gradient descent for activation quantization
	5.1 Population loss minimization
	5.2 Convergence analysis of normalized coarse gradient descent

	6 Concluding remarks
	Acknowledgements
	Appendix
	A. Additional preliminaries
	B. Proofs

	References

