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Abstract. Ptychography is a popular imaging technique that combines diffrac-

tive imaging with scanning microscopy. The technique consists of a coherent

beam that is scanned across an object in a series of overlapping positions, lead-
ing to reliable and improved reconstructions. Ptychographic microscopes allow

for large fields to be imaged at high resolution at additional computational

expense. In this work, we explore the use of the fast Partial Fourier Trans-
forms (PFTs), which efficiently compute Fourier coefficients corresponding to

low frequencies. The core idea is to use the PFT in a plug-and-play manner to
warm-start existing ptychography algorithms such as the ptychographic itera-

tive engine (PIE). This approach reduces the computational budget required to

solve the ptychography problem. Our numerical results show that our scheme
accelerates the convergence of traditional solvers without sacrificing quality of

reconstruction.

1. Introduction. Ptychography is a coherent diffraction imaging (CDI) technique
used across various fields including materials science [12, 13, 24], biology [18, 29],
and x-ray crystallography [7]. Originally developed to enhance resolution in elec-
tron or x-ray microscopy, ptychography replaces single-element detectors with two-
dimensional array detectors and integrates diffractive imaging with scanning mi-
croscopy. In this process, a coherent beam is systematically moved over an object
in a pattern of overlapping positions, linking information across successive diffrac-
tion patterns (refer to Fig. 1). In conventional single-pattern CDI, the application
of appropriate finite support constraints is essential for the effectiveness of standard
algorithms such as Error Reduction [10], Hybrid Input Output (HIO) [8], gradient-
based algorithms [5], Relaxed Averaged Alternating Reflections [15], and Saddle
Point Optimization [17,32]. In ptychography, prior knowledge of scanning positions
inherently provides these constraints, resulting in methods that are quicker and
more reliable than those used in single-pattern CDI.

The extensive use of ptychography has spurred significant research into its recon-
struction techniques. The extended Ptychographic Iterative Engine (ePIE) [16] is
one of the most favored methods, involving alternating projections onto non-convex
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Figure 1. Illustration of the ptychography experiment with three
overlapping scans.

modulus constraint sets, and has become increasingly popular in the optics field.
Mathematically, PIE functions as a projected steepest descent algorithm applied
to a specific objective function. Other established methods include conventional
gradient-based techniques and the Wirtinger Flow [5, 37], which employs a spec-
tral method for initial setup. Another well-known method, called PhaseLift [4],
reformulates the phase retrieval challenge as a convex optimization problem, but
requires solving for a significantly larger number of unknowns, becoming imprac-
tical for large-scale applications. Despite considerable efforts, solving large-scale
ptychographic phase retrieval remains a formidable challenge due to the complexity
of handling high resolution, high overlaps, and small scanning beams, all of which
contribute to vast amounts of intricate data.

1.1. Our contribution. In this work, we focus on large scale ptychography prob-
lems where even applying the FFT is considered computationally taxing. In partic-
ular, we explore the use of recent work on fast partial Fourier transforms (PFTs) [22]
as a warm up mechanism within the ePIE algorithm to accelerate convergence and
time-to-solution of large-scale ptychographic phase retrieval problems. See Figure 2
for an illustration of the PFT and Section 3.1 for more details. The core idea is
to let the PFT-based ePIE algorithm capture the large features from the low fre-
quencies in the initial iterations of ePIE, followed by standard FFT-based ePIE
to capture the fine details of the reconstruction. Our experiments show that in-
cluding the PFT within existing algorithms such as the ePIE 1) does not reduce
the quality of the reconstruction, and 2) helps accelerate convergence by improv-
ing runtimes for large-scale problems. Importantly, in order to be able to use the
PFT in gradient-based algorithms, it is necessary to be able to differentiate through
the PFT operator. To this end, we also provide a PyTorch [23] implementation of
the PFT in order for users to be able to differentiate through the operator using
automatic differentiation (AD) [33].

