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Abstract
We propose a denoising method by integrating group sparsity and TV regularization based
on self-similarity of the image blocks. By using the block matching technique, we introduce
some local SVD operators to get a good sparsity representation for the groups of the image
blocks. The sparsity regularization and TV are unified in a variational problem and each of
the subproblems can be efficiently optimized by splitting schemes. The proposed algorithm
mainly contains the following four steps: block matching, basis vectors updating, sparsity
regularization and TV smoothing. The self-similarity information of the image is assembled
by the blockmatching step. By concatenating all columns of the similar image block together,
we get redundancy matrices whose column vectors are highly correlated and should have
sparse coefficients after a proper transformation. In contrast with many transformation based
denoising methods such as BM3D with fixed basis vectors, we update local basis vectors
derived from the SVD to enforce the sparsity representation. This step is equivalent to a dic-
tionary learning procedure. With the sparsity regularization step, one can remove the noise
efficiently and keep the texture well. The TV regularization step can help us to reduced the
artifacts caused by the image block stacking. Besides, we mathematically show the conver-
gence of the algorithms when the proposed model is convex (with p = 1) and the bases are
fixed. This implies the iteration adopted in BM3D is converged, which was not mathemati-
cally shown in the BM3D method. Numerical experiments show that the proposed method
is very competitive and outperforms state-of-the-art denoising methods such as BM3D.
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1 Introduction

Image denoising is a fundamental low level computer vision task and has a long history.
In this paper, we focus on the classical additive Gaussian white noise removing problem.
Mathematically, the observed noisy image can be modeled as g = f + n, where f is the
latent clean image and n is the Gaussian noise with 0 mean. To restore f from g, thousands
of methods have been proposed in the past several decades.

To keep the non-continuity of f , TV was proposed in [1]. The bounded variation space
admits piece-wise constant functions and thus TV regularization is very efficient in denois-
ing cartoon images. However, small structures such as textures can not be identified by TV
and these repetitive structures can be removed together with the noise. To make a distinc-
tion between textures and noise, self-similarity information was introduced to the denoising
methods. The nonlocal means method [2] used the image blocks’s self-similarity to average
the pixels and texture preserving was greatly improved . The nonlocal means method trig-
gered the self-similarity study in recent years and a variety of methods based on different
mathematical tools were designed, such as nonlocal TV [3], block nonlocal TV [4] , BM3D
[5] and so on.

Sparsity regularization is a hot research topic in the recent years. The strong assumption
of the sparsity method is that the image signal can be represented sparsely under some proper
basis function. Usually, the basis vectors or functions can be chosen as some well-known
orthogonal basis such as FFT, DCT, wavelets, SVD and so on. One of the representative
methods for the sparsity regularization is BM3D [5]. In this method, similar image blocks
were stacked together into a 3D array to enforce the image information and sparsity. By
choosing proper basis vectors, this 3D matrix would have a very sparse representation. Then
each image block can be estimated by thresholding the sparse coefficients. BM3Dcanproduce
state-of-the-art denoising results due to its nonlocal self-similarity. However, there are two
main flaws in this method. The first one is that the basis vectors are fixed and some image
blocks might not have enough sparse coefficients. We will design a numerical experiment to
show this below. The other is that artificial ringing effects will occur in the restoration due to
the image block stacking method. In fact, these phenomena can be reduced by using global
TV.

Low-rank methods for image denoising have received much attention in recent years. It is
not difficult to observe that a matrix formed by the columns of some nonlocal similar patches
in a natural image is low-rank. By integrating the self-similarity property, this method can
produce good restorations [6]. In fact, low-rank is a variant of sparsity regularization and
is associated with an l0 minimization problem for a matrix’s singular values. In low rank
methods, the basis vectors are chosen as the SVD of a matrix. However, the general low-rank
problem is non convex and difficult to optimize. A good choice to approximate the low-rank
is to use the nuclear norm, which is defined by a sum of the singular values of a matrix and
it can be easily solved by a singular values thresholding method [7]. It is well-known that
the l1 norm is the tightest convex relaxation of l0. Thus in matrix completion, the nuclear
norm minimization can be regarded as a convex relaxation of low-rank problem since the
nuclear norm is defined by an l1 norm of a vector which is composed by a matrix’s singular
values. Many methods such as reweighting [8], truncated nuclear norm [9], weighted nuclear
norm [10] and Schatten Norm [11] and other methods [12] have been proposed to enforce
the sparsity. However, these methods just enhance the sparsity and do not consider the basis.
In fact, a proper basis functions system is very important in a sparse representation [13].
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In this paper, we propose a local SVD operators based sparsity and TV regularization
method. This method is developed by formulating the local nuclear norm denoising method
[6] with a variational problem, which is easily extended to many other problems. In fact,
the local image block processing is closely related to the Kronecker product of matrices. By
using vectorization, we can get local SVD based operators. These local SVD operators can
help us to find good basis functions and get sparse and redundant representations for image
blocks. To reduce the artificial ringing caused by the image blocks processing, a global TV
regularization is integrated into the cost functional. The proposed minimization problem can
be efficiently solved by splitting schemes. Experimental results show that it can provide
some impressive denoising results. It has better performance than BM3D in both PSNR and
visually, and BM3D is often regarded as a state-of-the-art denoising algorithm.

