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SUMMARY
3-methylcrotonyl-CoA carboxylase (MCC) is a biotin-dependent mitochondrial enzyme necessary for
leucine catabolism in most organisms. While the crystal structure of recombinant bacterial MCC has
been characterized, the structure and potential polymerization of native MCC remain elusive. Here, we
discovered that nativeMCC from Leishmania tarentolae (LtMCC) forms filaments, and determined the struc-
tures of different filament regions at 3.4, 3.9, and 7.3 Å resolution using cryoEM. a6b6 LtMCCs assemble in a
twisted-stacks architecture, manifesting as supramolecular rods up to 400 nm. Filamentous LtMCCs bind
biotin non-covalently and lack coenzyme A. Filaments elongate by stacking a6b6 LtMCCs onto the exterior
a-trimer of the terminal LtMCC. This stacking immobilizes the biotin carboxylase domains, sequestering the
enzyme in an inactive state. Our results support a new model for LtMCC catalysis, termed the dual-swing-
ing-domains model, and cast new light on the function of polymerization in the carboxylase superfamily and
beyond.
INTRODUCTION

3-methylcrotonyl-CoA carboxylase (MCC) is a biotin-dependent

enzyme necessary for the catabolism of leucine,1–3 an essential

branched-chain amino acid involved in regulating cellular meta-

bolism,4,5 protein synthesis,4,5 and anabolic signaling.6,7 MCC

belongs to a superfamily of biotin-dependent carboxylases

with different substrate preferences, such as acetyl-CoA carbox-

ylase (ACC), geranyl-CoA carboxylase (GCC), propionyl-CoA

carboxylase8 (PCC), and pyruvate carboxylase (PC). In eukary-

otes, MCC resides in the mitochondrial matrix.9 Documented

in many species,10–12 MCC shares high cross-species sequence

homology (Figure S1). In humans, upregulated MCC expression

often correlates with various cancers.4,13–16 On the other hand,

MCC deficiency, one of the most common metabolic disorders

in newborns,17 may cause vomiting, seizures, and other neuro-

logical abnormalities.18,19

As part of the mitochondrial leucine degradation pathway,

MCC catalyzes the conversion of 3-methylcrotonyl-CoA to

3-methylglutaconyl-CoA.11 Upon covalent biotinylation of the

apoenzyme, MCC accelerates two successive reactions: biotin
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carboxylation and carboxyl group transfer.20,21 First, biotin is

carboxylated at an a-subunit active site with bicarbonate as

the carbon dioxide donor upon concomitant ATP hydroly-

sis.9,20,21 Next, the carboxylated biotin is translocated to the cor-

responding b-subunit active site, where the carboxyl group is

transferred from biotin to 3-methylcrotonyl-CoA.9,20,21

The atomic structure of bacterial MCC has been solved by

X-ray crystallography using recombinant Pseudomonas aerugi-

nosa MCC (PaMCCrec) expressed in Escherichia coli with His-

tags to the b-subunits.22 PaMCCrec subunits oligomerize into a

dodecameric complex with a core of six b-subunits sandwiched

by two a-trimers in an a6b6 architecture.
22 Whether MCCs may

exist in other forms is unclear. Albeit, their supramolecular as-

sembly was conjectured based on rod-shaped aggregations of

Achromobacter IVS MCC observed by negative-stain electron

microscopy.23 Recent advances enabled by cryogenic electron

microscopy (cryoEM) have uncovered unexpected modes of

enzyme polymerization and elucidated the regulatory roles of

such architectural forms.24–29 For example, high-resolution cry-

oEM structures illuminated the regulatory functions of several

filamentous forms of eukaryotic ACC.30 In the absence of high-
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Table 1. CryoEM map statistics

a-Subunit-centered map b-Subunit-centered map Filament termini map

Data collection and processing

Magnification 81,000 81,000 81,000

Voltage (kV) 300 300 300

Electron exposure (e�/Å2) 40 40 40

Defocus range (mm) �1.5 to �2.5 �1.5 to �2.5 �1.5 to �2.5

Pixel size (Å) 1.1 1.1 1.1

Symmetry imposed D3 D3 C3

Initial particle images (no.) 51,322 51,322 8,992

Final particle images (no.) 7,582 13,250 3,380

Map resolution (Å) 3.9 3.4 7.3

Fourier shell correlation (FSC) threshold 0.143 0.143 0.143

Estimated resolution range (Å) 3–5 3–5 6–8

Map sharpening B factor (Å2) �112 �85 �153
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resolution structures of the native MCC enzyme, it remains un-

settled whether MCCs can similarly form supramolecular

assemblies.