2. Ptychography background. Let z ∈ Cn be the object of interest and dj ∈ Rm

be the observed data (or intensities) measured from the jth probe, where n and m
are the dimensions of the vectorized object and data resolution images, respectively.
A ptychography experiment is modeled by

dj = |F(ω ⊙Qjz)|, j = 1, . . . , N, (1)

where F ∈ Cm×m is the discrete Fourier operator, ω ∈ Rm is the localized probe,
⊙ represents the Hadamard (or element-wise) product, and Qj ∈ Rm×n is a matrix
with binary elements extracting a patch (with the index j and size m) from the
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FFT (512× 512) PFT (128× 128)

Figure 2. Illustration of coefficients computed by the PFT. On
the left, we show the full FFT applied to an image of size 512×512.
The red square shows the frequencies that the PFT computes on
the right without requiring one to take the FFT of the original
image and then cropping as one might naively attempt.

entire sample. The blind ptychography problem (BPP) is an inverse problem and
can be stated as:

Find ω and z such that dj = |F(ω ⊙Qjz)| for j = 1, . . . , N . (2)

In practice, the observations dj can contain noise, usually Poisson, as is common
in most inverse problems. In our experiments, we will also consider the (non-blind)
ptychography problem where the probes are known [16]. This model can be realistic
in some settings where domain scientists know the probing mechanism a priori. We
also note that the above is a specific type of ptychography based on CDI; however
other forms of ptychography exist, e.g., Fourier Ptychography [38], and frequency-
resolved optical gating (FROG) [31]. While the techniques discussed in this work
can be applied to all of them, we will only discuss CDI-based ptychography for ease
of presentation.

2.1. The ptychographic iterative engine. As previously stated, the ePIE algo-
rithm is perhaps the most widely used algorithm in practice due to its simplicity.
It can be viewed as an alternating projection algorithm onto non-convex modulus
constraint sets that solve following feasibility problem. Let the jth measurement
constraint set and its corresponding projection operator be denoted by

Mω
j = {z ∈ Cn : |F(ω ⊙Qjz)| = dj} and

PMω
j
(z) = F−1 [dj ⊙ exp(iθ(F(ω ⊙Qjz)))] ,

(3)

where θ : C → [−π, π] returns the argument of a complex number and is applied
element-wise. The ePIE algorithm generates an approximation to problem by solv-
ing the following optimization problem

min
ω,z

Φ(ω, z) =
1

N

N∑
j=1

∥∥∥ω ⊙Qjz − PMω
j
(z)

∥∥∥2 . (4)

Letting zj = Qjz, the ePIE iterates are given by

zk+1
j = zkj − βω̄k

(
ωk ⊙ zkj − PMωk

j
(zkj )

)
, (5)
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ωk+1 = ωk − γz̄k+1
j

(
ωk ⊙ zk+1

j − PMωk
j
(zk+1

j )
)
, j = 1, . . . , N, (6)

where β, γ > 0 are positive scalars corresponding to step sizes generally chosen
to be small [27, 30] and ω̄ is the the complex conjugate of ω. The above iterates
correspond to performing gradient descent updates on Φ with respect to zj and ω in
an alternating manner [36]. Importantly, we note that to recover z from the latest
zj , j = 1, . . . , N iterates, the pixels extracted (or illuminated) by Qj are updated in
z. Finally, we remark that when the probe ω is known, then the problem is known
as a non-blind ptychographic retrieval problem, and the corresponding algorithm
simply uses (5) and is known as PIE.

3. A hybrid ePIE algorithm. In this section, we describe the PFT and present
our proposed hybrid ePIE algorithm.

3.1. The fast partial Fourier transform (PFT). As seen in Section 2, the
key ingredient in the blind (and non-blind) ptychography problem is the discrete
fast Fourier transform (FFT), F . Although the discrete FFT is fast and can be
applied in O(n log n) complexity, it can be the primary bottleneck of reconstruction
algorithms such as ePIE when the size of the image is extremely high (n ≫ 1).

Recently, an algorithm for approximating the FFT, called the fast partial Fourier
transform (PFT) [22], was introduced to speed up the computation of the FFT with
applications to time series. The primary motivation for the PFT arises from ap-
plications where the the resulting data from the FFT in the frequency domain is
sparse i.e., the Fourier coefficients corresponding to high frequencies are predomi-
nantly small or equal to zero, and not all Fourier coefficients are necessary for the
task at hand [22]. Indeed, computing the FFT and then cropping the necessary
coefficients still requires a cost of O(n log n). To this end, the core idea of the PFT
is to have a fast mechanism that truncates the high frequencies from the FFT in an
efficient manner; in particular, the application of the PFT can be done at a cost of
O(n+ m̃ log m̃) where m̃ ≪ n.