The main contributions of this paper are as follows:

• We build a variational formulation for the block matching based low rank method. This
new formulation can be easily extended to many other image processing problems such
as deblurring.

• We introduce the TV to the block matching based method and elegantly integrate it to
the cost functional.

• We propose a splitting denoising optimization algorithm and achieve state-of-the-art
performance. The convergence of the proposed algorithms can be obtained under some
mild conditions.

Let us point out that the proposedmethod is self-contained and do not need training, which
is different from thedata drivenmachine learning type algorithms such as convolutional neural
network based techniques [14–16].

The rest of the paper is organized as follows: In Sect. 2, we will briefly introduce related
work such as BM3D and some SVD based methods. We present our proposed model in
Sect. 3. In Sect. 4, the optimization scheme to solve the proposed model and some of the
related details will be described. The convergence results are contained in Sect. 5. Section 6
includes some experimental results and comparisons with related methods. Finally, we will
conclude the paper in Sect. 7.

2 RelatedWork

2.1 Notations

We first give some notation. Throughout this paper, we write matrices as bold letters such
as U, V , P . The lowercase letters stand for column vectors. Let f , g ∈ R

N be images. We
sometimes use the lowercase letters f or vec(F) to represent a column vector by stacking
the columns of a matrix F, and the inverse operator of vec is defined as array( f ), i.e
array( f ) = F. The superscripts i, j in matrices such as P i j always stand for different
matrices. Similarly to [13], P i j is an extract matrix whose elements of each row are zeros
except for one with value 1. The symbol ⊗ stands for the Kronecker product.

2.2 BM3D and Low Rank

The BM3D method [5] is a famous denoising method. It has become a baseline algorithm
to test the performance of denoising algorithms. BM3D includes the following steps: the
first step is block matching: for each image block located at j , the similar image blocks
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with size
√
n × √

n are collected in groups with member number I j . Image blocks in each
group are stacked together to form a

√
n × √

n × I j 3-D data array. Second, the sparsity
regularization step, the 3-D arrays are decorrelated by using an invertible 3D transform
such as DCT and then are filtered by thresholding. Finally, the restoration is obtained by
aggregating all the estimated image patches. These steps are formulated as a nice variational
problem by Danielyan et al. in [17]. In this paper, we will borrow representations from it.
Based on the block matching method, in Ji et al. [6] proposed a nuclear norm based method
for a video denoising algorithm. The method in [6] decorrelates the redundant information
by thresholding the singular values of the SVD. Since there is no a good SVD for an array
whose dimension is more than 2 [18], in the SVD based method, a common choice is to
create n × I j 2-D matrices by concatenating all columns of the patch. i.e.

M j =
[
P1 j g, P2 j g, . . . , P I j j g

]
,

where P i j ∈ R
n×N , i = 1, 2 · · · , I j are some extract matrices whose elements are binary

and P i j g ∈ R
n stands for a vectorized i-th most similar image block to the image patch at

j . Locally, the restoration problem can be written as

min
X j

{
1

2
||M j − X j ||2F + μ j ||X j ||∗

}
, (1)

where || · ||∗ is the nuclear norm defined as the sum of the singular values of X j [6] and μ j is
a regularization parameter. In order to extend this method, we will reformulate the problem
(1) with basis functions and sparse representations. Let the SVD of M j be

M j = U j�M j (V j )
′
,

where �M j ∈ R
n×I j is a diagonal matrix and U j ∈ R

n×n, V j ∈ R
I j×I j are orthogonal

unitary matrices. If we chose U j and V j as bases, then we get for any X j ∈ R
n×I j ,

X j = U j�X j (V j )
′
.

Note that the coefficientmatrix�X j may not be a diagonalmatrix. If we require this represen-
tation to be sparse under the condition ||M j − X j ||2F = cσ 2, then we can get the Lagrangian
version of this problem

min
�X j

{
1

2
||�M j − �X j ||2F + μ j ||�X j ||1

}
. (2)

Here || · ||1 represents the “entry-wise” l1 norm, i.e. ||A||1 = ∑
i j |ai j | for any matrix

A = (ai j ).
It is not difficult to show that the problem (1) is equivalent to the sparsity regularization

problem (2).