Here, we used a bottom-up structural proteomics cryoEM

approach31,32 to identify and determine the 3.4 Å, 3.9 Å, and

7.3 Å resolution structures (Tables 1 and 2) of native Leishmania

tarentolaeMCC (LtMCC) enriched frommitochondrial fraction by

streptavidin affinity pull-down. We discovered that LtMCC fila-

ments consist of stacks of LtMCC a6b6 dodecamers. The biotin

carboxylase (BC) domains of adjacent a6b6 dodecamers bind
Table 2. LtMCC model statistics

Model refinement

Model composition PDB: 8F3D PDB: 8F41

Non-hydrogen atoms 57,846 57,846

Protein residues 7464 7464

Ligands BTI: 6 BTI: 6

Mean isotropic B factor (Å2)

Protein 70.80 70.80

Ligand 150.43 150.43

RMS deviations

Bond lengths (Å) 0.006 0.005

Bond angles (�) 1.094 1.089

Validation

MolProbity score 2.36 2.34

Clashscore 21.50 20.46

Rotamer outliers (%) 0.39 0.39

Ramachandran statistics

Outliers (%) 0.00 0.00

Allowed (%) 9.34 9.35

Favored (%) 90.66 90.65

Model-to-map fit, CC (mask)

a-Subunit-centered

map

N/A 0.55

b-Subunit-centered

map

0.66 N/A
with each other, inhibiting their mobility. In contrast, at the fila-

ment termini, the BC domain is flexible, while the linker between

the biotin carboxyl carrier protein (BCCP) and the BC-CT medi-

ating (BT) domain is rigid. These observations support a dual-

swinging-domains model for LtMCC catalysis and suggest a

regulatory role of LtMCC filamentation in the mitochondrial

matrix.

RESULTS

Discovery and identification of LtMCC filaments from
mitochondrial lysate
While examining complexes enriched by sedimentation of mito-

chondrial lysate from parasitic protist L. tarentolae in 10%–30%

glycerol gradient (Figure 1A) and affinity pull-down with strepta-

vidin-coated magnetic beads, we serendipitously discovered

filamentous structures (Figure 1B).We identified the constituents

of these filamentous structures by following the workflow

detailed in Figures 1B–1C, which is based on the cryoID bot-

tom-up structural proteomics approach.31 Using single-particle

reconstruction, we obtained two differently centered cryoEM

maps of the filament middle segments, one at 3.4 Å and another

at 3.9 Å resolution (Figure 1B). Additionally, we processed the

termini particles and found that the two termini have the same

structure, which was resolved at 7.3 Å resolution (Figure 1B).

To establish the protein identities of the cryoEMmaps, we first

obtained a partial model prediction from DeepTracer32 using the

3.9 Åmap. The sequence of the outputmodel fromDeepTracer32

was then input into cryoID (Figure 1C). Searching for proteins de-

tected by mass spectrometry (Table S1), cryoID identified

LtMCC a-subunits as a filament component. Upon visual inspec-

tion, it was clear that the filaments also contain LtMCC b-sub-

units. Indeed, LtMCC a- and b-subunits produced the most pep-

tide spectral counts of all proteins detected by mass

spectrometry (Table S1). Furthermore, we ruled out GCCs as

the filament components because GCCs are not found in eu-

karyotes.36 We built the atomic model for the filament de novo,

using an Alpha-Fold34,35 predicted model for the a-subunit and

the b-subunit as references. We found that both the 3.4 Å

and 3.9 Å maps contain the same subunits but center on the
Structure 31, 100–110, January 5, 2023 101



Figure 1. Discovery of filamentous 3-methylcrotonyl-CoA carboxylase from mitochondria of L. tarentolae

(A) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the glycerol gradient fractions obtained from mitochondrial lysate. The gel was

stained by Sypro Ruby.

(B) Workflow for cryoEM imaging and reconstruction. Filaments observed in cryoEM micrographs were visually identified, partitioned into segments of equal

length, and classified in 2D and 3D. Refinement of 3D reconstructions yielded an a-centered and b-centered cryoEM map. The filament ends were picked and

reconstructed similarly, converging into a single map for both ends of the filament (i.e., the termini map).

(C) Workflow for protein identification and atomic modeling. From an input cryoEM map, DeepTracer32 generated an initial model with predicted amino acid

sequence, which was input into cryoID31 together with mass spectrometry data. CryoID predicted that the filaments contained LtMCC. Finally, de novo atomic

modeling of LtMCC was performed in Coot33 using an Alpha-Fold predicted model as a reference.34,35
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b- and a-subunits, respectively. After translating onemap for half

of an a6b6 stack along the filament and a slight rotation around

the filament axis, the two maps match well with one another

(cross-correlation coefficient of 0.74). The slightly better resolu-

tion of the map centered on the b-subunits is probably because

the architecture of the b-subunits is more stable.