For ease of presentation, we describe the one-dimensional PFT; however, a two-
dimensional version is a straightforward extension and its description can be found
in Appendix A. To implement the PFT, there are two phases, an offline phase, which
is used to pre-compute the polynomial approximation (see Algorithm 1), and then
an online phase which allows one to apply the PFT on the fly (see Algorithm 2).
As we are only concerned with ptychographic reconstructions, we are primarily
concerned with the online phase of the PFT application and also leave a more
thorough derivation of the offline phase in Appendix A.

3.1.1. PFT offline configuration phase: Approximating twiddle factors. While a
thorough derivation and description of the PFT is presented in [22], we present
parts of the derivation in this work for completeness. Recall that the Discrete
Fourier Transform (DFT) is given by:

ẑt =
∑
k∈[n]

zke
(−2πitk/n) (7)

where z ∈ Cn is an n-dimensional complex data vector and [n] = {0, 1, . . . , n− 1}.
We assume that n is a composite integer so that there exist p, q > 1 such that



FAST PARTIAL FOURIER TRANSFORMS FOR LARGE-SCALE PTYCHOGRAPHY 5

n = pq. The Cooley-Tukey algorithm [6] rearranges the above expression as:

ẑt =
∑
k∈[p]

∑
j∈[q]

zqk+je
−2πit(qk+j)/n =

∑
k∈[p]

∑
j∈[q]

zqk+je
(−2πitj/n) · e(−2πitk/p). (8)

Further modification of the above expression yields

ẑt =
∑
k∈[n]

zke
−2πit(k−q/2)/n · e−πit/p

=
∑
k∈[p]

∑
j∈[q]

zqk+je
−2πit(j−q/2)/n · e−2πitk/p · e−πit/p.

(9)

Here, [q] corresponds to the set {0, 1, . . . , q − 1}. The key idea behind the PFT
is to use a polynomial to approximate the exponential eπix. Afterwards, one can
re-scale the polynomials and use exponent laws to get an approximation of each of

the twiddle factors in the collection
{
e−2πit(j−q/2)/n

}q−1

j=0
.

To choose the approximating polynomial of the exponential function eπix, we
consider the choice of hyper-parameter p given n and desired output size m̃. Let
∥ · ∥R be the uniform norm (supremum norm) restricted to a set R ⊆ R, that is,
∥f∥R = sup {|f(x)| : x ∈ R}. Then, given non-negative integer α, and non-zero real
number ξ, we define the polynomial Pα,ξ as the best approximation to eπix out of
the space Pα of polynomials on R of degree at most α under the restriction |x| ≤ |ξ|
as:

Pα,ξ = argmin
P∈Pα

∥∥P (x)− eπix
∥∥
|x|≤|ξ| . (10)

We remark that such polynomials exist and are unique and there are minimax
algorithms that can be used to compute them [9]. The goal is to choose ξ ∈ R such
that |m̃| ≤ |ξ|. Given a tolerance ε > 0 and a positive integer r ≥ 1, we define
ξ(ε, r) to be the scope about the origin such that the exponential function eπix can
be approximated by a polynomial of degree less than r with approximation bound
ε:

ξ(ε, r) := sup
{
ξ ≥ 0 :

∥∥Pr−1,ξ(x)− eπix
∥∥
|x|≤ξ

≤ ε
}
, (11)

where we express the corresponding polynomial as Pr−1,ξ(x) =
∑

j∈[r] wε,r,jx
j . Us-

ing a minimax approximation algorithm [9], precompute ξ(ε, r) and {wε,r,j}j∈[r]

for several tolerance ε’s (e.g. 10−1, 10−2, . . . ) and positive integer r’s (the authors
of [22] choose values in the range 1 ≤ r ≤ 25). When n, m̃, p, and ε are given, we
choose the minimum r satisfying ξ(ε, r) ≥ m̃/p. Following the preceding argument,
one can then show that the re-scaled polynomial Pr−1,ξ(ε,r)(−2t(j − q/2)/n) ap-