Proposition 1 Suppose U j , V j are the left and right singular matrices of M j , i.e.
(U j )

′
M jV j = �M j , then we have that �∗

X j is a minimizer of (2) if and only if

(X j )∗ = U j�∗
X j (V

j )
′
is a minimizer of (1).

Proof To simplify notations, we omit the superscript and subscript j for all the matrices and
variables in (1), (2) and Proposition 1. Let us suppose �M = diag({σi }1�i�min(n,I )). Then
the minimizer X∗ of (1) is related to a singular value shrinkage operator according to [7],
i.e. X∗ = Udiag({max(0, σi − μ)})V ′

. We just need to prove diag({max(0, σi − μ)}) is a
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Fig. 1 Denoising results with different basis functions. a Clean, b Noisy, 8.10 dB, c 16.26 dB, d 27.01 dB

minimizer of (2). Denote �M = ((σM )i j )n×I ,�X = ((σX )i j )n×I , then (σM )i j = δi jσi , and
problem (2) becomes a l1 − l2 minimization problem

min
(σX )i j

⎧⎨
⎩

n∑
i=1

I∑
j=1

[
1

2
((σX )i j − (σM )i j )

2 + μ|(σX )i j |
]⎫⎬
⎭ .

It is well-known that the above problem has a close-formed minimizer (σ ∗
X )i j =

(σM )i j
|(σM )i j | max(0, |(σM )i j | − μ). Please note (σM )i j = δi jσi � 0 and μ > 0, then we

have (σ ∗
X )i j = max(0, (σM )i j − μ) = δi jmax(0, σi − μ). Thus �∗

X = ((σ ∗
X )i j )n×I =

diag({max(0, σi −μ)}) is a minimizer of problem (2). Please recall that these two problems
(1) and (2) are strictly convex and both of them have a unique minimizer, and thus X∗,�∗

X
are their unique minimizers, respectively. ��

From the above analysis, we can see that the nuclear normminimization problem is closely
related to an l1 minimization in a transformed domain with the transformation basis functions
U j and V j . However, we will show that the basis functions U j , V j are not good enough
to ensure that X j has a sparse representation. For simple comparison, we let M j be a noisy
image displayed in Fig. 1b, the restoration produced by the solution of the problem (2) with
μ j = 2230 are showed in Fig. 1c. We test several μ j and choose the result with the highest

PSNR 16.26 dB for comparison. Next, we change the basis functions U j , V j as Û
j
, V̂

j

and Û
j
, V̂

j
are set as the singular matrices of the clean image displayed in Fig. 1a. i.e.

F = Û
j
�F(V̂

j
)
′
. Then we calculate �M j = (Û

j
)
′
M j V̂

j
in problem (2), we solve this

problem again with μ j = 260, and get the result demonstrated in Fig. 1d. We see that there
is much improvement in both PSNR and visual effect in Fig. 1d. The reason is very simple:

we use better basis vectors for the transformation. In the denoising problem, the Û
j
, V̂

j
are

not available since the latent clean image F is unknown. However, this inspires us to update
the basis function by using an iteration method. We will formulated a local SVD operator
based method in the next section.

3 ProposedModel

Our method is mainly based on (2). First, We reformulate (2) as a linear operator rep-
resentation. For an image g ∈ R

N , please recall M j = [P1 j g, P2 j g, . . . , P I j j g], and
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�M j = (U j )′M jV j . Let (V j )
′ = [v j

1 , v
j
2 , . . . , v

j
I j

], then

�M j = (U j )′
[
P1 j g, P2 j g, . . . , P I j j g

] [
v
j
1 , v

j
2 , . . . , v

j
I j

]′

=
I j∑
i=1

(U j )′P i j g(v j
i )

′
.

and obtain

vec(�M j ) =
I j∑
i=1

(
v
j
i ⊗

(
(U j )′P i j

))
g.

We denote the local SVD operator as

T j =
I j∑
i=1

v
j
i ⊗ ((U j )

′
P i j ), (3)

thus we have

vec(�M j ) = T j g.

