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Computational microscopy beyond perfect lenses
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We demonstrate that in situ coherent diffractive imaging (CDI), which leverages the coherent interference
between strong and weak beams to illuminate static and dynamic structures, can serve as a highly dose-efficient
imaging method. At low doses, in situ CDI can achieve higher resolution than perfect lenses with the point spread
function as a delta function. Both our numerical simulations and experimental results demonstrate that combining
in situ CDI with ptychography can reduce the required dose by up to two orders of magnitude compared with
ptychography alone. We anticipate that computational microscopy based on in situ CDI can be applied across
various imaging modalities using photons and electrons for low-dose imaging of radiation-sensitive materials
and biological samples.
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I. INTRODUCTION

The resolution of microscopy based on incoherent imaging
is set by the point spread function (PSF) [1]. A microscope
with the PSF as a delta function, corresponding to an infi-
nite numerical aperture without aberration, would represent
a perfect imaging system. The other important factor for any
practical microscope is the illumination, that is, the number
of particles (e.g., photons and electrons) per unit area and
time required to form an image. With unlimited illumina-
tion, a phase-contrast microscope with perfect lenses would
be the ultimate imaging system. However, many important
systems, such as energy materials, catalysts, polymers, and
biological samples, are very sensitive to x-rays or electrons,
which are known as radiation damage effects [2–4]. In this
work, we combine theoretical analysis, numerical simulations,
and experimental validation to demonstrate that, at low doses,
computational microscopy based on in situ coherent diffrac-
tive imaging (CDI) can outperform microscopy with perfect
lenses. CDI is a lensless imaging technique with the resolu-
tion only limited by the wavelength and the highest spatial
frequency of the diffraction signal [5]. Over the years, CDI
methods, such as conventional CDI, Bragg CDI, and pty-
chography, have been broadly implemented using synchrotron
radiation, x-ray free-electron lasers, high harmonic gener-
ation, electron microscopy, and optical microscopy [6–26].
However, although CDI methods have overcome the resolu-
tion limit set by lenses, their application to radiation-sensitive
samples remains challenging. An approach to improve CDI’s
dose efficiency is to incorporate strong scatterers near weakly
scattering or biological samples [27–32]. More recently, nu-
merical experiments have indicated that in situ CDI can
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significantly reduce the radiation dose by 1-2 orders of magni-
tude over conventional CDI [33]. However, the mathematical
foundation of the radiation dose reduction in in situ CDI
is unknown. Here, we use mathematical analysis, numeri-
cal simulations, and experimental evidence to demonstrate
that in situ CDI could be the most dose-efficient imaging
method, achieving higher resolution than microscopy with
perfect lenses at low doses.

II. THEORY

In situ CDI takes advantage of the coherent interference
from static and dynamic structures [Fig. 1(a)]. Let us define
�S and �D as the Fourier transform of the static and dy-
namic structures, respectively, where, for simplicity, we omit
the reciprocal space coordinates and time variable in the dy-
namic structure. We first consider conventional CDI without
the static structure. The diffraction intensity of the dynamic
structure is

I0

(
reλ

lDσD

)2

|�D|2 = ID, (1)

where I0 is the fluence (photons per unit area) of the incident
wave on the dynamic structure, re is the classical electron
radius, λ is the wavelength, ID is the diffraction intensity
(photons per pixel), and lD and σD are the size and linear
oversampling ratio of the dynamic structure [34], respectively.
We rewrite Eq. (1) as

D̃ ≡ reλ
√

I0

lDσD
�D, |D̃|2 = ID. (2)

Equation (2) can be represented as a circle in the complex
plane [Fig. 2(a)]. Although Eq. (2) is a nonconvex problem,
a unique solution [the red dot in Fig. 2(a)] can be solved by
iterative phase retrieval algorithms [35], provided the fluence
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FIG. 1. Schematic of in situ coherent diffractive imaging (CDI)
and phase-contrast microscopy with perfect lenses. (a) In situ CDI
consists of static (S) and dynamic (D) structures that are coherently
illuminated by strong and weak beams, respectively. Time-sequence
diffraction patterns are collected from the coherent interference of
the two beams by a detector, from which time-sequence phase images
are reliably reconstructed by phase retrieval algorithms. (b) A perfect
phase-contrast microscope with the point spread function (PSF) as a
delta function, consisting of a source, annular aperture, first perfect
lens (PL1), sample, second perfect lens (PL2), phase plate, and
detector.

is sufficiently high and the oversampling condition is satisfied
[34]. However, when the fluence is very low, the circle be-
comes an annulus with the width of the ring set by Poisson
noise in the diffraction intensity [Fig. 2(b)]. The presence of
very high noise will make iterative algorithms trapped in local
minima instead of converging to the global minimum [35].