Structure of native eukaryotic LtMCC filaments
LtMCC filaments are predominantly straight (Figure 2A),

although some are curved (Figure 2B), with a maximum

observed curvature reaching 3.1 mm�1. The length distribution

resembles a Poisson distribution (Figure 2C), similar to that of

ACC filaments isolated from animal tissues and observed by
102 Structure 31, 100–110, January 5, 2023
negative-stain electron microscopy.37 Most filaments consist

of four to six a6b6 dodecamers, or stacks (Figure 2C), with a

mean length of 993 Å. With an architecture similar to that of

PaMCCrec, each a6b6 stack in the LtMCC filament is character-

ized by an a6b6 cylindrical dodecamer exhibiting D3 symmetry

(Figure 2D). Measuring to a height of 216 Å and width of 148 Å,

the dodecamer is composed of a core of six b-subunits

(b-core) sandwiched by two layers of trimeric a-subunits (Fig-

ure 2D and Video S1). Modeling the atomic structures of

LtMCC a6b6 stacks into our cryoEM reconstruction reveals that

the filament has a twisted-stacks architecture; that is, neigh-

boring a6b6 stacks are related by a rotation of 23� and a transla-

tion of 216 Å (Figure 2D). In the filament, the active sites are



Figure 2. Structure of the filamentous LtMCC

See also Figures S2, S3, and S4

(A–C) CryoEM images of a straight (A) and curved (B) LtMCC filament and distribution of filament lengths (C).

(D and E) CryoEMmap and atomic models of the LtMCC filament. The composite cryoEMmap of the filament (left column in D) is composed of three copies of the

a-centeredmap, three copies of the b-centeredmap, and one copy of the termini map,with overlapping subunits. The atomicmodels (middle and right columns in

D) of an a6b6 dodecamer and its trimeric stacks are shown in various views as ribbons, colored by domains according to the scheme in (E). The view directions are

indicated by arrows, planes, and the camera. The dashed lines in the right column demarcate the boundaries between neighboring subunits (b-core is two

layered).

(F and G) Atomic model of an a-subunit (F) and a b-subunit (G) of LtMCC shown as ribbons colored by domains with active sites labeled. Insets: example cryoEM

densities superimposed with the atomic model.
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exposed in both a- and b-subunits (indicated by stars in the mid-

dle panel of Figure 2D).

Each a-subunit contains the BC, BT, and BCCP domains and

two linkers: the BC-BT linker and the BT-BCCP linker, of which

the latter was unmodeled in PaMCCrec (Figure 2E). A prominent

feature of the BC domain is the presence of two large central

b-sheets surrounded by a-helices. The active site of each

a-subunit is located inside the central pocket of the BC domain
(Figure 2F) and is responsible for carboxylating BCCP-bound

biotin. In contrast to the BT domain of PaMCCrec, which con-

tains a central a-helix accompanied by a seven-stranded anti-

parallel b-barrel,22 the LtMCC BT domain features eight

b-strands (Figure S2). When the dodecameric PaMCCrec and

LtMCC are superimposed globally, the BC, BT, and BCCP do-

mains in LtMCC are rotated with respect to those in PaMCCrec

(Figures S3A and S3B). However, when individual domains are
Structure 31, 100–110, January 5, 2023 103



Figure 3. Presence of non-covalently bound biotin and lack of CoA in the LtMCC filament

See also Figure S5.

(A) Close-up view of the middle column of Figure 2D, showing the biotin-containing site surrounded by the CT-linker (purple), the BCCP (red), N-CT (turquoise),

and C-CT (green) domains. The conserved Lys651 (red) and the non-covalently bound biotin (black) are shown as sticks, superimposed with their cryoEM

densities (semi-transparent gray). The distance between the carboxyl group of biotin and the ε-amino group of Lys651 is about 10 Å. Notably, the CoA binding site

(pink circle region) lacks cryoEM density, indicating absence of CoA.

(B) Comparison of biotin and CoA orientations documented in various carboxylases.22,38–41 The red star indicates the location of the N10 atom of biotin.
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superimposed independently, they fit well with each other

(Figures S3C–S3E), suggesting that the above noted structural

differences between the LtMCC filament and PaMCCrec are

likely due to filamentation, although we cannot rule out genuine

species-specific differences.

Like in PaMCCrec, each LtMCC b-subunit possesses anN-car-

boxyltransferase (N-CT) domain and a C-carboxyltransferase

(C-CT) domain. We have designated two new domains in

LtMCC: the N-dock domain and CT-linker (Figure 2E), located

before and after the N-CT domain, respectively. The N-dock

domain was introduced to facilitate description of interactions

between a- and b-subunits in the filament (see below). Desig-

nating the helix-loop-helix-loop fragment between the N-CT

and C-CT domains as a separate domain (CT-linker) renders

the N-CT and C-CT domains to have near-identical backbone

folds (Figure S4), despite sharing only 19% sequence identity.