Based on the above analysis, we propose the following general model for denoising:

min
f

⎧⎨
⎩
1

2

J∑
j=1

||T j ( f − g)||22 +
J∑

j=1

μ j ||T j f ||p + μT V ( f )

⎫⎬
⎭ , (4)

where T j is a block matching local SVD operator defined in (3). j ∈ {1, 2, . . . , J } are
locations of pixels. || · ||p is the p norm in which p can be chosen as 0 (low rank) or 1
(nuclear norm). T V is the discrete isotropic TV operator which has the following discrete
expression

T V ( f ) = ||∇ f ||2,1,
where ∇ f = ((I ⊗ D1) f , (D2 ⊗ I) f ) and D1, D2 are two 1D difference matrices
with respect to x-direction and y-direction. While || · ||2,1 has the precise representation

||A||2,1 = ∑N
i=1

√
a2i1 + a2i2 when A = (ai j )N×2 ∈ R

N×2. μi � 0, μ � 0 are regulariza-
tion parameters.

The first term in (4) is a fidelity term in transformation domain, which requires the trans-
form coefficients of clean image f and noisy image g are similar. The second term in (4) is a
priority term which controls the sparsity of the transform coefficients of f . Finally, the third
term is a constraint in spatial domain which controls the smoothness of the reconstructed
small image patches.

Theoretically, the U j , V j in the local SVD operator T j can be set as any orthogonal
matrices. However, as mentioned earlier, inappropriate basis matrices may lead the image
patch groups to not have a sparse representation.

On the block local SVD operator T j , we have the following properties:

Proposition 2 (T j )
′
T j = ∑I j

i=1(P
i j )

′
P i j , and

∑J
j=1(T

j )
′
T j = ∑J

j=1
∑I j

i=1(P
i j )

′
P i j is

invertible.

Proposition 3 For any y ∈ R
nI j , (T j )

′
y = ∑I j

i=1(P
i j )

′
U j array(y)v j

i .
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Proposition 4 ker(
∑J

j=1(T
j )

′
T j ) = {0}.

The proofs of these propositions are not difficult. Here we omit the proof details and leave
them to the readers.

Equation (4) is not smoothed and to solve it directly would often be slow. However, it can
be efficiently optimized by popular splitting methods such as ALM [19], ADMM and Split
Bregman [20].

4 Algorithm

To solve (4), we can introduce auxiliary variables α j ∈ R
nI j and α = [α1, α2, . . . , αJ ] ∈

R
nI j×J , then one can get the following constrained minimization problem

min
α, f

{
1
2

∑J
j=1 ||α j − T j g||2 + ∑J

j=1 μ j ||α j ||p + μT V ( f )
}

,

s.t . α j = T j f , f or j = 1, 2, . . . , J .

The standard Augmented Lagrangian method produces the following scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(αk, f k) = argmin
f ,α

⎧
⎨
⎩
1

2

J∑
j=1

||α j − T j g||2 +
J∑

j=1

μ j ||α j ||p

+μT V ( f ) + η

2

J∑
j=1

∣∣∣
∣∣∣α j − T j f − λk−1

j

∣∣∣
∣∣∣
2

⎫
⎬
⎭ ,

λkj = λk−1
j + δ

(
T j f k − αk

j

)
.

(5)

By applying alternating minimization, it becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk = argmin
α

{
1
2

∑J
j=1 ||α j − T j g||2 + ∑J

j=1 μ j ||α j ||p
+ η

2

∑J
j=1

∣∣∣
∣∣∣α j − T j f k−1 − λk−1

j

∣∣∣
∣∣∣
2
}

,

f k = argmin
f

{
μT V ( f ) + η

2

∑J
j=1

∣∣∣
∣∣∣αk

j − T j f − λk−1
j

∣∣∣
∣∣∣
2
}

,

λkj = λk−1
j + δ

(
T j f k − αk

j

)
, j = 1, 2, . . . , J .

(6)

We note that if the local SVD operator T j is fixed as a patch based SVD of g, then
T j f k−1 may not be sparse enough. This will lead to α not being sparse. In order to make
the transformation coefficients α be more sparse, we must adjust the local SVD operator T j .
Inspired by the solution of αk [Propositions (5), (6)], we choose a good T j as following

T j,k =
I j∑
i=1

v
j,k
i ⊗

(
(U j,k)

′
P i j

)

Here, the local left-singular matrix U j,k ∈ R
n×n and right-singular matrix (V j,k)

′ ∈
R

I j×I j are the SVD
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[
P1 j ĝ, P2 j ĝ, . . . , P I j j ĝ

]
= U j,k�

j
ĝ (V

j,k)
′
,

(V j,k)
′ =

[
v
j,k
1 , v

j,k
2 , . . . , v

j,k
I j

]
.

where ĝ = (
g

1+η
+ η f k−1

1+η
). Thus in our method, the basis functionsU j,k and V j,k are updated

during the iteration. This updating process can make the transformation coefficients more
sparse, and we can get improved restoration results. This is different from the BM3Dmethod.
In that algorithm, the basis functions are chosen as DCT or wavelet basis functions and they
are all fixed.

