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Maintaining an in-focus image over long time scales is an
essential and nontrivial task for a variety of microscopy
applications. Here, we describe a fast, robust autofocusing
method compatible with a wide range of existing microscopes.
It requires only the addition of one or a few off-axis illumi-
nation sources (e.g., LEDs), and can predict the focus correc-
tion from a single image with this illumination. We designed a
neural network architecture, the fully connected Fourier neu-
ral network (FCFNN), that exploits an understanding of the
physics of the illumination to make accurate predictions with
2–3 orders of magnitude fewer learned parameters and less
memory usage than existing state-of-the-art architectures,
allowing it to be trained without any specialized hardware.
We provide an open-source implementation of our method,
to enable fast, inexpensive autofocus compatible with a variety
of microscopes. © 2019Optical Society of America under the terms

of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.6.000794

Many biological experiments involve imaging samples in a micro-
scope over long time periods or large spatial scales, making it
difficult to keep the sample in focus. When observing a sample
over time periods of hours or days, for example, thermal fluctua-
tions can induce focus drift [1]. Or, when scanning and stitching
together many fields-of-view (FoV) to form a high-content, high-
resolution image, a sample that is not sufficiently flat necessitates
refocusing at each position [2]. Since it is often experimentally
impractical or cumbersome to manually maintain focus, an
automatic focusing mechanism is essential.

A variety of solutions have been developed for autofocus.
Broadly, these methods can be divided into two classes: hard-
ware-based schemes that attempt to directly measure the distance
from the objective lens to the sample [3–7], and software-based
methods that take one or more out-of-focus images and use them
to determine the optimal focal position [8–11]. The former

usually require hardware modifications to the microscope (e.g.,
an infrared laser interferometry setup, additional cameras, or
optical elements), which can be expensive and place constraints
on other aspects of the imaging system. Software-based methods,
on the other hand, can be slow or inaccurate. A software-based
method, for example, might require a full focal stack, then use
some measure of image sharpness to compute the ideal focal plane
[8]. More advanced methods attempt to reduce the number of
images needed to compute the correct focus [9], or use just a sin-
gle out-of-focus image [10,11]. However, existing single-shot
autofocus methods either rely on nontrivial hardware modifica-
tions such additional lenses and sensors [11] or are limited in their
application to specialized regimes (i.e., can only correct defocus
in one direction within a certain range) [10].

Here, we demonstrate a new computational imaging-based,
single-shot autofocus method that does not suffer from the lim-
itations of previous methods. The only hardware modification it
requires is the addition of one or more off-axis LEDs as an illu-
mination source, from which we correct defocus based on a single
out-of-focus image. Alternately, it can be used with no hardware
modification on existing coded-illumination setups, which have
been demonstrated for super-resolution [12–14], quantitative
phase [12,13,15], and multicontrast microscopy [16,17].

The central idea of our method is that a neural network can be
trained to predict how far out of focus a microscope is, based on a
single image taken at an arbitrary defocus under spatially coherent
illumination. A related idea has recently been used to achieve
fast, post-experimental digital refocusing in digital holography
[18,19]. Our work addresses autofocusing in more general micro-
scope systems, with both incoherent and coherent illumination.
Intuitively, we believe this works because coherent illumination
yields images with sharp features even when the sample is out
of focus. Thus, there is sufficient information in the out-of-focus
image that an appropriate neural network can learn a function
that maps these features to the correct defocus distance, regardless
of the structural details of the sample. To test this idea we
collected data using a ZEISS Axio Observer microscope
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(20×, 0.5 NA) with the illumination source replaced by a pro-
grammable quasi-dome LED array [20]. The LED array provides
a flexible means of source patterning, but is not necessary to
implement this technique (see Note S1).