proximates e−2πit(j−q/2)/n on |t| ≤
∣∣∣ n
2(j−q/2) ·

m̃
p

∣∣∣ for each j ∈ [q] [22]. Noting that∣∣∣ n
2(j−q/2) ·

m̃
p

∣∣∣ = ∣∣∣ q
2j−q · m̃

∣∣∣ ≥ m̃ for all j ∈ [q], we have a polynomial approxima-

tion on |t| ≤ m̃ for each twiddle factor in the collection
{
e−2πit(j−q/2)/n

}q−1

j=0
, namely

the the re-scaled polynomials
{
Pr−1,ξ(ε,r)(−2t(j − q/2)/n)

}q−1

j=0
. Algorithm 1 shows

how to build the polynomial approximation1. The polynomial coefficients wϵ,r−1,j

are precomputed, and we obtain them from the code database of [22].

1The algorithm written here centers the PFT at 0 - this is all we need for our purposes. However,
with a minor modification, one may also compute the PFT centered at another coordinate [22]
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Algorithm 1 : Configuration (Offline) Phase of 1D PFT

Input: Input size n ∈ N, crop size m̃ ∈ N, divisor p ∈ N, and tolerance ε
Output: Matrices B ∈ Cq×r,W ∈ C(2m̃+1)×r, divisor p, and number of rows and

columns, q and r

1: q = n/p
2: r = min{r ∈ N : ξ(ε, r) ≥ m̃/p} ▷ degree of polynomial P approximating eπix within

tolerance ε
3: for (l, j) ∈ [q]× [r] do
4: x = (1− 2l/q)
5: B[l, j] = wε,r−1,j · xj ▷ Using precomputed wε,r−1,j

6: end for
7: for k = −m̃,−m̃+ 1, . . . , m̃− 1, m̃ do
8: W [k, j] = (k/p)j · e−πik/p ▷ Precompute remaining terms
9: end for

3.1.2. Online PFT computation. Substituting the approximating polynomial de-
scribed in Section 3.1.1 for the twiddle factors in (9) and performing some algebraic
manipulations, we can represent the summation as a matrix-matrix multiplication
C = Z ×B where Z ∈ Cp×q is the reshaped data vector z and B ∈ Cq×r is defined
in line 5 of Algorithm 1 followed by a series of FFT computations applied to the
columns of the resulting matrix C. Worth noting, the primary cost in Algorithm 2
arises from a) the matrix-matrix multiplication between a matrix Z ∈ Cp×q and
B ∈ Cq×r in line 2 and b) the application of the FFT on a vector of size Cp, which
is shown to have complexity O(n+ m̃ log m̃) [22, Theorem 3]. For thorough details,
we refer the reader to [22, Section 3.4]. Finally, we note that % in Algorithm 2
represents the standard integer modulus.

A hyper-parameter that needs to be chosen for the PFT computation is the
integer p such that n = pq. In our experiments, we are interested in the setting
where m̃ ≪ n as we wish to economically capture low frequency features when
deploying the PFT. In this case, the primary cost in Algorithm 2 occurs in the
matrix-matrix multiplication in line 2, which has complexity O(nr). Thus, it is
recommended that m̃/p be small so that the number r of approximating polynomial
terms decreases [22, Section 4.3]. As previously mentioned, a 2D implementation
of the PFT is a straightforward extension of the 1D PFT, where given an image of
size n1 × n2, we have to decide on m̃1, m̃2, p1, p2. In our experiments, we find that
choosing p1 = p2 = m̃1 = m̃2 = 64 is adequate for improved performance. In this
case, the resulting cropped image, has size 128×128 since the cropping is performed
from [−m̃1, m̃1]× [−m̃2, m̃2] from the center; we note that an FFT on an image of
size 128× 128 is trivial to compute.

3.2. Hybrid ePIE algorithm. We propose a hybrid ePIE algorithm that consists
of using a PFT-based ePIE as a “warm up” followed by the standard FFT-based
ePIE. The idea is to use the PFT-based ePIE to capture large features arising from
the low frequencies in a cheap manner. Indeed, while one may use the PFT in a
plug-and-play manner, we empirically observe that it is better to initially capture
the large features early on, and let the standard FFT-based ePIE algorithm capture
the fine details in later iterations.