Therefore, the iteration becomes

T j,k =
I j∑
i=1

v
j,k
i ⊗

(
(U j,k)

′
P i j

)
, (7)

αk = argmin
α

⎧
⎨
⎩
1

2

J∑
j=1

||α j − T j,kg||2 +
J∑

j=1

μ j ||α j ||p (8)

+ η

2

J∑
j=1

∣∣∣
∣∣∣α j − T j,k f k−1 − λk−1

j

∣∣∣
∣∣∣
2

⎫⎬
⎭ , (9)

f k = argmin
f

⎧⎨
⎩μT V ( f ) + η

2

J∑
j=1

∣∣∣
∣∣∣αk

j − T j,k f − λk−1
j

∣∣∣
∣∣∣
2

⎫⎬
⎭ , (10)

λkj = λk−1
j + δ

(
T j,k f k − αk

j

)
, j = 1, 2, . . . , J . (11)

Both of the two minimization subproblems can be efficiently solved. For subproblem α,
there is a closed-form solution represented by the soft and hard thresholding operators when
p = 1 and p = 0, respectively.

Proposition 5 For p = 1 in subproblem (8), αk
j = S(T j,k ĝ + ηλk−1

j
1+η

,
μ j
1+η

), where S is a

shrink operator and S( f , μ) = f
| f | max{| f | − μ, 0}.

Proposition 6 For p = 0 in subproblem (8), then αk
j = H(T j,k ĝ + ηλk−1

j
1+η

,

√
2μ j
1+η

) is a
minimizer of subproblem (8), where H is a hard thresholding operator and H( f , μ) ={
0, | f | � μ,

f , | f | > μ.

Remark: the subproblem (8) is strictly convex when p = 1 and thus the minimizer
is unique. However, when p = 0, this subproblem is non-convex and it may have many
minimizers. One can see this from the proof.

As to the subproblem of f , it is a ROF model [1] with a local SVD operator. It can be
solved quickly by Split Bregman iteration [20]. We list the iteration scheme in the following:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f k,l , ql) = argmin
f

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η
2

∑J
j=1

∣∣∣
∣∣∣αk

j − T j,k f − λk−1
j

∣∣∣
∣∣∣
2

+ η1
2

∣∣∣
∣∣∣q1 − (I ⊗ D1) f − bl−1

1

∣∣∣
∣∣∣
2

+ η1
2

∣∣∣
∣∣∣q2 − (D2 ⊗ I) f − bl−1

2

∣∣∣
∣∣∣
2

+μ||q||2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

bl+1
1 = bl1 + (I ⊗ D1) f k,l − ql1,

bl+1
2 = bl2 + (D2 ⊗ I) f k,l − ql2.

By applying the alternating algorithm again, we have the TV inner iteration:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
η

∑J
j=1(T

j,k)′T j,k + η1�
)
f k,l = hk,l ,

ql1 = S1
(
(I ⊗ D1) f + bl−1

1 , (D2 ⊗ I) f + bl−1
2 ,

μ
η1

)
,

ql2 = S1
(
(D2 ⊗ I) f + bl−1

2 , (I ⊗ D1) f + bl−1
1 ,

μ
η1

)
,

bl+1
1 = bl1 + (I ⊗ D1) f k,l − ql1,

bl+1
2 = bl2 + (D2 ⊗ I) f k,l − ql2,

(12)

where � = I ⊗ ((D1)
′
D1) + ((D2)

′
D2) ⊗ I is the discrete Laplacian matrix, and

hk,l = η
∑J

j=1(T
j,k)′

(
αk
j − λk−1

j

)
+ η1

((
I ⊗ (D1)

′)
(
ql−1
1 − bl−1

1

)
+

(
(D2)

′ ⊗ I
) (

ql−1
2 − bl−1

2

))
,

S1 is an isotropic soft thresholding operator which has the expression

S1(x, y, μ) = x√
x2 + y2

max

{√
x2 + y2 − μ, 0

}
.

The linear equation of f k,l in (12) can be efficiently solved by Gauss–Seidel iteration

since
∑J

j=1(T
j,k)′T j,k = ∑J

j=1
∑I j

i=1(P
i j )

′
P i j is a invertible diagonal matrix.

We summary the proposed BMLSVDTV method in Algorithm (1)

Algorithm 1 BMLSVDTV denoising algorithm
Set the initial f 0 = g and some regularization parameters η, η1, μ, μ j , for k = 1, 2, . . .