An approach to overcome this major limitation is in situ
CDI (Fig. 1(a) and Fig. S1 in the Supplemental Material [36]),
which is mathematically represented by

∣∣∣∣ reλ
√

I1

lSσS
�S + reλ

√
I0

lDσD
�D

∣∣∣∣
2

= I, (3)

where I1 is the fluence of the incident wave on the static
structure with I1 � I0, I is the diffraction intensity, and lS
and σS are the size and linear oversampling ratio of the static
structure [34], respectively. We rewrite Eq. (3) as

S̃ ≡ reλ
√

I1

lSσS
�S, |S̃ + D̃|2 = I. (4)

As |S̃| � |D̃|, Eq. (4) can be represented by the intersection
of a large circle and a small annulus in the complex plane
[Fig. 2(c)]. Due to very low relative noise in I , iterative phase
retrieval algorithms can be used to find the global solution of
S̃ + D̃ [i.e., the red dot in Fig. 2(c)] instead of trapping in local
minima. To mathematically solve Eq. (4), we define

S̃ = FS = FrS + iFiS, D̃ = FD = FrD + iFiD, (5)

where F is the Fourier transform, S and D are the static and
dynamic structures, and FrS and FiS are the real and imaginary
parts of FS, respectively. Substituting Eq. (5) into Eq. (4) and

FIG. 2. Coherent diffractive imaging (CDI)-based computational
microscopy in the complex plane. (a) In conventional CDI, the
Fourier component of each pixel in reciprocal space represents a
vector, D̃, confined in a circle. With low noise and the oversampling
condition satisfied [34], the correct phase (red dot) can be recovered
by phase retrieval algorithms. (b) With very high noise, the circle be-
comes an annulus, and phase retrieval algorithms are usually trapped
in local minima instead of converging to the global minimum (red
dot) [35]. (c) In in situ CDI, the coherent interference between a
strong beam illuminating a static structure and a weak beam illu-
minating a dynamic structure produces a large circle in the complex
plane, intersecting with a small annulus from the dynamic structure.
Phase retrieval algorithms can quickly find the global minimum (red
dot) instead of trapping in local minima as it becomes a convex
problem (i.e., the intersected arc is almost a line segment).

ignoring the very small |D̃|2 term, we have

FrS FrD + FiS FiD ≈ 1
2 (I − |S̃|2), (6)

where S can be accurately retrieved from the diffraction pat-
tern due to the illumination of a high fluence on the static
structure. Let us assume the array size of D and I to be n×n
and N×N , respectively. Since D is complex and I is real,
with N2 > 2n2, there are more independent equations than
unknown variables [36]. To solve Eq. (6), we convert it to the
matrix form

AD = b

A = diag(FrS) Fr + diag(FiS) Fi b = 1
2 (I − |S̃|2), (7)

where A is a diagonal matrix with dimension N2×N2, D has
dimension N2×1 after padding with zeros, and b has dimen-
sion N2×1. Equation (7) can be solved by D = (AT A)−1AT b,
where A has independent columns, and superscripts T and −1
represent the transpose and inverse of a matrix. Although the

054407-2



COMPUTATIONAL MICROSCOPY BEYOND PERFECT … PHYSICAL REVIEW E 110, 054407 (2024)

matrix (AT A)−1AT may have a large condition number, the
solution can be stabilized by adding a damping term or l2
regularizer. Alternatively, Eq. (7) can be solved by the least-
square method, min 1

2‖AD−b‖2, where D is constrained by a
support. This becomes a convex problem and can be solved
by optimization methods. Figure S2 in the Supplemental
Material [36] shows specific examples of solving D using
the above methods, with results comparable to those obtained
through a traditional iterative phase retrieval algorithm.

