
ARTICLE OPEN

Disentangling multiple scattering with deep learning:
application to strain mapping from electron diffraction
patterns
Joydeep Munshi1, Alexander Rakowski2, Benjamin H. Savitzky2, Steven E. Zeltmann3, Jim Ciston 2, Matthew Henderson4,
Shreyas Cholia4, Andrew M. Minor2,3, Maria K. Y. Chan 1✉ and Colin Ophus 2✉

A fast, robust pipeline for strain mapping of crystalline materials is important for many technological applications. Scanning
electron nanodiffraction allows us to calculate strain maps with high accuracy and spatial resolutions, but this technique is limited
when the electron beam undergoes multiple scattering. Deep-learning methods have the potential to invert these complex signals,
but require a large number of training examples. We implement a Fourier space, complex-valued deep-neural network, FCU-Net, to
invert highly nonlinear electron diffraction patterns into the corresponding quantitative structure factor images. FCU-Net was
trained using over 200,000 unique simulated dynamical diffraction patterns from different combinations of crystal structures,
orientations, thicknesses, and microscope parameters, which are augmented with experimental artifacts. We evaluated FCU-Net
against simulated and experimental datasets, where it substantially outperforms conventional analysis methods. Our code, models,
and training library are open-source and may be adapted to different diffraction measurement problems.
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INTRODUCTION
Scanning transmission electron microscopy (STEM) has emerged
as one of the primary nanoscale materials characterization tools1.
A STEM experiment focuses an electron beam on to a sample, with
the probe dimensions ranging from tens of nanometers down to
the atomic scale, which is made possible by hardware aberration
correction2,3. STEM experiments have successfully measured the
2D position of atomic columns with picometer-precision4,
measured the vibrational spectra of single-atom defects5, mapped
solid-liquid interfaces in lithium-metal batteries6, and determined
the 3D position and chemical species of each atom in a
nanoparticle7. Atomic-resolution STEM methods provide extre-
mely high resolution for both spatial and spectroscopic mapping,
but have a limited field of view (FOV) because of the necessary
minimum sampling rate required to resolve atoms8.
An alternative to real space imaging in STEM is to instead record

a converged beam electron diffraction (CBED) pattern at each
probe position, resulting in a four-dimensional (4D-STEM) dataset9.
4D-STEM experiments are gaining popularity among electron
microscopists because they can collect atomic-scale information
from each probe over a nearly arbitrary sized field-of-view10, and
can measure a broad spectrum of quantities of physical interest
including: 3D structural determination11, ferroelectric polariza-
tion12, imaging of lithium in cathode materials13, ptychographic
atomic imaging14, correlation of local strain with composition
from X-ray ptychography15,16, distinguishing between chemical
and structural interfacial roughness17, strain in 2D material
bilayers18,19, and many others. The ability to extract quantitative
information with atomic-scale resolution is, however, frequently
limited by the size and complexity of experimental 4D-STEM data.
Open source computational tools such as pyxem in hyperSpy20,

liberTEM21, AtomAI22, and py4DSTEM23 provide high-throughput
multimodal data analysis tools to the community.
Computational analysis of diffraction images from crystalline

materials typically begins with localizing any Bragg scattering. A
standard approach to this problem is matching a template—
usually an image of the electron beam over vacuum—to each
diffraction pattern using cross-correlation.
However, the Bragg disk intensities can oscillate with changing

sample thickness, bias asymmetrically due to mistilt of the crystal
zone axis relative to the electron beam, form interference effects
between overlapping disks, and generally display highly nonlinear
signals in all but the very thinnest of samples due to dynamical/
multiple scattering24–27. While the physics of these phenomena
are understood and the effects may be readily recognizable to a
human observer, writing classical algorithms, which can accom-
modate them is challenging. These effects lead to uneven
illumination of the Bragg disks, and consequently could cause
errors in position-finding algorithms. Various approaches have
been implemented, including cross, phase, and hybrid correla-
tions28, edge filtering29, circular Hough transforms30, and radial
gradient maximization31. Zeltmann et al. fabricated patterned
apertures, which result in bullseye shaped electron probes that
improve the precision of disk position measurements27. Other
authors use Fourier-space methods to pool information about the
disk spacing, such as the cepstral transform32.
In addition to the challenge of accuracy, traditional approaches

often require careful parameter tuning to achieve acceptable
results, and may be time consuming33. Moreover, the quantity one
is ideally after is not just the disk positions but the structure
factors Vg, the positions and amplitudes of which reflect the
reciprocal lattice of the scattering crystal.
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Once the Bragg disks have been measured, many subsequent
analyses become possible, including crystallographic orientation
mapping, off-axis virtual imaging modalities, and mapping the
local strain9,28,34–36. Spatially resolved strain maps of crystalline
and semi-crystalline materials systems are important in various
engineering and technological applications. For instance, local
strain distortions can play an important role in tuning electronic
properties of semiconductors37,38, and lattice deformation and
distortions due to defects and doping can be characterized from
localized strain maps in metals39–41.
Artificial intelligence and machine learning (AI/ML) algorithms

are increasingly being implemented in materials characterization,
including in electron microscopy42. Deep-learning approaches
have been been demonstrated to outperform classical algorithms
in variety of computer vision problems in microscopy including
classification and segmentation problems43–45. For instance, deep-
convolutional neural networks (CNNs) are implemented in the
analysis of images collected with various microscopy techniques
such as crystal phase classification from back-scattered diffraction
patterns46, structure measurement from electron diffraction and
atomic-resolution STEM images47 and from scanning tunneling
microscopy48, crystal symmetry identification from X-ray diffrac-
tion49, defect analysis from atomic-resolution STEM images50,
crystal tilt and thickness detection from position averaged CBED
patterns51,52, and orientation and strain mapping from 4D-STEM
diffraction datasets53,54. Recently, Yuan et al. demonstrated the
possibility of using CNNs to predict high precision orientation and
strain maps of crystalline systems using 4D-STEM data, computing
strain in field effect transistors with both a CNN and a more
traditional Hough transform approach54. Li et al. used manifold
learning to directly classify different features in 4D-STEM data53.
Similarly, Shi et al. used an unsupervised method to analyze lattice
deformations, and classify the resulting material properties such as
strain from 4D-STEM datasets55. These works show the potential of
both supervised and unsupervised learning (with and without
knowledge of the ground truth, respectively) in the analysis of 4D-
STEM datasets and motivated towards achieving automated
analysis of massive 4D diffraction datasets.
Bragg disk position and the underlying strain field measure-