Step 1, Block Matching: for each image block of ĝ = g
1+η

+ η f k

1+η
at j , find the I j most

similar image block. This is equivalent to obtaining the extract matrix P i j , j =
1, 2, . . . , J , i = 1, 2, . . . , I j .

Step 2, Basis updating: Get the local SVD transform operator T j,k by (7).
Step 3, Sparsity Regularization: Compute αk with soft or hard thresholding operator by

Propositions (5) or (6).
Step 4, TVRegularization: Solve the TV subproblem (10)with several Bregman iterations

(12) to get f k . If f k satisfies the stopping criterion || f k− f k−1||
|| f k−1|| < ε or reaches the

maximum iteration number, then stop and get the restoration result, else, go to the
next step.

Step 5, Lagrangian multiplier updating Calculate (11) and go to step 1.
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5 Convergence Analysis

If we set p = 1, then the proposed model (4) is strictly convex since the first term is strictly
convex by the Proposition 2. With a fixed basis T j , we can show the convergence of the
iteration scheme (5) and (6) as follows.

Theorem 1 For p = 1, suppose f ∗ is the minimizer of problem (4), ∀0 < δ < 2, then the
sequence f k produced by the iteration scheme (5) is converged and limk→∞ f k = f ∗.

Proof The proof can be followed by some standard discussions of augmented Lagrangian
method with operator splitting such as [21–23]. ��

The difference between the iteration scheme (5) and (6) is that αk is updated by a given
f k−1 in alternating minimization scheme (6) while αk, f k in scheme (5) are updated simul-
taneously. Similarly, we have the following convergence result for this alternating scheme:

Theorem 2 . For p = 1, suppose f ∗ is the minimizer of problem (4), let δ = 1, then the
sequence f k produced by the iteration scheme (6) is converged and limk→∞ f k = f ∗.

Proof The proof is very similar as Theorem 1. ��

Similar convergence results also can be found in [24] for splitting Bregman method,
Douglas-Rachford Splitting [25] and augmented Lagrangian method [23] etc.

Let us point out if the basis T j is updated, then this problem becomes a non-convex, and
we have not got its convergence yet. However, numerical experiments show that one can
obtain some better restorations with updating T j . Thus in practical computing, we use some
updating bases.

6 Experiments

6.1 Implementation Details

Let us mention that both the sparsity regularization and the basis updating in the proposed
algorithm can be implemented block by block because of the linear structure of the energy.

There are some parameters in the proposedmethod. Generally speaking, the reconstructed
results are affected by these parameters. For all the cases, we let the penalty parameter η = 9,
and the time step be δ = 0.01. The parameter

√
n which is the size of image blocks are

empirically set according to the levels of the noise. For σ = 10, 20, 30, 50, 75, 100, we
set

√
n = 6, 6, 7, 8, 8, 9, respectively. For ease of computation, we set the number of each

image block group I j as a constant. We simply let I j = 40, 40, 50, 60, 70, 90 for noise with
σ = 10, 20, 30, 50, 75, 100. The TV regularization parameters μ are set as μ = 0.1 when
σ <= 20 and μ = 0.2 when σ > 20. As for the sparsity regularization parameters μ j , we
let μ j = nσ 2

local(1+ η) when p = 0. Here the local noise variance σ 2
local can be determined

by some simple local noise estimation technique [26,27]. As for the parameter of the sparse
norm p, we have tested some images under different noise levels and it appears that l0 norm
can produce better results than l1. Thus in the following experiments, we just list the results
produced by l0.
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Table 1 The PSNR values for different methods under several levels Gaussian noise

