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Deep neural networks have emerged as effective tools for com-
putational imaging, including quantitative phase microscopy
of transparent samples. To reconstruct phase from intensity,
current approaches rely on supervised learning with training
examples; consequently, their performance is sensitive to a
match of training and imaging settings. Here we propose a
new approach to phase microscopy by using an untrained
deep neural network for measurement formation, encapsu-
lating the image prior and the system physics. Our approach
does not require any training data and simultaneously recon-
structs the phase and pupil-plane aberrations by fitting the
weights of the network to the captured images. To demon-
strate experimentally, we reconstruct quantitative phase from
through-focus intensity images without knowledge of the
aberrations. © 2020 Optical Society of America under the terms of

the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.389314

Quantitative phase microscopy (QPM) enables label-free imaging
of transparent samples such as unstained cells and tissues [1,2] and
non-absorbing micro-elements [3]. QPM with partially coher-
ent illumination provides improved spatial resolution and light
throughput with reduced speckle. Examples include through-focus
[4,5], interferometric [6,7], and angle-scanning [8,9] microscopes.
All of these methods capture nonlinear (intensity) measurements
and recover quantitative phase computationally. Generally, the
performance and image quality is intrinsically governed by the
phase reconstruction step [10].

Traditionally, the phase reconstruction inverse problem is
solved by minimizing a least-squares loss that is based on the phys-
ics of the problem. This physics-based optimization approach is
fundamental to phase imaging [11] and has the immediate advan-
tage that prior assumptions on the images can be directly integrated
through regularization. For example, one can constrain the phase
image to admit a sparse representation in the wavelet domain
[12]. Such regularizers work well and improve the reconstruction
quality [7,13]. Another major advantage of the physics-based
formulation is the possibility to incorporate algorithmic self-
calibration [14,15]. It involves—in alternation with the phase
retrieval step—minimizing the least-squares loss over unknown

or partially known system parameters such as pupil aberrations
[10]. The concept hence accounts for the model-mismatch in
the imaging pipeline. This provides us with great flexibility and
allows phase reconstruction from measurements that are not fully
characterized. In designing self-calibrating algorithms, the need
for regularization (i.e., prior models for phase) is emphasized [16],
since one simultaneously decouples the individual contributions
of phase and aberrations to the measured images. However, typical
regularization techniques are hand-crafted and require manual
tuning of parameters.

More recently, deep neural networks (DNNs) trained in an end-
to-end fashion on large datasets have been used for phase retrieval,
directly mapping measured intensities back to phase. Trained
DNNs give state-of-the-art performance in holographic [17],
lensless [18], ptychographic [19], and through-scattering-media
[20,21] phase retrieval configurations, among others [22]. The
results validate the efficiency of properly trained DNNs to solve
nonlinear inverse problems and shift the computational paradigm
in QPM towards data-driven frameworks. However, for deep
networks to work well, the proximity of training and experiment
settings is critical, as the performance is susceptible to variations
in sample features, instrumentation, and acquisition parameters
[22]. Although improved DNN architectures have been proposed
[23–26], training-based approaches are sensitive to misfits, in that
they fundamentally rely on the phase distribution being close to
one of the training images.

Here we propose a new QPM algorithm that is based on a
deep network, but requires no ground-truth training data. Our
approach is inspired by the idea of employing untrained generative
DNNs as prior models for images, a concept pioneered by the
so-called deep image prior [27]. Specifically, Ulyanvov et al. [27]
fitted a noisy image via optimizing over the weights of a randomly
initialized, over-parameterized autoencoder (i.e., an autoencoder
with more weights than the number of image pixels), and observed
that early stopping of the regularization yielded good denoising
performance, an effect theoretically explained in [28]. For denois-
ing, regularization through early stopping is critical, since the
network can in principle fit the noisy data perfectly. Subsequently,
an under-parameterized image-generating network was proposed,
named the deep decoder, that does not need early stopping or
any other further regularization [29]. The framework acts as a

2334-2536/20/060559-04 Journal © 2020 Optical Society of America

https://orcid.org/0000-0002-1633-3278
https://orcid.org/0000-0001-6311-9875
https://orcid.org/0000-0003-1243-2356
mailto:emrah.bostan@gmail.com
https://doi.org/10.1364/OA_License_v1
https://doi.org/10.1364/OPTICA.389314
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.389314&amp;domain=pdf&amp;date_stamp=2020-05-20


Letter Vol. 7, No. 6 / June 2020 / Optica 560

random 
tensor

deep decoder 
network

sample’s phase

Z
er

ni
ke

 p
ol

yn
om

ia
ls

aberrations

generated
 measurements

physical model of 
image formation

Deep Phase Decoder (DPD) Network

optimization of loss function 

Measurements

raw intensity-only
images 

Fig. 1. Our deep phase decoder (DPD) algorithm aims to minimize the Euclidean distance between the measured intensity images and the hypothetical
ones generated by our untrained deep network. The optimization problem, which is nonlinear and nonconvex, is stated in terms of the network’s weights
and is solved iteratively using a gradient-based procedure. Once the weights are optimized, the sought phase image is retrieved as the output of the deep
decoder part of the network.

concise image model that provides a lower-dimensional descrip-
tion of images, akin to the sparse wavelet representations, and
thus regularizes through its architecture. Unfortunately, a naive
application of the method would not account for practical issues
such as drift and sample-induced aberrations [16], which require
properly incorporating our knowledge about optical physics in the
self-calibration.