Each of the six b-core active sites is wedged at the N-CT

and C-CT interface between a top and a bottom b-subunit

(Figures 2G and 3A) and is responsible for carboxylating

3-methylcrotonyl-CoA. Similar to that in PaMCCrec, each

LtMCC b-core active site is roughly 80 Å away from its corre-

sponding a-subunit active site.

LtMCC filaments bind biotin but lack coenzyme A
PaMCCrec was crystalized as a holoenzyme (with bound CoA

and covalently linked biotin) and an apoenzyme (without CoA

and biotin). By contrast, a6b6 stacks in the LtMCC filament

contain non-covalently-bound biotin but lack CoA (Figures 3A

and S5). For LtMCC to perform its two-step catalytic process,

covalent biotinylation must occur first. Although biotin is
104 Structure 31, 100–110, January 5, 2023
observed at the expected b-core active sites, it is untethered

to Lys651 in the highly conserved Ala-Met-Lys-Met sequence

in the BCCP domain. Indeed, the carboxyl group of biotin is

about 10 Å apart from the ε-amino group of Lys651 (Figure 3A),

which is too far to form a prosthetic group.21 The existence of

non-biotinylated BCCP domains in LtMCC filaments suggests

that the filamentous LtMCC is inactive. Similarly, inactive forms

of PCC also bind biotin without forming a covalent adduct.42,43

The bicyclic ring system in biotin consists of an ureido ring

and a thiophane ring.44 Carboxylation requires the transfer of

the carboxyl group attached to the N10 atom of the biotin ure-

ido ring to acyl-CoA.45 Therefore, the orientation of the N10

atom of biotin is important for carboxylation. In LtMCCs, the

N10 atom in the ureido ring of biotin is proximal to the CoA

binding site, but not in PaMCCrec (Figure 3A). This is because

the biotin bicyclic ring in LtMCC is approximately 180� rotated
relative to that of PaMCCrec (Figure 3B). The spatial arrange-

ment of LtMCC biotin is consistent with PCC biotin38,39 and

PC biotin40 (Figure 3B). In contrast, the arrangement of

PaMCCrec biotin is consistent with ACC biotin22,41 (Figure 3B).

Therefore, biotin orientation is variable at the b-core active site

for different carboxylases and carboxylases in different cata-

lytic states.

a-Subunits associate more with b-subunits than with
intra-trimer a-subunits
Multiple interactions are observed between an a-subunit and the

b-core,with 1,515 Å2 of buried surface area, as calculated byChi-

meraX,46 and a binding affinity of�11.7 kcal mol�1, as calculated

by PRODIGY.47,48 Interactions between each a-subunit and the



Figure 4. Subunit interactions in the filamentous LtMCC

See also Figure S6.

(A–D) Interacting regions are boxed and examined in close-up views with their interfacial residues labeled. Interactions between a- and b-subunits (A and B) are

more extensive than interactions among a-subunits (C and D).
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b-core aremainlymediated by a hook between the central a-helix

and b1 strand of one BT domain that curls into a groove of a

b-subunit (yellow segment from Asp494–Thr506 in Figure 4A).

This groove is formed by the N-CT, C-CT, and N-dock domains

(Figure S6). Due to its shorter sequence, the LtMCC hook con-

tains only one hairpin in contrast to two hairpins in the

PaMCCrec hook (Figure S2). In both structures, the hook is crucial

for interactions with the b-subunit to reinforce inter-subunit asso-

ciations.22 The additional structures resolved in our cryoEMmap

also unveil previously unrecognized associations among do-

mains of three neighboring subunits: the BT-BCCP linker of an

a-subunit, N-dock domain of a b-subunit, and N-CT domain of

another b-subunit (Figure 4B). Here, the BT-BCCP linker ‘‘docks’’

onto the crescent N-dock domain (Figure 4B).

Fewer interactions are observed between intra-trimer a-sub-

units, contributing just 579 Å2 of buried surface area and a bind-

ing affinity of�6.1 kcal mol�1. Within an a-trimer, each a-subunit

interacts with its neighboring a-subunits through the BC-BC and

BC-BT interfaces. At the BC-BC interface, a loop from one BC

domain (Glu34–His36) interacts with a loop (Phe379–Pro385)

and a helix (Arg423–Gln427) from a neighboring BC domain (Fig-

ure 4C). At the BC-BT interface, b6 strand (Gly572–Ala581) from

the b-barrel in the BT domain interacts with a short b-strand

(Ala59–Cys61) in the BC domain through b-sheet augmenta-

tion49 (Figure 4D).