III. SIMULATION RESULTS

To compare in situ CDI with a perfect imaging system,
we simulate Zernike phase-contrast microscopy with perfect
lenses (Fig. 1(b) and Supplemental Material [36]). In our
numerical simulations, we first simulate a dynamic biological
vesicle of protein complexes in water, consisting of 20 frames
with a thickness of 100 nm and a pixel size of 11.4 nm
(Video S1 and Table S1 in the Supplemental Material [36]).
Figure S3(a)–S3(d) and Video S2(a) in the Supplemental Ma-
terial [36] show representative noisy phase-contrast images
of the biological vesicle using perfect lenses with fluences
of 3.5×105, 3.5×106, 3.5×107, and 3.5×108 photons/μm2,
respectively. To examine the effect of pixel size on resolution,
we create biological vesicles with pixel sizes of 1, 5, and
10 nm and calculate their phase-contrast images with perfect
lenses (Fig. S4 in the Supplemental Material [36]), indicating
that, at these low doses, the resolution is limited by the dose
instead of the pixel size.

We then use the time-varying biological vesicle as the
dynamic structure and a 20-nm-thick Au pattern as the static
structure (Fig. S1 in the Supplemental Material [36]). With an
x-ray energy of 530 eV, we calculate time-sequence diffrac-
tion patterns from the complex exit waves of both the dynamic
and static structures using Eq. (4), whereas the fluence on
the static structure is 1.4×1011 photons/μm2, and the flu-
ence on the dynamic structure varies from 3.5×105, 3.5×106,
3.5×107, to 3.5×108 photons/μm2. Poisson noise is added to
the diffraction intensity calculated from both the static and
dynamic structures. To reconstruct both the static and dy-
namic structure, we apply iterative phase retrieval algorithms
to Eq. (4), which is more accurate than Eq. (8). We first
reconstruct the static structure of the 20-nm-thick Au pattern
from the diffraction patterns by combining the hybrid input-
output algorithm [37] with shrinkwrap [38]. We then apply the
static structure as a time-invariant constraint to retrieve the
amplitudes and phases of the dynamic biological vesicle at
different fluences using the generalized proximal smoothing
algorithm [39]. We further improve the static structure during
the phase retrieval of the time-sequence diffraction patterns
[33], in which the illumination function of the incident wave
can be incorporated if desired. Figure S4(e)–S4(h) and Video
S2(b) in the Supplemental Material [36] show the represen-
tative phase images of in situ CDI with fluences of 3.5×105,
3.5×106, 3.5×107, and 3.5×108 photons/μm2, respectively.
Using the Fourier ring correlation (FRC), we quantitatively
compare the phase images between in situ CDI and perfect
lenses (Fig. S4(i) and Table S2 in the Supplemental Material
[36]), indicating that in situ CDI produces slightly higher-
resolution phase images than perfect lenses.

To study the effects of the sample thickness on perfect
lenses and in situ CDI, we increase the thickness of the dy-
namic biological vesicle to 300 nm. Figures 3(a)–3(d) and
Video S2(c) in the Supplemental Material [36] show the
noisy phase-contrast images of perfect lenses with fluences
of 3.5×105, 3.5×106, 3.5×107, and 3.5×108 photons/μm2,
respectively. In comparison, we use the same phase-retrieval
procedure of in situ CDI to reconstruct the amplitudes
and phases of the dynamic biological vesicle, whereas the
fluence on the dynamic structure varies from 3.5×105,
3.5×106, 3.5×107, to 3.5×108 photons/μm2 and the fluence
on the static structure is fixed at 1.4×1011 photons/μm2.
Figures 3(e)–3(h) and Video S2(d) in the Supplemental Ma-
terial [36] show the representative phase images of the
biological vesicle. FRC comparisons indicate that in situ CDI
produces higher-resolution phase images than perfect lenses
(Fig. 3(i) and Table S2 in the Supplemental Material [36]).
This improvement is due to the fundamental differences in the
imaging mechanism between the two methods. In situ CDI
takes advantage of the coherent interference from all the pixels
in the static and dynamic structures, from which a global
solution of the complex wave is reconstructed. For a given
fluence, increasing the sample thickness improves the signal-
to-noise ratio of the reconstructed images. This is in contrast
to phase-contrast microscopy with perfect lenses, which forms
images locally, that is, every pixel is independent of other
pixels.