ment of crystalline and semi-crystalline samples, leveraging
supervised machine learning, can be considered as pixel-wise
mapping of diffracted disk intensities to the underlying structure
factors. Such tasks may be accomplished, for example, by a
traditional U-Net architecture consisting of symmetric contracting
(encoder) and expansive (decoder) paths, with the crucial addition
of skip layer connections enabling the flow of localized contextual
information from low-resolution encoded features to higher
resolution upsampled layers56. However, while the U-Net seems
to be a prudent choice for the Bragg disk measurement problem,
using traditional 2D convolutional layers for the network building
blocks poses a challenge: for identical samples, changing
microscope parameters, such as the probe semiangle, can
substantially change the measured diffraction images. We require
a method to encode these changing experimental parameters into
the signal inversion, which is not possible in the original U-Net
architecture. Additionally, small shifts of the disks can be
measured using cross-correlation of a probe template, but this
signal is most accurately measured as the phase component of the
complex-valued Fourier transform of the correlation. To preserve
all the relevant signal including the complex phase, we implement
a modified U-Net architecture using fully complex 2D convolu-
tional blocks. Historically, complex representations of images and
signals have numerous advantages and outperform their non-
complex equivalent forms57–60.
The complex representation is an elegant method to preserve

phase information and mimics biological behavior in neurons61.
Rippel et al. implemented a Fourier representation of traditional
CNNs by parameterizing convolutional kernels in the spectral

domain62. In a recent effort, Trabelsi et al. provided building
blocks for deep-complex-valued convolution networks and
implemented their network on a variety of deep-learning tasks
such as image classification, image recognition, and music and
speech transcription problems63. Here, we extend these
approaches to modify the U-Net architecture to accommodate
the complex and nonlinear correlation between the CBED images
and the structure factors.
In this work, we implement a Fourier-space complex U-Net

(FCU-Net) deep-neural network, which learns the mapping from
measured diffraction pattern intensities to a material’s underlying
structure factors (Fig. 1). We train our network on a dataset with
over 200,000 unique simulated dynamical CBED data spanning
thousands of crystal systems with a variety of random zone axes,
off-zone tilts, thicknesses, and microscope parameters. The
training datasets are extended with physics-informed image
augmentation through the addition of a realistic background,
noise, and geometric distortions of the CBED patterns. We
compare the accuracy of the FCU-Net outputs to the approach
of cross-correlation template matching, benchmarking against the
ground truth structure factors for simulated data. We further test
and compare these two methods by measuring local strain using
the structure factor outputs, for both simulated and experimental
diffraction data of a SiGe multilayer stack, and with experimental
hexagonal-boron nitride 4D-STEM data. We find that FCU-Net
significantly improves the accuracy of disk detection, as well as
downstream measurements such as strain. The FCU-Net pipeline is
fast, highly automated, performant on materials and microscope
parameters on which it has not been trained, and is robust against
both experimental error and background noise.

RESULTS AND DISCUSSION
Comparison of traditional and complex U-Net models
To measure the position of Bragg disks from diffraction patterns,
we implement supervised learning on a large training dataset
consisting of simulated CBED images and structure factor images.
To map disk intensities to the structure factors, we implement
three variants of CNN architecture: real-valued U-Net, a U-Net with
spectral parameterization, and the fully complex variant, FCU-Net.
Figure 1 summarizes the overview of this work, where Fig. 1a–c
show the methods we use to train the machine learning models
from the simulated STEM diffraction pattern and the underlying
structure factors. Figure 1d–f show the inference stage to predict
structure factors from experimental diffraction patterns. The
computational methods implemented to simulate training data,
architecture of the CNN models implemented in this work, the
training process, and implementation and inference from experi-
mental diffraction patterns can be found in the Methods 4 section.
Once the networks are trained, we predict the structure factors

of diffraction patterns from the simulated test dataset and used
them to compute the structural similarity index (SSIM), a metric of
image similarity measurement64. Table 1 compares the results for
different CNN models. We find a significant improvement in the
SSIM scores measured on the test dataset for the FCU-Net model,
compared to networks without spectral pooling and/or without
complex convolutional layers. The improvement in the overall
model efficiency for the high-tilt, off-zone samples is more
prominent than in the untilted, on-zone samples. We attribute
this to the sensitivity of FCU-Net to the phase component of the
input signal, as we expect the contribution of the phase to be
more significant for high-tilt samples due to the asymmetry of
their diffraction images.

Accuracy of diffracted disk position measurements
To evaluate the accuracy of Bragg disk detection using the trained
FCU-Net and using cross-correlation, we calculate the intensity-
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weighted accuracy of the disk locations determined by each
method, using the simulated test dataset with different crystal
orientations and in-plane rotations. The intensity-weighted
accuracy is defined as

accuracy ¼ TPint
ðTPint þ FPint þ FNintÞ (1)

where,

TPint ¼ sum of true peak intensities
sum of predicted peak intensities

(2)

FPInt ¼ sum of false positive peak intensity
sum of predicted peak intensity

(3)

FNint ¼ sum of false negative peak intensity
sum of ground truth peak intensity

(4)

TPint, FPint, FNint denote intensity-weighted true-positive peaks,
false-positive peaks and false negative peaks detected, respec-
tively, from the predicted structure factor images. We note that
the CBED and the structure factor images in our training dataset
were generated with a pixel size of 0.0217Å−1. To measure the
intensity-weighted accuracy and the three metrics—TPInt, FPInt,
FNInt for predicted structure factor, we use a threshold size of
0.05 Å−1 to match peaks between the predicted and ground truth
structure factor images, in order of peak pair distance. Several
example diffraction images, sampled randomly from the test
dataset, are shown in Fig. 2a. The corresponding computed and
ground truth disk positions and amplitudes are shown in Fig. 2b, c,
using cross-correlation and our trained FCU-Net, respectively. The
accuracy of disk detection using the FCU-Net is significantly better
than the correlation-based approach across the board, with the
most striking gains occurring in diffraction patterns, which suffer
from multiple scattering due to large thickness, or disk overlap
when the scattering vectors are small compared to the probe
semiangle.
The leftmost diffraction pattern in Fig. 2a is comparatively

simple, with well separated, flat disks and signal well about the
background level. Unsurprisingly, both methods do very well.
However even here, in this nearly optimal data for cross-
correlative template matching, the gains using FCU-Net are
remarkable, achieving 100% accuracy. In the middle three
patterns, the background signal and disk overlap make visual
identification of the disk positions difficult. It is thus again
unsurprising that cross-correlation does relatively poorly. In
contrast, FCU-Net is extremely accurate for these three cases.