Though our experimental focus prediction requires only one
image, we do need to collect focal stacks for training and valida-
tion. We use Micro-Magellan [21] for software control of the mi-
croscope, collecting focal stacks over 60 μm with 1 μm spacing,
distributed symmetrically around the true focal plane. For each
part of the sample, we collect focal stacks with two different types
of illumination: spatially coherent (i.e., a single LED) and (nearly)
spatially incoherent (i.e., many LEDs at once).

The incoherent focal stack is used for computing the ground
truth focal position, since the reduced coherence results in sharp
images only when the sample is in focus. Sharpness can be quan-
tified for each image in the stack by summing the high-frequency
content of its radially averaged log power spectrum. The maxi-
mum of the resultant curve was chosen as the ground truth focal
position for the stack [Fig. 1(a), left]. Because this ground truth
value is calculated by a deterministic algorithm, this paradigm
scales well to large amounts of training data. For transparent sam-
ples, the incoherent image stack was captured with asymmetric
illumination to create phase contrast [22]. In our case, this
was achieved by using the LED array to project a half annulus
source pattern [15]; however, any asymmetric source pattern
should suffice.

The coherent focal stack is used one image at a time as the
input to the network, which is trained to predict the ground truth
focal position (Fig. 1). Since the network only takes a single image
as its input, each image in the stack represents a separate training
example. In our case, the coherent focal stack was captured by
illuminating the sample with a single off-axis LED. In the case
of arbitrary illumination control (e.g., with an LED array) differ-
ent illumination angles or patterns may perform differently for a
given amount of training data. Supplementary Fig. S1 compares
performance for varying single-LED illumination angles as well as
multi-LED patterns. For simplicity, here we consider only the
case of a single LED positioned at an angle of 24 deg relative
to the optical axis.

Our neural network architecture for predicting defocus
(described in detail in Note S3), which we call the fully con-
nected Fourier neural network (FCFNN), differs substantially
from the convolutional neural networks (CNNs) typically used
in image processing tasks [18,19,23] (Note S4). We reasoned that
singly scattered light would contain the most useful information
for defocus prediction, and thus we designed the FCFNN to ex-
clude parts of the captured image’s Fourier transform that are out-
side the single-scattering region for off-axis illumination (Fig. S2).
This results in 2–3 orders of magnitude fewer free parameters
and memory usage during training than state-of-the-art CNNs
(Table S1). Hence, our network can be trained on a desktop
CPU in a few hours with no specialized computing hardware,
which we believe makes our method more reproducible, without
sacrificing quality.

Briefly, the FCFNN [Fig. 1(a), right] begins with a single
coherent image. This image is Fourier transformed, and the mag-
nitude of the complex-valued pixels in the central part of the
Fourier transform are reshaped into a single vector, which is used
as the input to a trainable fully connected neural network. After
the network has been trained, it can be used to correct defocus
during an experiment by capturing a single image at an arbitrary
defocus under the same coherent illumination. The network pre-
dicts defocus distance, then the microscope moves to the correct
focal position [Fig. 1(b)].

Training with 440 focal stacks took 1.5 h on a desktop CPU or
30 min on a GeForce GTX 1080 Ti GPU, in addition to 2 min
per focal stack for pre-computing ground truth focal planes and
Fourier transforms. A single prediction from a 2048 × 2048 image
takes ∼50 ms on a desktop CPU. We were able to train FCFNNs
capable of predicting defocus with root-mean-squared error
(RMSE) smaller than the axial thickness of the sample (cells).
Figure 2 shows how this performance varies based on the number
of focal stacks used to train the network, where each focal stack
contained 60 planes spaced 1 μm apart, distributed symmetrically
around the true focal plane. Note that this curve could be quite
different depending on the sample type and quality of
training data.