Structure of filament termini reveals mechanism of
LtMCC polymerization
To investigate the mechanism of LtMCC polymerization, we re-

constructed the filament termini at 7.3 Å resolution (Figure 5A).

We found that both ends of the filament terminate at a-trimers,
with partially resolved densities attributed to the BC domains

(Figure 5A). When displayed at a high threshold, cryoEM den-

sities for the BC, BCCP domain, and the BC-BT linker disap-

pear, while density for the BT domain and BT-BCCP linker of

the same a-subunit remain visible (Figure 5A). Therefore, the

weaker densities of the BC and BCCP domains are due to their

flexibility, rather than low occupancy of the a-subunit at the

termini, which would make all domains of the a-subunit disap-

pear. The flexibility of the BC and BCCP domains is further sup-

ported by limited intra-trimer a-subunit associations

(Figures 4C and 4D). In contrast, the BT-BCCP linker is mostly

rigid as it interacts extensively with the b-subunits (Figure 4B).

Our observation that LtMCC filaments terminate at a-sub-

units suggests that the building block for the filament is an

a6b6 stack. Filaments plausibly elongate one stack at a time, at-

taching through BC domains to form an a-a interface (Video

S2), which is defined as the associations between two a-trimers

from adjacent stacks (Figure 5B). The a-a interface has a total

buried surface area of 1,689 Å2 and a binding affinity of

�11.6 kcal mol�1. At the a-a interface, the BC domain of an

a-subunit from the lower a-trimer interacts with BC domains

of two a-subunits from the upper a-trimer (Figure 5B). Interac-

tions contributing to the a-a interface occur primarily between

loops, along a local 2-fold axis (right panel of Figure 5B): the first

site of interaction is between two loops (Leu338–Asp344), with

its neighboring residues Lys319 and Arg231 also participating

in a-a interactions; the second site of interaction occurs be-

tween two loops connected to two a-helices (His257–

Glu261). These interactions at the a-a interface stabilize the

BC domains between neighboring stacks in the LtMCC filament

(Figure 5B).
Structure 31, 100–110, January 5, 2023 105



Figure 5. Filament formation stabilizes flex-

ible BCCP and BC domains in LtMCC

(A) Structure of the filament termini. The left and

middle panels show the 7.3 Å cryoEM map of the

filament termini at a low and high density

threshold, respectively. The a-subunit is colored

by domain according to the scheme in Figure 2E,

and the entire b-core is turquoise. Note, while

visible at low threshold, the BCCP and BC domain

densities disappear at high threshold. The right

panel shows the atomic model of the filament ter-

minus with the rigid and flexible domains in harder

and softer shades, respectively.

(B) Structure of the a-a interface in the LtMCC

filament. The cryoEM map (left panel) is colored

as in (A), but the atomic models (middle panel) of

the interfacing a-subunits are colored differently

from each other to delineate individual a-subunits.

Close-up views (right panel) of the two boxed areas

in themiddle panel show interfacing residues at the

a-a interface. The ellipse in the top right panel

denotes the local 2-fold symmetry axis.

(C) Proposed model of filament formation and

stabilization. Blurry domains indicate their flexi-

bility.
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DISCUSSION

This study reveals a previously unrecognized role of the BC

domain in MCC catalysis. During catalysis, the BCCP domain

must shuttle biotin between the CT active site (b-subunit) and

the BC active site (a-subunit), located approximately 80 Å apart

(Figure 5A). However, we observed that the BT-BCCP linker is

fixed (Figure 5A). Therefore, the maximum distance that the

BCCP domain can translocate by itself is about 60 Å, which is

insufficient for the BCCPdomain to reach the BC active site (right

panel of Figure 5A). As such, for catalysis to occur, both the

BCCP and active-site-containing BC domain must move so

that BCCP-bound biotin can reach the BC active site. Indeed,

at the filament termini, the BC domain is flexible, thus permitting

BC domain movement. We term this the dual-swinging-domains

model to highlight the difference from the original swinging-

domain model,9 in which only the BCCP domain swings. Beyond

MCC, both the BCCP and BC domains have been documented

tomove in PC.50,51 These observations suggest that carboxylase

catalysis, in general, may involve a dual-swinging-domains

mechanism.
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In LtMCC filaments, the a-a interface

fixes the BC domain, thus preventing its

swinging. According to our dual-swing-

ing-domains model, immobilization of

the BC domain should inhibit catalysis.