To run the PFT-based ePIE, we convert the observed data dj , j = 1, . . . , N to
match the output dimension of FPFT. Considering the reshaped version of dj as a
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Algorithm 2 : Computation (Online) Phase of 1D PFT

Input: Vector z ∈ Cn, crop size m̃, and configuration results
B ∈ Cq×r,W ∈ C2m̃+1×r, p, q, r

Output: Vector ẑPFT of estimated Fourier coefficients of z in range [−m̃, m̃]

1: Z = z.reshape(p, q) ▷ reshape z into p× q matrix

2: C = Z ×B ▷ matrix multiply Z by B
3: for j ∈ [r] do

4: Ĉ[:, j] = FFT(C[:, j]) ▷ apply FFT to each column of C
5: end for
6: for k = −m̃,−m̃+ 1, . . . , m̃− 1, m̃ do

7:
ẑPFT[k] =

∑r−1
j=0

(
Ĉ[k%p, j] ·W [k, j]

)
▷ sum values of Ĉ (modulus p) times

W
8: end for

matrix, this can be easily done by cropping the centers of dj ∈ Rm1×m2 to generate

dcropj ∈ Rm̃1×m̃2 .

Algorithm 3 : Hybrid ePIE Algorithm

Input: Initial Guess z ∈ Cn1n2×1, crop size parameters m̃1, m̃2, observed data
dj ∈ Rm1×m2 for j = 1, . . . , N , stopping tolerances ϵPFT , ϵ, maximum number of

iterations nmaxiters,PFT , nmaxiters

Output: Solution zopt

1:
Construct cropped data dcropj ∈ Rm̃1m̃2×1 from
dj

▷ crop centers of dj , j = 1 . . . , N

2: run PFT-based ePIE iterates (5) - (6) using dcropj , j = 1, . . . , N until convergence to
obtain zPFT

3: run FFT-based ePIE iterates (5) - (6) using dj , j = 1, . . . , N and zPFT as an initial
condition until convergence to obtain zopt.

4. Numerical experiments. We consider the non-blind and the blind ptychogra-
phy problem. For each problem type, we investigate the quality of reconstructions
on a small experiment with image size 512 × 512 and study the quality of local
minima. Indeed, the PFT is only worth employing when the runtime over the
FFT is reduced - this is not as obvious in the small experiments. To this end, we
demonstrate the computational benefits of using the PFT, and in particular the
proposed hybrid PIE, on a large experiment with image size 16384 × 16384. For
all experiments, we assume m = n, i.e. square images. We work with two images,
the baboon and cameraman. We set the baboon image to be the magnitude and
the cameraman to be the phase of the ground truth, as shown in Figure 3. Here,
the magnitude is chosen to have range [0, 1] and the phase is chosen to have range
[0, π/2]. As explained in Section 3.1, one wants p1 and p2 such that m̃1/p1 and
m̃2/p2 is small; in our case, we find that choosing m̃ = p = 64 is good enough
for all of our experiments. More details on the choice of hyperparameter p can be
found in [22, Section 4.3]. Finally, the stopping criteria considered in all algorithms
is ∥zk+1 − zk∥/∥zk∥. Following [22], we choose a tolerance of 10−7 in the com-
putation of the approximating polynomial in Algorithm 4. Our numerical results
are also based on a PyTorch implementation of the PFT that was translated from
that presented in [22]. The small-scale experiments (Sections 4.1.2 and 4.2.2) are
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True Magnitude True Phase

Figure 3. The ground truth used to simulate data in numerical
experiments. The baboon image is used as the magnitude and the
cameraman image is used as the phase of the object of interest.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Figure 4. Scanning positions generated by the illumination win-
dows described in Section 4.1.2. For the small problem where
n1 = n2 = 512 (Section 4.1.1), each illumination window Qi has
size 256 × 256 and shifts 128 pixels at a time. Similarly, for the
large-scale problem where n1 = n2 = 16384 (Section 4.1.4, each
illumination window Qi has size 8192× 8192 and shifts 4096 pixels
at a time. In both setups, there is a 50% overlap between consec-
utive probes.

run on a machine equipped with Intel Core i5-9400 CPU, 2.90GHz and 16GB of
RAM while large-scale experiments (Sections 4.1.4 and 4.2.3) are run on a Lambda
Vector machine with a AMD Threadripper Pro 3955WX processor containing 16
cores, 3.90 GHz, 64 MB cache, PCIe 4.0.