To test the performance of our method across different sam-
ples, we collected data from two different sample types [Fig. 3(a)]:
white blood cells attached to coverglass, and an unstained 5 μm
thick mounted histology tissue section. When the network is
trained on images of cells, then tested on different images of cells,
it performs very well [Fig. 3(b)]. However, when the network is
trained on images of cells, then tested on a different sample type
(tissue), it performs poorly [Fig. 3(c)]. Hence, the method does
not inherently generalize to new sample types. To solve this
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Fig. 1. Training and defocus prediction. (a) Training data consists of
two focal stacks for each part of the sample, one with incoherent (phase
contrast) illumination, and one with off-axis coherent illumination. Left:
The high spatial frequency part of each image’s power spectrum from the
incoherent stack is used to compute a ground truth focal position. Right:
For each coherent image in the stack, the central pixels from the mag-
nitude of its Fourier transform are used as input to a neural network
trained to predict defocus. The full set of training examples is generated
by repeating this process for each of the coherent images in the stack.
(b) After training, experiments need only collect a single coherent image,
which is fed through the same pipeline to predict defocus. The micro-
scope’s focus can then be adjusted to correct defocus.
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problem, we diversify the training data. We add a smaller amount
of additional training data from the new sample type (in this case,
130 focal stacks of tissue data, in addition to the 440 stacks of cell
data it was originally trained on). With this training, the network
performs well on both tissue and cell samples. Hence, our method
can generalize to other sample types, without sacrificing perfor-
mance on the original sample type [Fig. 3(d)]. The best perform-
ing neural networks in other domains are typically trained on
large and varied datasets [24]. Thus, if the FCFNN is trained
on defocus data from a variety of sample types, it should general-
ize to new types more easily.

Empirically, we discovered that discarding the phase of the
Fourier transform and using only the magnitude as the input
to the network dramatically boosted performance. To illustrate,
Fig. 4(a) compares networks trained using the Fourier transform

magnitude as the input versus those trained on the argument of
the Fourier transform phase. Not only were networks using mag-
nitude able to better fit the training data, they also generalized
better to a validation set. This suggests useful information for pre-
dicting defocus in a coherent intensity image is relatively more
concentrated in the magnitude compared to the phase of its
Fourier transform. We speculate that this happens because the
phase of the intensity image generally relates more to the spatial
position of features (which is unimportant for focus prediction),
whereas the magnitude contains more information about how
they are transformed by the imaging system.

To understand what features of the images the network learns
to use to make predictions, we compute a saliency map for a net-
work trained using the entire uncropped Fourier transform,
shown in Fig. 4(b). The saliency map attempts to identify which
parts of the input the network is using to make decisions, by visu-
alizing the gradient of a single unit within the neural network with
respect to the input [25]. The idea is that the output unit is more
sensitive to features with a large gradient and thus these have a
greater influence on prediction. In our case, the gradient of the
output (i.e., the defocus prediction) was computed with respect to
the Fourier transform magnitude. Averaging the magnitude of the
gradient image over many examples clearly shows that the net-
work recognizes specific parts of the overlapping two-circle struc-
ture [Fig. 4(b)] that is typical for an image formed by coherent
off-axis illumination (Fig. S2) [26]. In particular, the regions at
the edges of the circles have an especially large gradient. These
areas correspond to the highest angles of light collected by the
objective lens. Intuitively, this makes sense because changing
the focus will lead to proportionally greater changes in the light
collected at the highest angles [Fig. 4(b)].
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To summarize, we have demonstrated a method to train and
use neural networks for single-shot autofocus, with an analysis of
design principles and practical trade-offs. The method works with
different sample types and is simple to implement on a conven-
tional transmitted light microscope, requiring only the addition of
off-axis illumination and no specialized hardware for training the
neural network. We introduced the FCFNN, a neural network
architecture that incorporates knowledge of the physics of the
imaging system into its design, thereby making it orders of mag-
nitude more efficient in terms of the parameter number and
memory requirements during training than general state-
of-the-art approaches for image processing.

The Code 1, Ref. [27] needed to implement this technique
and reproduce all figures in this Letter can be found in the
Jupyter notebook. Due to its large size, the corresponding data
is available upon request.
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