Granted, the BC domain and the BT-

BCCP linker in LtMCC filaments may be

more flexible in a cellular environment,

and cryoEM reconstructions did not cap-

ture flexible states. However, as biotin is

non-covalently bound to filamentous

LtMCC, LtMCC must be inactive

(Figure 3A).
Therefore, filamentation likely sequesters LtMCCs in a quies-

cent state in the mitochondrial matrix (Figure 5C), which may

provide a capacity to reactivate the enzyme in response to envi-

ronmental signals, such as an influx of nutrients, which may

trigger covalent attachment of biotin to the BCCP domain

through biotin protein ligase. Polymerization appears to be a

readily deployable and economic mechanism for regulating the

activity of abundant mitochondrial matrix enzymes in response

to rapid changes in cellular metabolism requirements. Such ca-

pacity is particularly relevant for parasitic protists cycling be-

tween the amino acid-rich gut environment of insect vectors

and the high glucose concentration in the bloodstream of

their hosts.

Our inquiries into MCC polymerization further reflect the di-

versity of polymerization in the carboxylase superfamily. It is

known that both isoforms of ACC, ACC1 and ACC2, form fila-

ments.30,37,52–56 Recently, high-resolution structures of fila-

mentous ACC1 have been reported.30 In contrast to LtMCC,

ACC1 assembles into two filamentous forms: an active sin-

gle-stranded and inactive double-stranded helical structure.

Eukaryotic MCC and ACC filamentation exhibit different
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architectures and regulatory functions, supporting the distinct

evolutionary lineages of these enzymes.22 Nonetheless, fila-

ment formation may be a general way to regulate enzymatic ac-

tivity in the carboxylase superfamily. We suspect that MCC fil-

amentation is not unique to LtMCC, since the BCfo domain of

LtMCC, which includes the a-a interface, generally shares a

high (>50%) sequence identity with BC domains from other

organisms.

Evolutionarily, employing the same gene costs less than ‘‘in-

venting’’ a new gene for regulation. Polymerization is a remark-

able example of such a cost-effective strategy. In the case of

LtMCC, stacking of active a6b6 dodecamers can inhibit biotin

shuttling (Figure 5C), thus sequestering the enzyme by polymer-

ization. In other enzymes, polymerization can alter specificity57,

decrease28 or increase activity58, and even introduce non-enzy-

matic functions such as conducting electrons between bacterial

cells27 and regulating cell curvature.59 Just like how complex life

forms arose by the aggregation and polymerization of unicellu-

lar forms, the diverse functions arising from enzyme polymeriza-

tion can be considered as a rudimentary form of evolution.
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Crystal structure of ACC holoenzyme Wei et al.41 PDB: 5CSL
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CryoEM map of a-subunit centered LtMCC This paper EMDB: EMD-28849
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CryoEM map of LtMCC termini This paper EMDB: EMD-28847
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centered on a-subunits
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centered on b-subunits

This paper PDB: 8F3D
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ESPript 3 Robert and Gouet,65 https://espript.ibcp.fr/ESPript/ESPript/
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Mirdita et al.34,35
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IMOD Kremer et al.66 https://bio3d.colorado.edu/imod/

SerialEM 3.8 Mastronarde,67 https://bio3d.colorado.edu/SerialEM/

ExPASy Translate Gasteiger et al.68 https://web.expasy.org/translate/

Clustal Omega Sievers and Higgins69 https://www.ebi.ac.uk/Tools/msa/clustalo/

PRODIGY Vangone and Bonvin,

Xue et al.47,48
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Z. Hong

Zhou (hong.zhou@ucla.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
CryoEM maps of the a-subunit centered, b-subunit centered, and filament termini map have been deposited in the Electron Micro-

scopy Data Bank under accession numbers EMD-28849, EMD-28846, and EMD-28847, respectively. The coordinates of LtMCC

have been deposited in the Protein Data Bank under accession number 8F3D and 8F41. All aforementioned deposited data are pub-

licly available as of the date of publication and accession numbers are also listed in the key resources table. This paper does not

report original code. DOIs are listed in the key resources table. This paper analyzes existing, publicly available data. These accession

numbers for the datasets are listed in the key resources table. Any additional information required to reanalyze the data reported in

this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

L. tarentolae cells were grown at 27�C in brain heart infusion media supplemented with 5 mg/L of hemin and harvested during late-

exponential growth phase at �2 3 108 cell/mL. The cells are from L. tarentolae TATII/UC strain.

METHOD DETAILS

Preparation of mitochondrial lysate
Mitochondrial fraction was enriched by hypotonic cell lysis and sequential separation of membrane-containing fraction on

RenoCal76 density gradients.71 Mitochondrial pellets (0.5–0.8 g wet weight) were lysed in 1 mL of pH 7.3, 50 mM HEPES,

150 mM KCl, 2 mM EDTA, 1% NP40, and 50 mL of 20x Complete protease cocktail by sonication at 24W for 15 seconds and centri-

fuged at 30,000 RPM in an SW55 rotor for 15 minutes. The supernatant was recovered and separated on a continuous 10–30%

gradient glycerol in pH 7.3, with 20 mM HEPES, 100 mM KCl, and 1 mM EDTA and prepared in SW28/32 Setton clear tubes for

15 hours at 72,000 g. Glycerol gradient fractions of 1.5 mL were collected from the top and those corresponding to 20S-40S region

were combined.