Fig. 1 Overview of the methods used in this paper. a Multislice diffraction simulations of many samples with different crystal structures,
compositions, orientations, and thicknesses, using various microscope parameters. b Augmentation of the simulated images by applying
elliptic distortion, pattern shift, limited signal-to-noise, and background functions. c Deep-learning training. d Experimental geometry for
diffraction pattern measurements. e Dataset preprocessing. f Inversion of experimental diffraction images to predict the structure factors
using the FCU-Net trained in c.

Table 1. Accuracy of the recovered structure factor images evaluated
using the SSIM on the test dataset.

Untilted/on-zone High-tilt/off-zone

U-Net (traditional) 0.923 0.750

U-Net (spectral) 0.926 0.781

FCU-Net 0.948 0.880

Bold values indicate highest SSIM value for each category.
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The fifth diffraction image in Fig. 2a is an example of an
experiment where the sample, which has been tilted away from
the low-index zone axis relative to the beam direction, creating
complex variation in disk intensities due to tilt of the Ewald
sphere. FCU-Net still outperforms cross-correlation in this case,
though the gains here are more modest.
We further evaluated the performance of FCU-Net and

correlation methods for strain mapping by applying them to
415 unique crystals and orientations in our simulated dataset.
These simulations were selected because they produced diffrac-
tion patterns with at least two strongly excited non-orthogonal
Bragg vectors (i.e., the diffraction pattern was 2D rather than 1D),
and had enough separation between the diffraction spots to
automatically detect the ground truth lattice from the structure
factor images, which was determined by applying a threshold of
5% to the mean strain error. To avoid the introduction of biases,
we used a single set of parameters, which generalized well across
the entire dataset, rather than tailoring to a specific diffraction
pattern series. The performance of each method was evaluated by
calculating the mean absolute value of the two principal strains.
We initially analyzed low-index zone axis and randomly oriented
crystals separately, but found negligible difference between the
two. After disk detection and lattice assignment, we calculated the
relative strain between the disk positions measured in the
diffraction patterns and the positions measured from the structure
factor images.
The median of the strain error as a function of sample thickness

from 2 to 50 nm is shown in Fig. 3a. We also show the 25th and
75th percentile range. FCU-Net outperforms the correlation

method at every thickness, showing an improvement of ~2–3
times across the thickness series. FCU-Net performs best at 20 nm
thickness, but remains fairly flat with comparatively small
interquartile range for all thicknesses. By contrast, the correlation
method performs best at 4 nm and increases with sample
thickness, with a much larger interquartile range. For very thin
samples (<10 nm), the performance of the correlation method
approaches that of FCU-Net, but never surpasses it. We attribute
the higher accuracy at low thicknesses to the scattering being
more kinematical (less intensity variation in the diffracted disks).
Both methods show higher error at 2 nm thickness, which we
attribute to the weak diffracted intensities.
In Fig. 3b, we compare the performance of both methods for

20 nm thick samples, as a function of electron dose. We were
unable to use the correlation method to measure accurate lattice
parameters on patterns with less than 1000 electrons. However,
the FCU-Net was able to estimate the lattice with reasonable
accuracy on patterns with as few as 100 electrons, due to it
pooling information across all disks in Fourier space. At up to 104

electron dose, the FCU-Net is ~50% more accurate than the
correlation method. At a dose of 104, the strain error of the
correlation method reaches a plateau, demonstrating that the
accuracy is no longer limited by dose, but rather by the error in
disk positions introduced by multiple scattering. However, the
strain errors from the FCU-Net lattice measurements continues to
decrease until ~106 electrons, reaching an accuracy over four
times greater than the correlation method. We ascribe the higher
FCU-Net accuracy to both the Fourier-space convolutional layers,
which allow information from all lattice vectors to be pooled

Fig. 2 Bragg disk detection using cross-correlation and deep-learning methods. a Examples of simulated diffraction patterns for crystals of
different thicknesses and orientations. Scale bar is 0.5Å−1. b, c The positions of the ground truth structure factor coefficients of the crystal
lattice are plotted below as blue circles, with a size proportional to the structure factor amplitudes Vg. The structure factor positions were
computed using (b) template matching by cross-correlation with the vacuum probe signal, and (c) the FCU-Net network. Both measurements
are overlaid as black crosses, with a size proportion to the estimated disk amplitude (square root of the disk intensity) and Vg amplitudes, for
the correlation and FCU-Net predictions, respectively. The total intensity-weighted accuracy is listed above for all measurements.
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together, and to the large size of our training dataset. Together,
these enable the FCU-Net to correctly estimate the position of
structure factor peaks even when the Bragg disks are close
together or even overlap, when signal-to-noise is low, or in the
presence of nonlinear variation of the signal within the disks. We
believe this robustness makes FCU-Net a good candidate for
measurements of samples with unknown structures and orienta-
tions, where it may not be possible to guarantee non-overlapping
disks or thick samples.

Strain maps from simulated Si-SiGe multilayer data
We next compare strain maps generated using both the cross-
correlation and FCU-Net approaches for realistic simulated
datasets. The sample geometry consists of alternating layers of
Si and SiGe on a mixed SiGe substrate. Two datasets are shown in
Fig. 4, both containing the same strain profile, which alternates
between ±1% strain relative to the substrate. The first, shown in
Fig. 4a–e, is perfectly aligned along the [011] zone axis. The
second, shown in Fig. 4f–j, has been helically twisted such that all
regions of the sample are tilted away from the ideal diffraction
condition. The tilt magnitude varies linearly from 0.4∘ to 4.4∘ from
the substrate to the left side, and the tilt direction varies linearly
from 45∘ to 315∘ relative to the x-axis.
Figure 4a shows a virtual bright field image constructed from

the center disk across all the diffraction patterns in the perfectly
aligned sample. Diffraction patterns from the five regions marked
in Fig. 4a are shown in Fig. 4b. The strain maps for this sample
along the two principal directions, ϵxx and ϵyy, are plotted in Fig. 4c
and d using the correlation method and the FCU-Net model,
respectively. For both predictions, the reference lattice is set to be
the mean lattice measured from the substrate region on the right
hand side.
Figure 4e plots line profiles along the x-direction, perpendicular