4.1. Non-blind ptychography.

4.1.1. Experimental setup. As explained in Section 2, the non-blind ptychography
experimental setup assumes ω is known. In this case, we use probes that resembles
an identity operator, that is, ω ⊙Qkz = Qkz, k = 1, . . . , N . Moreover, each probe
illuminates n

2 × n
2 pixels. That is, the illumination Qk ∈ Rn×n is a matrix that

satisfies

[Qk]i,j =

{
1 if pixel (i, j) is illuminated

0 otherwise.
(12)

The illumination window is shifted n
4 pixels at a time starting from the top-left

corner downward until it reaches the bottom-left corner. The probe is then shifted
upwards and then to the right until it reaches the top edge again. This scanning
procedure is continued until we have covered the entire image, and results in a
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a) z b) Magnitude of z c) Phase of z

Figure 5. Histogram of the final reconstruction relative errors.
The blue histogram shows the relative error frequency for PIE and
the orange histogram shows the relative error frequency for hybrid
PIE. a) shows the relative error of the reconstructed object, b)
shows relative errors of only the magnitude of the object, and c)
shows the relative errors of the phase of the object.

Magnitude SSIM Phase SSIM Magnitude PSNR Phase PSNR

Figure 6. Histogram of the final SSIM and PSNR values for the
reconstructed images. The blue histogram shows the SSIM/PSNR
for PIE and the orange histogram shows the SSIM/PSNR for hy-
brid PIE.

total of 9 probes with 50% overlap between adjacent probes (see Figure 4 for an
illustration).

4.1.2. Distribution of reconstruction quality. To test whether the proposed algo-
rithm 3 leads to improved reconstructions, we compare the distribution of relative
errors of the reconstructed images between the PIE and the proposed hybrid PIE
algorithms on small-scale images of size 512 × 512. We generate 150 reconstruc-
tions using both algorithms with uniformly random initial guesses (here, we choose
uniformly random in [0, 1] for the magnitude and [0, π/2] for the phase). We then
compute the relative error of the final reconstructions

||z − ztrue||
||ztrue||

(13)

where z is our current reconstruction estimate and ztrue is the ground truth. Sim-
ilarly, we also compute the relative errors, peak signal-to-noise ratio (PSNR) [21],
and structural similarity index SSIM [34] of the magnitude and phase to better
understand the quality of reconstructions.

Figure 5 shows the relative errors between a) the full object, b) the magnitude
of the object, and c) the phase of the object. The results show that the hybrid PIE
approach leads to a similar, if not slightly better, distribution of reconstructions
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PIE Phase PFT Warmup Phase Hybrid PIE Phase

PIE Magnitude PFT Warmup Magnitude Hybrid PIE Magnitude

Figure 7. Large-scale phase and magnitude reconstructions of the
FFT-based PIE (first column), PFT-based PIE warmup (second
column), and Hybrid PIE (third column. These reconstructions
are for the large-scale ptychography problem where n1 = n2 =
16384.

as the distribution of the traditional PIE. Similarly, Figure 6 shows a comparisons
of the distributions of magnitude and phase SSIM and PSNRs (note for this figure
that higher SSIM and PSNR is better).

4.1.3. Investigating overlap. We also investigate the effect of probe overlap on our
proposed hybrid approach, generating results using 25%, 50%, and 75% overlap
(see Appendix C). For these experiments, we use more realistic cell images to com-
pare four algorithms: PIE, Hybrid PIE, LBFGS [20], and Hybrid LBFGS. We
include LBFGS and its hybrid variant to demonstrate that our hybrid approach
generalizes beyond PIE alone. As expected, higher overlap leads to improved re-
sults, with both hybrid approaches demonstrating superior reconstructions across
all overlap percentages. Notably, the hybrid LBFGS approach also improves the
quality distribution of reconstructions, further validating the effectiveness of our
hybrid methodology (see Appendix C.2).