Our key contribution is a DNN-based self-calibrating recon-
struction algorithm for QPM that is training-free and recovers
quantitative phase from raw images recorded without the explicit
knowledge of aberrations. We specify the measurement formation
as an untrained DNN whose weights are fitted to the recorded
images (Fig. 1). Leveraging the well-characterized system physics
and nonlinear forward model, our network combines a fully con-
nected layer that synthesizes aberrations from Zernike polynomials
with the deep decoder that is used to generate phase. The pro-
posed algorithm hence describes both the image and aberrations
by a few weight coefficients, and as a consequence enables us to
jointly retrieve the phase and individual aberration profile of each
measurement without training data. We call our algorithm the
deep phase decoder (DPD) and demonstrate it on a commercial
widefield microscope.

We describe the image formation process for our optical setup
(Fig. 2) and then describe our reconstruction approach in more
detail. We consider an optically thin and transparent sample
placed at the focal plane of the microscope’s objective. The sam-
ple’s complex-valued image (i.e., its transmission function) is
characterized as

o(r)= exp
(
jφ(r)

)
, (1)

where φ represents the spatial distribution of phase over 2D coor-
dinates r. The LED illumination is placed sufficiently far away
enough that the illumination can be modeled as a monochromatic
plane wave at the sample plane. Thus, the irradiance of the beam
impinging on the sensor is given by

y (r)= |cpsf ∗ o |2(r), (2)

where ∗ denotes spatial convolution and cpsf is the coherent point-
spread function of the microscope. The sensor then measures the

sampled irradiance, y ∈Rp , where p is the total number of pixels
on it. In matrix form,

y= |F−1PcircFo|2, (3)

where F is the discrete Fourier transform matrix and Pcirc is the
ideal and space-invariant exit pupil function, which is a circle
with its radius determined by the numerical aperture (NA) of the
objective and wavelengthλ.

Phase is recovered based on multiple images with some type
of data diversity that translates phase information into intensity
(e.g., illumination coding [30] and pupil coding [4, 31]). Here
we adopt a pupil-coding scheme where the wavefront at the exit
pupil [11] is aberrated differently for each measurement. The pupil
aberration is modeled as a weighted sum of Zernike polynomials,
parameterized by a small number of coefficients:

P= Pcirc exp
(
jZc
)
, (4)

where the Zernike basis Z= [z1z2 . . . zM] is composed of
M orthogonal modes in vectorized form, and c contains the
corresponding coefficients of each mode.

The microscope is probed with a known (or pre-calibrated) set
of aberrations {P}Nn=1, where N is the total number of intensity
images. The inverse problem then aims to recover the sample’s
transmission function as

o? = arg min
o

N∑
n=1

‖
√

yn − |F
−1PnFo| ‖2

2 . (5)

This can be solved by gradient descent (or an accelerated
variation), which is closely related to the well-known Gerchberg–
Saxton method [10]. After solving for o?, the phase image is its
argument. The conventional phase recovery in Eq. (5) does not
necessarily impose any regularization on the recovered phase, and
the aberrations must be known a priori. To address these without
needing any training data, we introduce a deep network in the
derived formulation.

At the core of our approach, we use a DNN that generates N
intensity images. The network, denoted by G(W), reparameterizes
the measurement formation in Eq. (3) in terms of a weight tensor
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W rather than pixels in complex-image space as in Eq. (5). The net-
work is untrained, and the weights, which are randomly initialized,
are optimized by solving the following problem:

W?
= arg min

W
‖ Y− G(W) ‖2

2, (6)

where Y= [√y1 . . .
√yN] ∈Rp×N accommodates the measured

data. Once the optimal weights W? are obtained, phase is retrieved
as the output of an appropriate layer in the network. The remark-
able aspect—in terms of data requirement—is that the process is
driven solely by the acquired images, without any training data.
The main reason is that the generative network’s weights (and
hence its output image) are adjusted on-the-fly in Eq. (6) rather
than training it for a certain class of images.