to the interfaces, of the mean strain for each of ϵxx and ϵyy (left and
right, respectively). The strain parallel to the layer interfaces
should be ϵyy= 0 everywhere (for an epitaxial film). The ϵyy strain
estimated from correlation shows significant deviation from the
expected zero strain value, varying systematically and periodically
from zero strain near the interfaces, producing a RMS error
of ~ 0.2% across the multilayer stacks. In contrast, the FCU-Net ϵyy
strain shows almost negligible systematic and random errors (RMS
error ≤0.02%).
The strain in the normal direction ϵxx should optimally follow

the ideal profile plotted in Fig. 4e. Both approaches perform
reasonably well, with the correlation method performing better in

the positively strain layers (tension) while the FCU-Net under-
estimates the strain magnitudes at the middle of each layer, and
rounds off the sharp interfaces between layers. Importantly, this
effect was not present in the simulated distorted sample or the
experimental datasets, and will be discussed in subsequent
sections. The likely source of the interfacial error is that at the
boundaries, where there is a gradient in both the lattice parameter
and the local composition, neither of which have been included in
the FCU-Net training. The underestimate of the strain values inside
the layers might be due to the highly dynamical intensity
measurements present when the sample is perfectly aligned on
the zone axis. Additional “on-axis” training data may be required
to improve the accuracy of the predicted lattice parameters.
Next, we calculate strain maps from the simulated multilayer

dataset, which has been twisted off the ideal diffraction condition.
Figure 4f shows the virtual bright field image, and Fig. 4g plots the
diffraction patterns for selected positions marked in Fig. 4f. The
varying stripes of intensity in the bright field image, and the
shifting disk intensity envelope function in the five shown
diffraction patterns, both result from the helical twisting of the
sample. We again calculate strain maps along the principal
directions, shown in Fig. 4h (correlation) and Fig. 4i (FCU-Net).
Once again, the reference lattice for the calculation was taken to
be the mean lattice vectors from the substrate region on the right
of the scan.
Figure 4j plots the line profile of mean strain values parallel and

perpendicular to the multilayer stacks. The expected strains are
again ϵyy= 0, and ϵxx= ± 1% alternating between the Si and SiGe
layers. In ϵyy, the estimates from the correlation method deviate
significantly from 0 strain, with a RMS error of ~0.6% in the
multilayer region. By contrast, the FCU-Net predictions are closer
to the expected zero strain value, with a negligibly small RMS error
(<0.1%).
In ϵxx, the correlation method is accurate for several of the

layers close to the middle of the scan region, where the mistilt is
smallest; however, it becomes quite inaccurate on the left half of
the image, where it captures the location of the interfaces but
systematically and significantly underestimates the true strain
values and fabricates variation within individual layers, where the
profile should be flat. Similarly, correlation becomes inaccurate on
the far right of the image, in the reference substrate, making it
challenging to even estimate the reference lattice. We attribute
these artifacts to the varying tilt of the sample, which is known to
deleteriously affect template matching by shifting the center of
mass of disk intensities. In contrast, the FCU-Net ϵxx strain map
mirrors the ground truth value with good fidelity, showing only

Fig. 3 Mean strain error of simulated diffraction patterns for 415 crystals and orientations. Strain error comparison between correlation
and FCU-Net strain measurement, a as a function of sample thickness, and b as a function of electron dose per pattern for 20 nm thick
samples. Solid line correspond to the median error, and the shaded regions show the interquartile range, for FCU-Net (red) and correlation
(blue) methods, respectively.
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small deviations such as some slight rounding of the interfaces.
The effectiveness of FCU-Net in the presence of sample mistilts is
important, as this is a common occurrence in experimental data
and very often produces significant error when using traditional
strain measurement methods.

Strain maps from experimental h-BN films
To test the performance of FCU-Net on experimental data, we
compute strain maps for hexagonal-boron nitride (h-BN) 4D-STEM
datasets using cross-correlation and FCU-Net. Data was collected
using four different electron probes, three with circular apertures

and convergence semiangles of 0.86, 3.4 and 12mrads, and one
with a bullseye-patterned aperture and 3.4 mrad semiangle27.
Figure 5a shows mean diffraction patterns from 20 × 20 different
scan positions for each of these probes. Figure 5b, c show strain
maps from the correlation and FCU-Net methods, respectively,
with the reference lattice set to the average of all positions in the
bullseye pattern measurements. The full strain tensor is shown for
all positions, consisting of the two principal strain direction ϵxx and
ϵyy, the shear strain ϵxy, and the rotation θ. We expect the single
crystal h-BN sample to be essentially free of strain and local
rotations, suggesting an ideal measurement of 0 for all channels.

Fig. 4 Strain measurements from diffraction simulations of a Si-Si0.5Ge0.5 multilayer stack. Measurements perform on a crystal
a–e without mistilt, and f–j with helical mistilt. a, f Virtual bright field images calculated from the center disk, with the diffraction patterns
corresponding to marked probe positions given in b, g. Real space and reciprocal space scale bars are equal to 5 nm and 0.5Å−1, respectively.
Strain maps measured with c, h cross-correlation and d, i FCU-Net. e, j Line profiles of the mean strain perpendicular (left) and parallel (right)
to the interfaces.
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Fig. 5 Experimental strain maps measured from single crystal hexagonal-boronitride thin films. a Mean diffraction images of 20x20 probe
positions, for STEM probes defined by 3.4, 0.86, 3.4, and 12mrad semiangle apertures, where the leftmost aperture also contains a bullseye
pattern. Scale bar is equal to 1Å−1. b Strain maps measured using cross-correlation template matching for the 4 cases given above. c Strain
maps measured using the FCU-Net network predictions. For all maps, the mean and standard deviation strains/angles are inset, relative to the
correlation bullseye 3.4 mrads measurement. Scale bar is equal to 200 nm.