4.1.4. Large-scale reconstruction. To demonstrate the computational benefits of us-
ing a PFT-based PIE in the proposed hybrid algorithm, we run a larger experiment
where n1 = n2 = m1 = m2 = 16384, and m̃1 = m̃2 = p1 = p2 = 64, leading to a
cropped image of size 128×128. The degree of the approximating polynomial in this
setting is given by degrees r1 = r2 = 13, which is obtained from the precomputed
values ξ(ε, r) defined in Section 3.1.1. Here, we run the PFT-based PIE algorithm
until a tolerance of ϵpft = 10−2 or a maximum number of 50 iterations is reached.
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Figure 8. Objective function values (first column), phase relative
errors (second column), magnitude relative errors (third column),
and relative errors (fourth column) for a large-scale ptychographic
reconstruction explained in Section 4.1.1. The x-axis represents
time in minutes. Green dot represents the transition from the PFT-
based PIE to the FFT-based PIE in the hybrid algorithm.

0 100 200 300 400
Time (m)

0.0

0.2

0.4

0.6

0.8
Phase SSIM

PIE
Hybrid PIE
Hybrid Transition

0 100 200 300 400
Time (m)

11.5

12.0

12.5

13.0

13.5
Phase PSNR

PIE
Hybrid PIE
Hybrid Transition

0 100 200 300 400
Time (m)

0.0

0.2

0.4

0.6

0.8

Magnitude SSIM

PIE
Hybrid PIE
Hybrid Transition

0 100 200 300 400
Time (m)

10

12

14

16

18

Magnitude PSNR

PIE
Hybrid PIE
Hybrid Transition

Figure 9. SSIM and PSNR for PIE (blue) and Hybrid PIE (or-
ange) for the phase and magnitude over time (in minutes). The
green dot represents the transition from the PFT-based PIE to the
FFT-based PIE in the hybrid algorithm.

Afterwards, we run the standard FFT-based PIE until a tolerance of ϵ = 5×10−4 or
a maximum number of 100 iterations is reached. Here, we choose step sizes β = 10
for the FFT-based PIE and βPFT = 10−3 for the PFT-based PIE. These were cho-
sen tuned using a logarithmic gridsearch over the set {10−6, 10−5, . . . , 102, 103}, and
afterwards using a standard gridsearch starting from the currently chosen parame-
ter, e.g., 10−2, to the next order of magnitude, e.g., 10−1. The intuition for choosing
a higher tolerance for the PFT-based PIE is based on the fact that the PFT-based
PIE will primarily capture large features, whereas the FFT-based PIE needs more
iterations to capture fine details. For all reconstructions, we use total variation reg-
ularization [28] with parameters λ = 10−6 for the FFT-based PIE and λ = 102 for
the PFT-based PIE. These are the parameters that led to the lowest relative error
and were found over a logarithmic gridsearch over the set {10−6, 10−5, . . . , 102, 103}.
Interestingly, the PFT-based PIE benefits from larger total variation.

In Figure 7, we show the reconstructions of the magnitude and phase generated
by PIE, the initial PFT-based PIE, and the proposed hybrid PIE. In Figure 8, we
show the objective function values of the full reconstruction (first column), the phase
(second column), the magnitude (third column), and the relative errors (fourth
column). Here, the x-axis represents time in minutes. Similar results are shown in
Figure 9, where we only show the phase and magnitude structural similarity index
(SSIM) [34] and peak signal to noise ratio (PSNR) [26]. We observe that using the
PFT-based PIE as warm up leads to improved SSIM and PSNR on the phase and
magnitudes of the reconstruction.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Figure 10. Scanning positions of the illumination window de-
scribed in Section 4.2.1. Here, each probe illuminates a circle of
radius 175 pixels and shifts 150 pixels at a time, leading to roughly
50% overlap between consecutive probes.