σ = 10 σ = 20

TV KSVD BM3D Proposed TV KSVD BM3D Proposed

Peppers (256 × 256) 33.34 34.25 34.68 34.88 29.67 30.80 31.29 31.49

Monarch (256 × 256) 32.98 33.67 34.12 34.93 29.04 29.90 30.35 31.14

C.man (256 × 256) 32.66 33.74 34.18 34.34 28.88 30.00 30.48 30.68

Square (256 × 256) 39.55 42.76 44.45 47.17 35.83 37.73 38.70 40.59

House (256 × 256) 34.35 35.93 36.71 36.68 31.25 33.11 33.77 33.83

Barbara (512 × 512) 30.70 34.45 34.98 35.31 26.54 30.85 31.78 32.18

Boat (512 × 512) 32.52 33.66 33.92 33.96 29.25 30.38 30.88 30.95

Hill (512 × 512) 32.55 33.38 33.62 33.67 29.54 30.20 30.72 30.75

Average 33.58 35.22 35.84 36.37 30.00 31.62 32.24 32.70

σ = 30 σ = 50

TV KSVD BM3D Proposed TV KSVD BM3D Proposed

Peppers (256 × 256) 27.65 28.80 29.28 29.56 25.21 26.08 26.68 26.97

Monarch (256 × 256) 26.89 27.85 28.36 28.95 24.32 25.32 25.82 26.37

C.man (256 × 256) 26.89 28.02 28.64 28.70 24.60 25,70 26.12 26.43

Square (256 × 256) 33.64 34.37 35.85 36.80 30.59 30.27 32.40 32.82

House (256 × 256) 29.50 31.18 32.09 32.39 27.21 28.00 29.69 30.20

Barbara (512 × 512) 24.78 28.57 29.81 30.15 23.31 25.47 27.23 27.62

Boat (512 × 512) 27.51 28.46 29.12 29.17 25.50 25.97 26.78 26.95

Hill (512 × 512) 28.00 28.45 29.16 29.19 26.21 26.32 27.19 27.29

Average 28.11 29.46 30.28 30.62 25.87 26.64 27.74 28.09

σ = 75 σ = 100

TV KSVD BM3D Proposed TV KSVD BM3D Proposed

Peppers (256 × 256) 23.40 23.64 24.73 25.10 22.16 21.96 23.39 23.64

Monarch (256 × 256) 22.36 22.81 23.90 24.46 21.00 20.67 22.52 23.03

C.man (256 × 256) 22.96 23.44 24.33 24.56 21.87 21.57 23.07 23.27

Square (256 × 256) 28.69 27.68 30.06 30.60 27.15 25.91 28.38 29.11

House (256 × 256) 25.47 25.04 27.50 28.12 24.21 23.60 25.87 26.63

Barbara (512 × 512) 22.40 22.97 25.12 25.48 21.75 21.87 23.62 24.28

Boat (512 × 512) 24.06 24.04 25.12 25.25 23.07 22.86 23.97 24.15

Hill (512 × 512) 24.92 24.89 25.68 25.80 23.99 24.01 24.58 24.75

Average 24.28 24.31 25.80 26.17 23.15 22.77 24.43 24.86

The highest PSNR values (best denoising results) are given in bold

6.2 Numerical Results

We take 8 images to test the performance of the proposed algorithm. To show its impressive
denoising results, themost relatedTV,KSVDandBM3Dare used tomake some comparisons.
All the PSNR values for these four methods can be found in Table 1. It is well-known that
the denoising result may be affected by some parameters in these regularization methods.
For KSVD and BM3D, we use the codes provided by the authors and adopt the suggested
parameters. For TV, we test several regularization parameters under each noise level for one
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Fig. 2 The 8 test images. From left to right and top to bottom, Peppers, Monarch, Camera man, Square, House,
Barbara, Boat, and Hill

Fig. 3 The comparison of the performance on the geometry structure image ’Square’ contaminated by the low
level Gaussian noise with standard deviation σ = 10. For the details in the blue and red square areas, please
see Fig. 4. a Clean, b Noisy, 28.10 dB, c TV, 39.55 dB, d KSVD, 42.76 dB, e BM3D, 44.45 dB, f Proposed,
47.17 dB (Color figure online)

image such as ’Monarch’ and take the results with the highest PSNR for comparison, then
we use the same parameters for all other 7 images. One can see that the proposed method
outperforms the other methods in almost all the cases. Compared to the BM3D, which is a
state-of-the-art denoising method, the improved PSNR is about 0.35 dB better on average
(Fig. 2).
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Fig. 4 The local details of the blue and red square areas in Fig. 3. a Clean, b Noisy, c TV, d KSVD, e BM3D,
f Proposed, g Clean, h Noisy, i TV, j KSVD, k BM3D, l Proposed

Fig. 5 The comparison of performance on the geometry structure image ’Square’ contaminated by the high
level Gaussian noise with standard deviation σ = 100. For the details in the blue and red square areas, please
see Fig. 6. a Clean, b Noisy, 8.10 dB, cTV, 27.15 dB, d KSVD, 25.91 dB, e BM3D, 28.38 dB, f Proposed,
29.11 dB (Color figure online)

As to the visual effects, our method can reduce the artificial ringings effect which is caused
by stacking the image blocks in the BM3D method, thanks to the existence of TV in the
proposed method. Also, similar to the KSVD, the basis functions in our method are adaptive
and thus can make the sparse representation better than the fixed ones. Our model can then
keep the texture better. We take 2 example images, one is the simple image ’Square’, which is
almost piece-wise constant and has strong geometric structures, the other is ’Barbara’, which
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Fig. 6 The local details of the blue and red square areas in Fig. 5. a Clean, b Noisy, c TV, d KSVD, e BM3D,
f Proposed, g Clean, h Noisy, i TV, j KSVD, k BM3D, l Proposed