J. Munshi et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   254 



The mean and standard deviation of the strain values for all probe
positions are inset into each panel in Fig. 5b, c. The mean and
standard deviations represent the systematic and random errors,
respectively. As the field of view is so large, there is some
thickness and tilt variation over the field of view.
The first column of Fig. 5b, c shows results from the 3.4 mrad

bullseye probes. Cross-correlation and FCU-Net both perform very
well on this data, producing means and standard deviations very
close to zero. Some position dependent systematic errors are
visible for both methods, possibly due to the sharp edges of the
patterned aperture combined with the few pixel shifts of the
patterns over the field of view. Interestingly, it is worth noting that
FCU-Net does quite well with the bullseye data, despite being
trained only on conventional (circular) probes. The surprisingly
impressive performance in the strain measurements with com-
pletely unseen diffraction images from patterned aperture can be
attributed to the introduction of the Fourier-space cross-correla-
tion preprocessing layer as implemented in the FCU-Net model
(Fig. 8). While FCU-Net is robust to the patterned probe data, it is
possible training on a dataset containing patterned probes may
improve accuracy, and is worthy of future research.
Similarly, for the 0.86mrad probes, shown in the second column

of Fig. 5b, c, both correlation and the FCU-Net perform well
overall, with means close to 0 in all cases. The standard deviations,
indicating the random error, are larger than for the bullseye data,
with values as high as ~1% for the correlation ϵxx and ϵxy maps
and 0.25% for several of the FCU-Net maps.
These first two columns represent experimental conditions that

are well suited to Bragg disk detection using cross-correlation.
Bullseye apertures were specifically designed to perform disk
detection well using template matching, and this result is borne
out here; however, these apertures sacrifice spatial resolution and
introduce high-frequency components to the probe shape in real
space. Similarly, using a small convergence semiangle improves
the disk detection accuracy with cross-correlation by minimizing
the chance of disk overlap and the effects of intensity variation
within the disks, at the cost of limiting the spatial resolution since
reducing the probe size in diffraction space increases its size in
real space. The capacity to accurately detect disk position while
opening up the aperture size is therefore highly desirable if high-
spatial resolution is required.
In the third column of Fig. 5b, c (3.4 mrad probe), the disks

begin to show significant intensity gradients within the disks, with
higher intensities closer to the origin. This leads to significant
positive systematic error in the principal strains (ϵxx and ϵyy) for the
correlation estimates. This is likely because the correlation-
estimated disk positions are slightly biased towards the origin,
leading to a smaller estimated reciprocal lattice and thus positive
real space strains. This effect should not modify the results for
either shear strain or rotation, and indeed both of these quantities
show low error. By contrast, the FCU-Net predictions show low
systematic errors for all 4 components of the strain tensor,
demonstrating the robustness of the FCU-Net approach to
variations in disk intensities. Both methods show fairly low
random errors of 0.10% and 0.13% for correlation and FCU-Net,
respectively.
In the final column of Fig. 5b, c (12 mrad probe), the disks have

expanded to create significant overlap, a condition required for
atomic-resolution imaging, but which typically thwarts traditional
template matching. The resulting systematic errors are very high,
approximately −1.1%, and significant variation over the field of
view is visible in all correlation measurements. FCU-Net, in spite of
being trained on images with probe semiangles up to a maximum
of 4 mrads, performs fairly well on this data, with systematic errors
~5 times lower than the correlation method. We ascribe this to the
training dataset containing many crystals and orientations that
produce disk overlaps for 4 mrad probes (and below), such that
the network has learned to interpret the complex interference

patterns formed in the presence of overlapping disks. The random
errors are also lower for the FCU-Net compared to the correlation
method, and the predicted strains show less variation across the
field of view. Overall, the FCU-Net produces more accurate and
precise strain predictions over a wider parameter range than the
correlation method, including experimental conditions it was not
exposed to during training. We also note that the strain
measurement accuracy using FCU-Net model may be further
improved by fine tuning the pre-trained model with application-
specific diffraction data.

Strain maps from experimental SiGe multilayer stacks
Finally, we compare the two strain calculation methods on a thick,
non-uniform multilayer stack of alternating layers of Si and a
mixture of Si and Ge grown epitaxially. A virtual image
constructed from the center disk is shown in Fig. 6a. We observe
significant contrast differences over the field of view, correspond-
ing to variation in the sample’s thickness, composition and surface
morphology. We have estimated the local composition of the
sample by using STEM-EELS, shown in Fig. 6b. The mean
composition of the 5 stripes from STEM-EELS is Si0.82Ge0.18. We
estimate that the average thickness of the sample is ≈ 110 nm,
using the t/λ method65 applied to the pure Si regions and are
therefore in the multiple scattering regime66. The local relative
thickness is plotted in Fig. 6c, showing a relative thickness
variation of about 20%.
We plot examples of the diffraction patterns in Fig. 6d, from 5

regions marked in Fig. 6a. We see significant variation in the fine
structure of the diffracted disks, especially when comparing
regions of different compositions. The round shape of many of the
disks are significantly degraded due to the thickness and non-
uniformity of the sample. Finally, the center-of-mass of the
diffraction pattern intensities changes over the field of view,
indicating that bending of the sample had lead to slightly different
tilt conditions for different probe positions. We have used both
cross-correlation and FCU-Net to estimate the Bragg disk
positions, with examples shown in Fig. 6e, f, corresponding to
the diffraction patterns shown in Fig. 6d. The resulting disk
positions are noticeably less regular for the correlation method,
and many disks at higher diffraction angles close to the image
edges are too weak to be identified. This is in contrast to the FCU-
Net predictions, which returns a highly regular lattice of disk
positions, with only a few weak false positives visible at the image
boundaries.
The strain maps along the principal directions calculated with

the correlation method are shown in Fig. 6g, and those calculated
using the FCU-Net predictions are shown in Fig. 6h. In both cases,
the reference lattice was taken to be the mean lattice vectors from
the substrate region on the right of the field of view. Figure 6i
plots line profiles of the mean strain values perpendicular (left)
and parallel (right) to the multilayers. In the parallel direction, we
expect the strain will be ϵyy= 0 everywhere, due to the epitaxial
nature of the layers. The correlation strain shows significant
deviation from 0 strain, and moreover, is not flat over the imaged
area, with deviations ranging from approximately –0.4% on the
left side, to +0.6% in the center, and back down to 0% in the
substrate region on the right hand side. The FCU-Net strain ϵyy by
contrast is comparatively flat, and ranges from approximately
+0.2% on the left side, to 0% strain in the substrate on the right
hand side. We note that while the RMS error in strain ϵyy
calculation across all the multilayer stacks is ~0.3% with cross-
correlation approach, it is ~0.15% from the FCU-Net prediction.
In the normal direction, we can compare the strain ϵxx

computed with cross-correlation and with FCU-Net to the strain
measured using independent STEM-EELS measurements. The
STEM-EELS result is shown as a black line in Fig. 6i. The FCU-Net
line profile closely approximates the STEM-EELS profile, capturing
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most of the sharp transitions at the interfaces, and the roughly flat
profiles within each layer. The cross-correlation result fares much
worse, capturing the ϵxx structure of the three right-most layers
roughly correctly, but then deviating wildly on the left side of the
scan region, possibly due to local sample mistilt. The correlation
result also deviates from a flat profile in the substrate on the right,
making identification of a reference lattice difficult. For the strain
ϵxx, FCU-Net produces a RMS error of ~0.25% across the sample
leading to almost three-fold increase in the accuracy from cross-
correlation, which produced a RMS error of ~0.72%. This example
highlights common pitfalls of traditional template matching in the
presence of complex, nonlinear electron scattering signals, and
the capacity of the FCU-Net model to achieve accurate disk
localization measurement in spite of these challenges.
In summary, we have developed a deep-learning network