As most cellular structures are thicker than 500 nm, we in-
crease the thickness of the dynamic biological vesicle to 1 μm.
With such a thick sample, the weak phase approximation in
Zernike phase-contrast microscopy no longer holds, but CDI
methods do not have such a limitation. To reconstruct the thick
biological sample by in situ CDI with the lowest possible dose,
we reduce the x-ray fluences to 1.75×103, 3.5×103, 6.2×103,
and 7.7×103 photons/μm2 (Fig. S5 in the Supplemental Ma-
terial [36]). In particular, a fluence of 1.75×103 photons/μm2

corresponds to 0.23 photon/pixel and a dose of 137.5 Gy.
No conventional CDI method can perform successful phase
retrieval under such an extremely low-dose condition. But in
situ CDI successfully reconstructed the phase images of the
biological vesicle in all these low-dose cases. This numerical
experiment further confirms our mathematical analysis, that
is, the arc of the larger circle intersected by the smaller circle
in Fig. 2(c) is almost a line segment. Therefore, finding the
correct phase [i.e., the red dot in Fig. 2(c)] becomes a linear
problem, which can be solved by a linear solver as demon-
strated in Fig. S2 in the Supplemental Material [36].

Next, we perform a numerical simulation on the potential
dose reduction by combining in situ CDI with ptychography,
termed low-dose CDI (LoCDI). Figure S6 in the Supplemental
Material [36] shows a schematic of LoCDI, where strong and
weak beams with E = 530 eV illuminate a static structure and
biological sample, respectively. The static structure consists
of a 20-nm-thick Au pattern and the biological sample is
HeLa cells with sharp features and a thickness of 300 nm.
A raster scan of 10 × 10 positions is performed on the static
structure and the biological sample by the strong and weak
beam, respectively. At each scan position, a coherent inter-
ference pattern is collected from the static structure and the
biological sample. All numerical simulation parameters are
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FIG. 3. Numerical experiments on phase-contrast microscopy with perfect lenses (PLs) and in situ coherent diffractive imaging (iCDI). (a)–
(d) Representative images of a 300-nm-thick dynamic biological vesicle obtained by phase-contrast microscopy with perfect lenses using x-ray
fluences of 3.5×105, 3.5×106, 3.5×107, and 3.5×108 photons/μm2, respectively, corresponding to doses of 2.75×104, 2.75×105, 2.75×106,
and 2.75×107 Gy, respectively. Scale bar: 500 nm. (e)–(h) The same images reconstructed by in situ CDI with x-ray fluences of 3.5×105,
3.5×106, 3.5×107, and 3.5×108 photons/μm2, respectively, and a fixed fluence of 1.4×1011 photons/μm2 on the static structure. (i) Average
Fourier ring correlation (FRC) curves of the 20-frame phase images obtained by perfect lenses and in situ CDI as a function of the x-ray
fluence. The black line with FRC = 1/e indicates the resolution.

shown in Table S3 in the Supplemental Material [36]. From
the 100 diffraction patterns, the static structure, biological
sample, and probe function are simultaneously reconstructed
by the extended ptychographic iterative engine (ePIE) [40]
[Figs. 4(e)–4(h)]. For comparison, the phase images of the
biological sample with perfect lenses under the same doses
are shown in Figs. 4(a)–4(d). Quantitative comparisons using
the FRC curves indicate that LoCDI produces superior phase
images to perfect lenses at these doses (Fig. 4(m) and Table S2
in the Supplemental Material [36]). We also use ptychog-
raphy to reconstruct the biological samples with the strong
beam removed [Figs. 4(i)–4(l)]. FRC comparisons indicate
that LoCDI can reduce the dose by two orders of magnitude
over ptychography (Fig. 4(n) and Table S2 in the Supplemen-
tal Material [36]).