We design the network G to encapsulate two sub-generators,
G p and Ga , that synthesize a phase image and the pupil aberration
of each individual measurement, respectively (see Fig. 1). For
the phase generating network G p , we use a deep decoder [29],
which transforms a randomly chosen and fixed tensor B0 ∈Rn0×k

consisting of k many n0-dimensional channels to an nd × 1
dimensional (gray-scale) image. In transforming the random ten-
sor to a phase image, G p applies i) a pixel-wise linear combination
of the channels, ii) upsampling, iii) rectified linear units (ReLUs),
and iv) channel normalization. Specifically, the update at the
(i + 1)-th layer is given by

Bi+1 = cn(ReLU(Ui Bi W
p
i )), i = 0, . . . , d − 1. (7)

Here Wp
i ∈Rk×k contains the coefficients for the linear combi-

nation of the channels, and the operator Ui ∈Rni+1×ni performs
bi-linear upsampling. This is followed by a channel normalization
operation, cn(·), which is equivalent to normalizing each chan-
nel individually to zero mean and unit variance, plus a bias term.
A phase image, which is the output of the d -layer network, is then
formed, with Wp

d ∈Rk , as

φ = 2π sigmoid(Bd Wp
d ). (8)

The aberration-generating network, Ga(Wa ), relies on the
parameterization in Eq. (4) represented as a fully connected layer
(i.e., linear combination of Zernike modes), and the matrix Wa

contains the Zernike coefficients for all measurements. In com-
bining the outputs of Gp and Ga, we reproduce the physical image
formation using Eqs. (1), (3), and (4) in the network’s architec-
ture. The framework is implemented in PyTorch, allowing us to
solve Eq. (6) using gradient-based algorithms thanks to auto-
differentiation with respect to W= {Wp ,Wa

}. Once the optimal
weights W? are obtained, the reconstructed phase is given by
G p(Wp?), where Wp

= {Wp
0 , . . . ,Wp

d }.
We now explain some implicit aspects of the our method. First,

we see from Eq. (6) that G(W?) replicates the recorded inten-
sities as closely as possible in the least-squares sense. Specifically,
both G p and Ga under-parameterize their corresponding out-
puts (fewer weights than the number of pixels in generated
images and aberrations), so DPD imposes regularization on
both phase and aberrations. Regularization is governed by the
architecture of G p , for phase has to lie in its range. Once G p is
constructed, the strength of regularization is not hand-tuned, as is
typically done (e.g., adjusting the sparsity level for wavelet-based
methods). As for Ga , it generates aberrations from randomly
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Fig. 2. We experimentally validate our method in a microscope by
capturing intensity images with varying defocus distances. The images are
fed into the DPD algorithm to computationally reconstruct the sample’s
phase and wavefront aberrations without knowing the pupil functions
(defocus distances) that were used during acquisition.

initialized Zernike coefficients in contrast to other self-calibrating
schemes using theoretical pupils as initialization [10,16]. Finally,
since the retrieved aberrations are spanned by the Zernike
polynomials, DPD is applicable when this physical model is
valid [16].

To experimentally validate our method, we use a commercial
brightfield microscope (Nikon TE300) with LED illumination
(λ= 0.514 µm) [9]. A phase target (Benchmark Technologies)
is imaged by a 40× 0.65 NA objective lens, and intensity images
are captured by a PCO.edge 5.5 sCMOS camera placed on the
front port of the microscope (which adds 2×magnification). Pupil
coding is achieved practically by defocus; we capture a through-
focus stack of eight images that are exponentially spaced (at 0, 1,
2, 4, 8, 16, 32, and 64 µm defocus) [33]. For comparison, we also
reconstruct reference phase images with the accelerated Wirtinger
flow algorithm [32] using Eq. (5) for eight and four (defocus of
4, 8, 16, and 32 µm) measurements. We then use the same four
measurements with our DPD method, using the RMSProp algo-
rithm with 5× 104 iterations (GPU time is∼ 25 minutes). Based
on the observations in [29], the network is constructed with the fol-
lowing parameters: k = 32, n0 = 16× 16, and nd = 512× 512.
B0 is randomly drawn from a uniform distribution in the range [0,
0.1], and bi-linear upsampling is fixed to a factor of two, making
G p a six-layer network. We use the first nine Zernike polyno-
mials after piston for Ga . The reconstructions from Wirtinger
flow (with known defocus distances) and our DPD method
(without knowing the defocus distances) both show good agree-
ment with the known phase profile of the target (Fig. 3). DPD
jointly recovers defocus-like pupil functions, as expected. This
validates our algorithm’s ability to blindly reconstruct a reliable
phase image, as well as the pupil aberrations, from the measured
intensities.

In summary, we derived a new phase imaging algorithm that
uses an untrained neural network, and demonstrated it on a phase-
from-defocus dataset. Our DPD method, unlike its deep learning
counterparts that are supervised, is training-free and does not
require closely matching training and experiment conditions.
Moreover, our method is self-calibrating, allowing us to directly
reconstruct high-quality phase without a priori knowledge of the
system’s aberrations.
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Fig. 3. Experimental validation of our DPD phase retrieval method from a stack of through-focus intensity images of a phase target with expected height
of 150 nm (0.95 radians phase shift). (Left) Reconstructions by the accelerated Wirtinger flow algorithm [32] are shown for comparison, with different
numbers of measurements in the focus stack and known defocus distances. (Right) Our proposed DPD reconstruction achieves a similar phase result with-
out any explicit knowledge of the aberrations.
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