(FCU-Net) for quantitative measurements of Bragg disk posi-
tions from electron diffraction patterns. Our networks have
been trained with over 200,000 unique, simulated diffraction
patterns with thicknesses ranging from 2 to 50 nm thick,
covering more than 1000 distinct crystal systems over many
orientations and microscope parameters. We found that the

resulting Bragg disk position predictions from the FCU-Net
network were substantially more accurate than a conventional
template matching correlation method. We tested the FCU-Net
predictions for crystalline lattice strain mapping, using both
simulated and experimental 4D-STEM datasets. In both cases,
we found that the FCU-Net predictions were substantially more
robust against signal variations due to mistilt of the sample and
multiple scattering due to sample thickness. We have inte-
grated FCU-Net into the open-source 4D-STEM analysis python
library py4DSTEM, providing free access and use of the network,
and a complementary suite of tools for subsequent analysis of
the measured structure factors, to the electron microscopy
community. All of our simulated and experimental datasets,
source codes, and trained networks are freely available in open-
source repositories. The improved accuracy and precision of
Bragg disk measurements using FCU-Net, even in the presence
of complex signals involving thick samples and multiply
scattered electrons, can provide widespread benefits in 4D-
STEM application such as strain, phase, and orientation
mapping, and in quantitative electron crystallography.

Fig. 6 Experimental strain and composition characterization of a Si-Si0.87Ge0.13 multilayer stack. a Virtual bright field calculated from
center disk. b Composition and c relative thickness, estimated from STEM-EELS. d Diffraction patterns corresponding to the probe positions
marked in (a), with estimated Bragg disk positions from e correlation template matching and f FCU-Net. g Strain maps measured from
correlation template matching. h Strain maps measured from FCU-Net. i Mean strain values parallel to the multilayer normal direction, for
correlation, FCU-Net, and estimated from the STEM-EELS composition. Scale bars are equal to 10 nm.
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METHODS
Figure 1 shows a flow chart of the methods we use to invert STEM
diffraction patterns into quantitative structure factor positions and
amplitudes. First we generate a library of simulated dynamical
diffraction data (Fig. 1a). We selected thousands of unique
material systems that span a wide variety of crystallographic
prototype systems, and simulated the CBED patterns at various
thicknesses, tilts, and microscope conditions using the multislice
algorithm67,68. The projected structure factors are then computed,
including the effect of any excitation error by evaluating the
distance of the projected potentials from the Ewald sphere.
Simulated data that will be used for training is then augmented
with noise profiles, which mimic real experimental conditions. The
network is then trained using the noise-augmented simulated
data. Figure 1c overviews the input, architecture, and output of
the FCU-Net deep-neural network used to predict the (projected)
structure factor positions from the input diffraction patterns and
electron probe. Figure 1d–f show the typical inference stage,
where we use the pre-trained FCU-Net model to predict the
underlying structure factor positions and amplitudes from
experimental diffraction patterns.

Dynamical diffraction library simulations
To build a dynamical diffraction library for the AI/ML training, we
implemented an automated pipeline, which selects the crystal
structures, and simulates CBED patterns and the underlying
projected structure factors with a variety of experimental
parameters. The dynamical diffraction library generation starts
with building a materials database. To judiciously select crystal
structures of interest for our problem, we initially compare
≈139,000 crystal structures and compositions from the materials
project (MP) database69 with more than 500 crystallographic
prototypes collected from the AFlow library (Fig. 7)70,71. Crystal-
lographic prototypes are an alternative and popular crystal
structure classification paradigm. Figure 7a shows the distribution
of the crystal systems from the MP database, grouped according
to their structural similarity with crystallographic prototype
systems. We presented the first 250 prototype systems, as shown
in Fig. 7a, which cumulatively span ~95% of the materials systems
from materials project database. We sampled ~1000 unique
crystal systems following the distribution, presented as a blue line
in Fig. 7a.

Figure 7 b–e plots the distribution of atomic number space of
the crystal structures, which are structurally similar to four
different example prototype systems—CaTiO3, FeB, Fe3C, and
Zn3P2. As evident from the distribution in panel b–e, the selected
materials systems have diverse range of constituent atomic
elements. Following the crystal system extraction, we simulated
the CBED patterns and underlying structure factors using the
multislice algorithm67,68, as implemented in the Prismatic
code72,73.
From these simulations, the corresponding ground truth

structure factors are calculated from the projected atomic
potentials for each diffraction pattern. This is achieved by first
transforming atomic potentials into 3D Fourier space, applying a
2D Tukey window function in the projection plane, and 2D Fourier
downsampling to attain the desired output resolution in x and y. A
Gaussian weighted filter is applied along z-axis (the beam
direction) with a standard deviation of 0.05 Å−1 to select the
structure factors close to the projection slice. Finally, the
projection is summed along z-axis to generate the ground truth
structure factors. Note that these structure factor images are
depend linearly on the thickness of the sample. We simulated
CBED patterns and the underlying structure factors for all the 1000
unique crystal systems for thicknesses between 2 to 50 nm with an
interval of 2 nm. For each crystal system we simulated diffraction
patterns for the crystal orientated along 5 different low-index zone
axes, and 5 random orientations. We simulated diffraction patterns
for each orientation with probe semiangles of 1, 2, and 4mrads. In
total this yielded diffraction library of 750,000 diffraction patterns,
each with a unique combination of crystal system, sample tilt,
specimen thickness and probe convergence angle. For each of the
750,000 diffraction patterns the probe and structure factors were
also created. We have implemented a parallelized framework for
the data simulation, training data generation, and training steps74.