IV. EXPERIMENTAL RESULTS

To further validate our mathematical analysis and numeri-
cal simulation, we conduct a LoCDI experiment where a laser
beam is split into two beams and a lens is used to separate the
two beam paths near the focal plane [Fig. 5(a)]. One beam is
attenuated by a filter, and the other is unattenuated. The two
beams then illuminate two pinholes, each with a diameter of
100 μm, creating strong and weak probes. The separation be-
tween the two pinholes is set to 1 mm to avoid any interference
between the two probes on the sample. The sample, a USAF
resolution test pattern [Fig. 5(b)], is positioned immediately
after the pinholes and raster scanned across the two probes. At
each scan position, a diffraction pattern from the illumination
of two probes is measured by a charge-coupled device, which
has 1024×1024 pixels with a pixel size of 13 μm and is
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FIG. 4. Numerical simulation of the dose reduction with low-dose coherent diffractive imaging (LoCDI). (a)–(d) Phase-contrast images
with perfect lenses using x-ray fluences of 3.5×105, 3.5×106, 3.5×107, and 3.5×108 photons/μm2, respectively. Scale bar: 500 nm. (e)–(h)
Phase images of LoCDI with x-ray fluences of 3.5×105, 3.5×106, 3.5×107, and 3.5×108 photons/μm2 on the biological sample, respectively,
and a fixed fluence of 1.4×1011 photons/μm2 on the static structure. (i)–(l) Phase images of ptychography with the same x-ray fluences as those
of LoCDI, but without the strong beam. (m) Fourier ring correlation (FRC) comparisons indicate that LoCDI is superior to phase microscopy
with perfect lenses. (n) FRC comparisons with the ground truth of the biological sample indicate that LoCDI can reduce the dose by two orders
of magnitude over ptychography with a fluence of 3.5×105 photons/μm2.

placed 76.7 mm after the sample. For each data set, a total
of 34×34 scan positions are conducted with an overlap ratio
of 66%. By using different filters, we collect four datasets
each with total fluences of 2.2×107, 1.7×108, 3.7×108, and
3.8×109 photons/mm2, while the fluence on the strong probe
was kept at 2.2×1010 photons/mm2. Figures 5(c)–5(f) shows
the reconstructed images at four different fluences by ePIE. In
comparison, we acquire four ptychographic datasets by block-
ing the unattenuated beam while keeping all other parameters

the same. Figures 5(g)–5(j) shows the reconstructions by ePIE
with the same fluence on the sample. Quantitative comparison
using the FSC curves indicates that LoCDI can reduce the
dose by two orders of magnitude over ptychography (Fig. 5(k)
and Table S2 in the Supplemental Material [36]).

By leveraging the coherent interference between strong and
weak beams, which illuminate static and dynamic structures,
respectively, in situ CDI emerges as a highly dose-efficient
imaging method. Our numerical simulations indicate that
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FIG. 5. Experimental demonstration of significant dose reduction with low-dose coherent diffractive imaging (LoCDI). (a) Schematic of
the experimental setup using a laser with a wavelength of 532 nm (CCD: charge-coupled device). (b) The structure of a USAF resolution
test pattern, obtained by a high-dose ptychography experiment. Scale bar: 200 μm. (c)–(f) Reconstructed images with fluences of 2.2×107,
1.7×108, 3.7×108, and 3.8×109 photons/mm2, respectively, illuminating the sample (light blue), while the fluence of the unattenuated probe
(brown) was kept at 2.2×1010 photons/mm2. (g)–(j) Ptychographic reconstructions of the same sample with fluences of 2.2×107, 1.7×108,
3.7×108, and 3.8×109 photons/mm2, respectively, while the unattenuated beam (brown) was blocked. (k) Fourier ring correlation (FRC) curves
of LoCDI and ptychographic reconstructions as a function of the fluences, which were calculated with the structure in (b).

in situ CDI not only achieves higher resolution than perfect
lenses under low-dose conditions but also reduces the re-
quired dose by up to two orders of magnitude compared to
ptychography. Since perfect lenses do not exist in nature, a
direct experimental comparison with in situ CDI is unfeasible.
Instead, we use ptychography as a reference technique to eval-

uate in situ CDI relative to the ideal performance of perfect
lenses. Our experimental results confirm that in situ CDI can
reduce the required dose by two orders of magnitude com-
pared to ptychography, validating our numerical simulations.
Moreover, by using the static structure as a time-invariant
constraint to reconstruct the dynamic, time-variant structure,
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in situ CDI can achieve high temporal resolution, limited only
by the fluence and detector readout speed. Combined with co-
herent x-ray sources and bright electron sources, we anticipate
that in situ CDI will become a powerful, dose-efficient imag-
ing method for probing the structure and dynamics of a wide
range of radiation-sensitive materials and biological samples.
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