Fig. 7 The first column of the final basis functions U in the proposed method

contains much repeated texture. To show the performance under different levels of noise, for
’Square’ image, we show the result under low level noise with standard deviation σ = 10
and high level with σ = 100. For ’Barbara’ image, we just list the image contaminated by
heavy Gaussian noise with standard deviation σ = 100. The Figs. 3, 5 and 8 demonstrate
the restored results produced by the four methods. The TV in Fig. 3c can keep the strong
edges well under low level noise, but produces some false edges due to the heavy noise (see
Figs. 6c and 9c). Also, the repeated texture details are almost be removed due to its weak
texture preserving ability. See Figs. 8c and 9i for examples. The KSVD and BM3D have
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Fig. 8 The performance comparison on the texture structure image ’Barbara’ contaminated by Gaussian noise
with standard deviation σ = 100. For the details in the blue and red square areas, please see Fig. 9. a Clean, b
Noisy, 8.14 dB, c TV, 21.75 dB, d KSVD, 21.87 dB, e BM3D, 23.62 dB, f Proposed, 24.28 dB (Color figure
online)

Fig. 9 The local details of the blue and red square areas in Fig. 8. a Clean, b Noisy, c TV, d KSVD, e BM3D,
f Proposed, g Clean, h Noisy, i TV, j KSVD, k BM3D, l Proposed

better performance on texture restoration. However, in the smooth areas, the BM3D may
produce some ringing effects as displayed in Figs. 6e, k and 9e. These artificial effects can
be well controlled in the proposed method by adding the TV regularization, see the enlarged
areas image in Figs. 6f, l and 9f. One can find that the restorations in these figures contain
the cleanest strong edges and smooth areas. Moreover, our model can improve the texture
preserving ability by basis updating, one can take Fig. 9k, l for comparison. It is easy to find
that the restored textures in Fig. 9l are cleaner than the ones in Fig. 9k. For better comparison,
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Fig. 10 The removed noise in Fig. 8 by the four methods. a TV, b KSVD, c BM3D, d Proposed

in Fig. 10, we show the removed noise for Fig. 8. Both of the removed noise by the BM3D
and proposed method have little information, in fact, ours has less than BM3D’s (Figs. 4, 5,
6).

As mentioned early, the basis functions U j,k, V j,k in the proposed method are adaptive.
Thus, similar toKSVD,we can show the basis functions for each image.However, the number
of the basis functions U j,k = (u j,k

1 , u j,k
2 , . . . , u j,k

n ) in our method is very large and we can

not show all of them. From SVD, we can see that the eigenvector u j,k
1 related to the first

largest eigenvalue plays the most important role in sparse representation. Thus, we just show
this eigenvector u j,k

1 for each image block. For 256 × 256 image shown in Fig. 5, by using
the sliding window technique which is adopted by KSVD and BM3D with 3 pixels steps, we
get J = 86 × 86 images patches with size 9 × 9, for each 9 × 9 image patch and its similar
block groups, we display u j,k

1 ∈ R
81, j = 1, 2, . . . , J in Fig. 7. In this figure, each red image

block is a 9 × 9 array of u j,k
1 , and the total number of the image blocks is 86 × 86. From

this basis functions, one can find near the strong edges, the basis are almost binary and it can
represent the non-continuous edges well. Meanwhile, the basis functions in the tiny edges or
smooth areas have many oscillations and they can represent the textures well. This is totally
different from BM3D, which employs a fixed dictionary such as DCT or wavelets (Fig. 8, 9,
10).
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7 Conclusion and Discussion

We have proposed a local SVD operators based sparsity and TV regularization method
for image denoising. Sparsity and TV are naturally unified in a variational energy and can
produce some impressive restoration results. The local SVD basis functions can improve
the texture recovering ability and the global TV can reduce some artificial ringing effects
in the restoration. However, the computational cost is heavy due to the existence of block
matching and local SVD. Generally speaking, with our unoptimized matlab codes on a PC
equipped with 3.2 GHz CPU, for images with size 256 × 256, for each outer iteration, the
block matching step will take about 16 s, the basis updating and sparsity regularization will
take about 20 s and the TV step is fast and will take less than 0.3 s. But the efficiency of our
codes can be greatly improved by optimization since the same block matching step in BM3D
just costs less than 1 s. It also can be further improved by parallel processing with a GPU.
We do not discuss the implementation efficiency in this paper.

The proposed method can be easily extended to image deblurring, inpainting and even
segmentation. Due to the limited page space, we could not include these. We will consider
these in an upcoming paper.
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