Conventional Bragg disk position measurements
Determining the Bragg disk positions and intensities in each
diffraction pattern is an important step, which allows subsequent
measurement of parameters such as phase, orientation, and strain
in crystalline and semi-crystalline materials. Cross-correlative
template matching is one method routinely used to measure
the positions of Bragg disks10,28, matching to either raw diffraction
patterns or edge-filtered images29. In the template matching

Fig. 7 Crystal system extraction from the materials project database. a Number of crystal systems chosen from each prototype systems for
the training dataset. b–e Atomic number distribution of crystal systems belonging to the same prototype system as b CaTiO3, c FeB, d Fe3C,
e Zn3P2.
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approach, the Bragg disk positions are calculated in two steps—
first, we collect the undiffracted probe over vacuum to create our
template for matching. Next we perform cross-correlation
between the diffraction pattern and the probe template in Fourier
space to find all disk positions in a given diffraction pattern. In this
work, we use the disk detection, lattice fitting, and strain mapping
tools implemented in the open-source python package
py4DSTEM23.

Bragg disk detection using Fourier-space deep learning
We implement three variants of CNN architecture-U-Net56, and its
modified variants with spectral parameterization adapted from
Ripple et al.62 and fully complex variant, FCU-Net adapted from
Trabelsi et al.63. Figure 8a presents the model architecture of
U-Net and its hybrid variants with fully complex convolution and
spectral pooling layers. The FCU-Net architecture implemented in
this work considers two inputs: the probe template and the CBED
diffraction pattern. To make the FCU-Net model aware of the
vacuum probe template, we implement a preprocessing layer,
which multiplies the Fourier transform of the diffraction pattern
with the probe template. Finally, we implement the 2D complex
convolutional layer, which is the building blocks for the FCU-Net,
to teach the complex space information from the Fourier
transformed image from the preprocessing layer. Following a
combination of complex convolutions, pooling and upsampling
operations the final output from the FCU-Net is transformed using
inverse Fourier transform operation, before it is compared with
the ground truth atomic potentials.

Complex convolution
We implement complex convolutional layers by independently
initializing real and imaginary components of the 2D convolu-
tional kernel (Fig. 8b), that is, we consider the real and imaginary
parts of the complex numbers as logically distinct real-valued
numbers. Akin to the 2D real-valued convolution operator, we
convolve a complex kernel matrix (K= KR+ iKI); KR, KI 2 Rm=2´m=2

with the complex input feature map (F= FR+ iFI); FR, FI 2 Rm=2 ´N ,
where m/2 is the size of the complex kernel weight and N is the
number of pixels in the input image (feature map). The complex
convolution operation can be formulated as:

K � F ¼ KR � FR � KI � FIð Þ þ iðKI � FR þ KR � FIÞ; (5)

We can use a matrix notation to represent the complex
convolution operator:

ReðK � FÞ
ImðK � FÞ

� �
¼ KR �KI

KI KR

� �
� FR

FI

� �
; (6)

Out of the variety of options available for activation functions for
complex convolutions, we have chosen to use the complex
rectified linear unit (CReLU) function such that for any complex
number z:

CReLUðzÞ ¼ ReLUðReðzÞÞ þ i ReLUðImðzÞÞ; (7)

Trabelsi et al. recently compared different variants of ReLU
functions for complex operators, and found thatCReLU(z) had the
best performance63. In our tests, we found CReLUðzÞ to be the
preferred nonlinear activation function, as it can distinguish
correlations from the complex convolution operation into four

Fig. 8 FCU-Net network architecture. a Architecture of the neural network implemented to predict pixel-wise regression maps of the
projected atomic potential. b Complex convolution operation performed on CBED images cross-correlated with vacuum probe template.
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distinct region based on if theReðzÞ and ImðzÞ are strictly positive
or negative. For deep networks such as FCU-Net, this provides the
required flexibility and nonlinearity to the network by allowing
complete manipulation of the phase information at each layer of
the network.

Spectral pooling
To implement the U-Net with spectral parameterization we
replace the max-pooling layers typically used in U-Net models
with spectral pooling layers as we find that this reduces the
introduction of artifacts and nonlinearity, resulting in a more
stable and accurate prediction from the network. Where max-
pooling layers down sample the image in real space, spectral
pooling operates in the frequency domain. Spectral pooling in its
original form as described by Rippel et. al.62, transforms an image
to Fourier space by applying a fast Fourier transform operation
(FFT), after which it is cropped in Fourier space and transformed
back to real space by an inverse FFT such as:

x 2 C=RM ´M !FFT ~x 2 CM ´M !Crop ~x 2 CN ´N !inv FFT x 2 CN ´N , where x
and ~x are the input and Fourier transformed image, respectively, N
and M correspond the number of pixels in the image, with N <M.

Training FCU-Net
We train the fully complex FCU-Net network on the simulated sets
of images composed of a vacuum probe, a CBED pattern, and the
ground truth structure factors, for different material systems at
different sample thicknesses up to 50 nm. To make FCU-Net
robust against various experimental conditions, we augment the
simulated images with several forms of noise typically found in
4D-STEM data: (i) elliptical distortion and (ii) random translations
(x,y pixel shifts) of the diffraction patterns, (iii) incoherent
backgrounds modeled as plasmonic signal, (iv) shot (counting)
noise using Poisson statistics, and (v) random bright (hot) and dark
(dead) pixels to simulate the effect of X-rays and detector pixel
errors.
For the final training, we randomly sampled ~200,000 unique

training (~20,000 test) triplets from the diffraction pattern library.
Each triplet contained a vacuum probe and a CBED pattern, used
as the training inputs and the structure factors for the training
output. Table 2 summarizes the hyperparameters considered
during the FCU-Net training. Before the final training iteration, we
implement a high-throughput hyperparameter optimization
scheme using RayTune python library for deep learning75. A
random subset of the training data was used during hyperpara-
meter tuning, as a compromise between accuracy and the
computational overhead. Following the hyperparameter optimiza-
tion, we perform the final round of training iterations for the FCU-
Net on 8 NVIDIA Tesla V-100 (16 GB VRAM) GPU nodes using a
distributed Tensorflow strategy to accelerate the training perfor-
mance76. All training and test runs for this work were performed
on the super-computing facility (Cori GPU clusters) at the National
Energy Research Scientific Computing Center (NERSC).