Purification of LtMCC by streptavidin affinity pulldown
Glycerol gradient fractions were supplemented octylglucoside to 2 mM and incubated on Strep-Tactin�XT magnetic beads in a

Binding Buffer (50 mM Tris-HCl, pH 8.0, 100 mM KCl, 1 mM EDTA, 2 mM OG) for 1 hour at 4�C on a nutating mixer. Beads were

washed with 5 mL of Binding Buffer twice. For elution, the beads were incubated in 0.2 mL of Elution Buffer (20 mM Tris-HCl, pH

8.0, 100 mM KCl, 1 mM EDTA, 2 mM OG, 100 mM biotin) at 4�C for 10 minutes. The 130 mL of purified material was exchanged

into Sample Buffer (20 mM Tris-HCl, pH 7.5, 60 mM KCl, 5 mMMgCl2, 1 mM DTT, 5 mMOG) using Zeba� Spin Desalting Columns,

7K MWCO (0.5 mL). The sample was then centrifuged at 21,000g for 10 minutes and the supernatant was stored on ice before grid

preparation.

Protein identification by LC-MS/MS
Affinity-purified complexes were sequentially digested with LysC peptidase and trypsin. LC-MS/MS was carried out by nanoflow

reversed phase liquid chromatography (RPLC) using an UltiMate 3000 RSLC (Thermo Fisher Scientific) coupled on-line to anOrbitrap

Fusion Lumos mass spectrometer (Thermo Fisher Scientific). A cycle of full FT scan mass spectrum (m/z 375–1500, resolution of

60,000 atm/z 400) was followed byMS/MS spectra acquired in the linear ion trap for 3 seconds at top speedwith normalized collision

energy (HCD, 30%). Following data extraction toMGF format usingMSConvert fromProteoWizard,72 resultant peak lists for each LC-

MS/MS experiment were submitted to Protein Prospector (UCSF) for database searching.73 Each project was searched against a

normal form concatenated with the random form of the L. tarentolae Parrot Tar II from TriTrypDB.74 The mass accuracy for parent
e2 Structure 31, 100–110.e1–e4, January 5, 2023
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ions and fragment ions were set as ± 10 ppm and 0.6 Da, respectively. Trypsin was set as the enzyme, with amaximum of twomissed

cleavages allowed. Cysteine carbamidomethylation was set as a fixed modification, and protein N-terminal acetylation, methionine

oxidation, and N-terminal conversion of glutamine to pyroglutamic acid were selected as variable modifications.

CryoEM sample preparation
Lacey carbon cryoEM grids with a 2 nm continuous carbon film (Ted Pella) were first glow discharged for 45 seconds with a target

current of 15 mA, using PELCO easiGlowTM. Then a 2.5 mL sample was applied to the grids. After waiting for 5 seconds, the grids

were blotted for 4 seconds with blot force 0, at 100% humidity and 4�C temperature; after blotting, the grids were plunge-frozen into

liquid ethane using an FEIMark IV Vitrobot (Thermo Fisher Scientific). The grids were stored in a liquid nitrogen dewar before imaging.

CryoEM image acquisition
The cryoEM grids were loaded and imaged using a Titan Krios (Thermo Fisher Scientific) operated at 300 kV, with a Gatan K3 camera

and a Gatan Imaging Filter Quantum LS. Movies were recorded with SerialEM67 by electron counting in super-resolution mode at a

pixel size of 0.55 Å/pixel. The exposure time was 2 seconds and fractionated to 40 frames. The defocus range was between �1.5 to

�2.5 mm. The total dosage was approximately 40 electrons/Å2. A total of 3,328 movies were collected.

CryoEM image processing
Themovies were processed withMotionCor2,61 leading to dose-weighted and drift-corrected electronmicrographs with a calibrated

pixel size of 1.1 Å. We discarded the first frame due to severe drift of this frame. The defocus of the micrographs was determined by

Gctf.62 Using IMOD,66 the micrographs were binned by a factor of 10 to make a stack for particle picking. After directly observing

filaments on the micrographs, we manually picked the start and end of each filament using the 3dmod command in IMOD.66 A total

of 4,496 filaments were picked. To derive the constituents of the filaments, we coded a Python script to subdivide the filaments into

equally spaced segments of 87 Å. The coordinates were then converted through a Bash script to RELION format. A total of 51,322

particles were extracted in total through RELION 3.1, with a box size of 384.