Integration with py4DSTEM
Bragg disk detection using the trained FCU-Net model is
implemented in the py4DSTEM python data analysis toolkit
developed by Savitzky et al.23. The workflow for AI/ML guided
disk detection using py4DSTEM starts with loading a 4D dataset
and the corresponding vacuum probe. These inputs are passed to
a function, which feeds them into the trained FCU-Net model,
which returns the predicted disk positions. Currently we host the
latest (and previously archived versions) of pre-trained model
weights on a cloud location and which is updated periodically
with new weights with improved test performance. When called,
the py4DSTEM AI/ML disk detection function will search for the
latest FCU-Net weights and automatically download them prior to
disk detection. Once the prediction is completed, we convert the
predicted output (a 2D image-like array of structure factors) to a
set of M peaks defined by the values ðqxm; qym; ImÞ, which can be
used with any of the existing downstream analysis modalities built
into py4DSTEM.

Strain mapping
Strain mapping was performed using py4DSTEM. Using the
measured disk positions, either from FCU-Net predictions or
cross-correlation, we fit the lattice vectors at each beam position.
A reference lattice is chosen, and the difference between the
reference and local lattice vectors are then used to calculate the
infinitesimal strain tensor

ϵ ¼ ϵxx ϵxy

ϵyx ϵyy

� �
(8)

where ϵxx and ϵyy are the strain along the x and y directions, and
ϵxy is the shear strain. We additionally calculate θ, the rotation of
the local lattice relative to the reference lattice. The selection of
reference lattice is specified for each strain map computed. More
details can be found in23,28.

Simulated diffraction of SiGe multilayers
In order to test the robustness of our network for realistic samples,
we perform simulations of thick samples, which incorporate
multiple scattering of the electron beam. The sample geometry
we used is a multilayer stack along the [011] direction, composed
of alternating Si and Si0.5Ge0.5 layers, on a Si0.75Ge0.25 substrate,
where each phase has diamond cubic structure. For ease of
comparison of our measured strain values with the ground truth,
we used slightly different lattice constants from known experi-
mental values, setting the substrate to have a lattice parameter of
5.6034Å, and the multilayers to have precisely ±1% strains relative
to the substrate.

Experimental diffraction of SiGe multilayers and h-BN films
Experimental 4D-STEM datasets were acquired using the TEAM I
instrument at the National Center for Electron Microscopy facility
of the Molecular Foundry, a double aberration corrected Thermo
Fisher Titan fitted with a Gatan Continuum energy filter and K3
direct electron detector. The K3 detector was operated in electron
counting mode. Electron diffraction patterns were acquired in
energy-filtered mode with a 15 eV slit centered on the elastic
energy to suppress background noise from inelastic scattering.

Hexagonal-boron nitride. In order to obtain a reference dataset
from a thin, single crystal material with minimal characteristic
strain we used thin a flake mechanically exfoliated from a single
crystal of hexagonal-boron nitride. This flake was transferred to a
silicon nitride TEM grid for 4D-STEM experiments. Multiple 4D-
STEM datasets were acquired at an 80 kV accelerating voltage
using four different apertures to compare algorithmic perfor-
mance under various experimental conditions. Three circular

Table 2. Selected hyperparameters for FCU-Net deep-neural network.

Hyperparameters

Batch size 256

Filter size 32

Filter depth 4

Dropout rate 0.3

Activation CReLU
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apertures were used, with convergence semiangles of 0.86, 3.4,
and 12mrad, and one bullseye-patterned aperture was used27,
with a 3.4 mrad convergence semiangle. For each aperture, data
was acquired with a 50 ms dwell time, step size of 100Å, and scan
size of 112 × 108 probe positions. Diffraction patterns were binned
4 x 4 after electron counting.

Si-Si/Ge multilayers. In order to obtain an experimental dataset
with a large and known strain, we used a silicon/silicon-
germanium “MAG*I*CAL” calibration sample obtained from Ted
Pella, Inc. The sample consists of a Si wafer with several layers of
~10 nm of Si/Ge mixture grown epitaxially. The sample is prepared
for TEM as a polished cross-section with the [110] zone axis normal
to the foil. Data was acquired at a 300 kV accelerating voltage and
1.3 mrad convergence semiangle, with a step size of 10Å and a
scan size of 200 x 50 probe positions.
To obtain an independent measurement of the sample strain,

we also acquired an electron energy loss spectrum (EELS) dataset
from the same region of the sample. Analysis of the EELS data
showed the average thickness to be approximately one inelastic
mean free path, corresponding to an estimated thickness of
110 nm. Chemical analysis showed the Si region to be pure Si, and
the SiGe alloy region to have an average composition of 18% Ge.
From this chemical analysis we can derive the expected strain in
the SiGe layers.
First, we use Vegard’s law, which posits that the strain depends

linearly on the composition xSi77. The Si0.82Ge0.18 layers have a
larger lattice constant, and thus will expand relative to the Si layers
in the x direction. As the multilayers are epitaxial, the Si0.82Ge0.18
layers are compressed in the multilayer interfacial plane in two
directions, which will lead to an additional expansion given by the
Poisson’s ratio multiplied by two. The overall strain profile can
therefore be estimated as

ϵxx ¼ aGe
aSi

� 1

� �
ð1� xSiÞð1þ 2νÞ; (9)

which is plotted in Fig. 6i, using literature values for the cubic
lattice constants of Si and Ge of aSi= 5.54 and aGe= 5.66 Å,
respectively78, and for the Poisson’s ratio ν of Si and Ge of ~0.275
in the (001) direction79.

DATA AVAILABILITY
Dynamical diffraction library generation tool and the simulated training dataset are
available upon reasonable request.

CODE AVAILABILITY
Codes related to FCU-Net model, data preprocessing and augmentation can be
found in crystal4D repository and are available as open-source package. Distributed
Hyperparameter tuning pipeline using rayTune can be found at https://github.com/
AI-ML-4DSTEM/4D-OPTIMIZE/tree/nersc_ray. Disk detection using AI/ML (FCU-Net) is
implemented as a new functionality in py4DSTEM 0.12.x. The simulated and
experimental strain measurements performed in this paper and the required 4D-
STEM dataset are available as tutorial notebooks and can be accessed at https://
github.com/py4dstem/py4DSTEM_tutorials/tree/main/notebooks/version_0.12/
strain_aiml, and will be updated for future releases of py4DSTEM.
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