After extraction, we performed reference-free 2D class averaging on the particles with RELION 3.1.68 We chose the best classes

and proceeded to 3D classification. We made an initial 3D model from the best 3D class averages through RELION 3.1. The 3D clas-

sification was done with D3 symmetry and yielded a- and b-centered 3D class averages. After removing duplicates, the a- and

b-centered classes contained 7,582 and 13,250 particles, respectively. We did 3D refinement for the a- and b-centered map inde-

pendently with D3 symmetry using RELION 3D refinement. We then performed CTF refinement for both maps independently using

RELION 3.1. We used CTF refinement63 to improve the accuracy of the defocus for each particle and to correct beam tilt for the data-

set. After performing CTF refinement, we performed 3D refinement for both maps again, independently. At the end of all processing,

based on RELION’s gold-standard Fourier shell correlation (FSC) at the 0.143 criterion,75 we obtained a- and b-centered maps at 3.9

and 3.4 Å resolution, respectively (Figure S7). The resolution towards the center of the map is better than the edge of the map

(Figure S7).

For the filament termini map, we used RELION 3.1 to extract the previously picked filament start-and-end points at a box size of

384 pixels. We calculated the in-plane rotation angle using the direction of vectors from the start to end of the filament. We used a

Python code to include the in-plane rotation angle information in the RELION star file for the particles. We performed 2D classification

for these particles without local search around the precalculated in-plane rotation angle. To generate an initial 3Dmodel, we used the

IMOD clip function66 to change the center of the b-centered map. The best particles were selected for 3D reconstruction with C3

symmetry. We performed 3D classification and removed bad particles. During 3D classification, we set the ‘‘limit_tilt’’ parameter

to 85 to keep side-view particles. We proceeded to 3D refinement with 3,380 particles. We obtained a final reconstruction with

C3 symmetry at 7.3 Å resolution based on the gold-standard FSC at the 0.143 criterion.75

Sequence determination
The amino acid sequence for the LtMCC a-subunit was obtained from gene LtaP31.3620 from TriTrypDB.74 The amino acid

sequence for the LtMCC b-subunit was obtained by analyzing the genome sequencing data of L. tarentolae Parrot Tar II,76 since

the putative, shotgun LtMCC b-subunit sequence on the NCBI protein database was notably shorter than MCCs from other organ-

isms, deviating from the high sequence homogeneity observed across MCC sequences. A frameshift occurs near the middle of the

sequence, likely caused by a sequencing error. The frameshift is not present in the previous genome sequencing data of L. tarentolae

Parrot Tar II.77 Since MCC plays an essential role in the catabolism of leucine across many species, it is unlikely that MCC exhibits a

highly different sequence in L. tarentolae.

Atomic modeling and model refinement
An initial AlphaFold34 model prediction was generated from ColabFold35 using the LtMCC a-subunit and b-subunit sequences.

Atomic model building was conducted de novo in regions of low sequence conservation. First, an individual a-subunit and b-subunit

were modeled into the cryoEM map in Coot33 and then real-space refined in Phenix.64 The a-subunit was modeled using the a-sub-

unit centered map, and the b-subunit was modeled using the b-subunit centered map. Biotin was modeled de novo into its observed

density. Then, the subunits were duplicated according to D3 symmetry and fitted into a composite cryoEM map where a-centered

maps were fitted with b-centered maps as illustrated in Figure 2D. This singular atomic model, which was built using both the a- and
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b-centered maps, was refined iteratively using Phenix64 and Coot.33 In Coot, the atomic model was checked for rotamer outliers and

Ramachandran outliers. All outliers were eliminated through the ‘‘Real Space Refine Zone’’ tool in Coot, with the a-subunit refined

against the a-subunit centered map, and the b-subunit refined against the b-subunit centered map. Then, the model, along with

the a-subunit and b-subunit centered maps, were submitted to Phenix for automatic real space refinement using the ‘‘phenix.real_-

space_refine’’ tool. This process was performed iteratively to reduce rotamer outliers, geometric outliers, Ramachandran outliers,

and clashscore. Note, we did not use the filament termini map for de novo atomicmodel building or refinement because its resolution

was too low.

Model analysis
Buried surface area and map cross-correlation coefficient were calculated in ChimeraX.46 Binding affinity calculations were done

using the PRODIGY web server.47,48 Sequence alignments and similarity calculations were performed using Clustal Omega69

from the EMBL-EBI web server and visualized with ESPript 3.74

QUANTIFICATION AND STATISTICAL ANALYSIS

Filament lengths from micrographs were calculated by the IMOD model2point function.66 The lengths were then counted and

compiled together in a spreadsheet for histogram analysis (see Figure 2C).
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