4.2. Blind ptychographic retrieval.

4.2.1. Experimental setup. For the blind experiments, we follow a very similar setup
to that in [25]. We use the same images of the baboon and cameraman where the
baboon image is set to be the magnitude and the cameraman is set to be the phase
of the ground truth. We also set the range of the true phase to be [0, π

2 ] as before.
Following [25], we use circular probes for the blind ptychography problem and the

probe, ω is also to be reconstructed. Note this is a very different experimental setup
to that the nonblind setting. For a specified radius of pixels r, each illumination
window Qk ∈ Rn×n for k = 1, . . . , N is a matrix that satisfies

[Qk]i,j =

{
1 if pixel (i, j) lies within circle of radius r

0 otherwise.
(14)

Moreover, the true probe function in this experiment is given by

ω(x, y) = exp

(
−x2 + y2

2σ2

)
. (15)

where σ = 106. The probe is shifted 150n
768 pixels at a time starting from the top-left

corner to the right until it reaches the top-right corner. The probe is then shifted
downwards and then to the left until it reaches the left edge again. This scanning
procedure is continued until we have covered the entire image, and results in a total
of 16 probes with roughly 50% overlap between adjacent probes. An illustration
of the illumination window is shown in Figure 10 for the small-scale experiment
(Section 4.2.2) and in Figure 16 for the large-scale experiment (Section 4.2.3). We
remark, unlike in the non-blind case, there are nuances in the experimental setup
with circular illumination windows that do not allow for the exact same settings
when moving up to the large-scale setting. Moreover, following [25] due to the
circular nature of the probes, images need to be padded so that the entire image
can be covered by the probes. This leads to reconstructions that include the padding
(see Figure 13).

Finally, we remark that in this implementation of ePIE (5), (6), we follow the
techniques proposed in [25] where the probes, i.e., the value of j, are chosen uni-
formly at random with no replacement; that is, rather than choose j sequentially
in each iteration (as was done in the non-blind case), we choose j randomly until
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a) z b) Magnitude of z c) Phase of z

Figure 11. Histogram of the final reconstruction relative errors.
The blue histogram shows the relative error frequency for ePIE and
the orange histogram shows the relative error frequency for hybrid
ePIE. a) shows the relative error of the reconstructed object, b)
shows relative errors of only the magnitude of the object, and c)
shows the relative errors of the phase of the object.

Magnitude SSIM Phase SSIM Magnitude PSNR Phase PSNR

Figure 12. Histogram of the final SSIM and PSNR values for the
reconstructed images. The blue histogram shows the SSIM/PSNR
for ePIE and the orange histogram shows the SSIM/PSNR for hy-
brid ePIE.

all N probes have been utilized. This random selection is chosen following, where
it is observed that this randomness helps avoid local minima.

4.2.2. Distribution of reconstruction quality. We now consider the distribution of
the relative errors for the reconstructed images from the ePIE and warm-started
ePIE algorithms on small-scale images of size 512 × 512. As with the non-blind
ptychography experiments, we generate a sample of 150 guess images where the
guess magnitude is initialized with uniform random values in the range [0, 1] and
[0, π

2 ] for the guess phase. We then compute the relative error of the final recon-
structions using (13), as well as the PSNR, and SSIM of the magnitude and phase,
respectively, to further analyze the quality of the reconstructions.

Figure 11 shows the relative errors between a) the full object, b) the magnitude
of the object, and c) the phase of the object. The results show that hybrid ePIE
tends to find a better distribution of reconstructions compared to the distribution of
vanilla ePIE. In particular, we see that the relative errors of the magnitude are lower
in the hybrid approach. Moreover, we observe that the relative errors of the phase
are similar in value (but with lower variance) between hybrid ePIE and traditional
ePIE. We also compare the distribution of the final SSIM and PSNR values of the
reconstructed image from ePIE and hybrid ePIE shown in Figure 22. We observe
that the distribution of the SSIM values are overall higher in the hybrid approach.
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ePIE Phase PFT Warmup Phase Hybrid ePIE Phase

ePIE Magnitude PFT Warmup Magnitude Hybrid ePIE Magnitude

Figure 13. Large-scale phase and magnitude reconstructions of
the FFT-based ePIE (first column), PFT-based ePIE warmup (sec-
ond column), and Hybrid ePIE (third column. These reconstruc-
tions are for the large-scale ptychography problem where n1 = n2 =
8200.
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Figure 14. Objective values on full reconstruction (first column),
phase relative errors (second column), magnitude relative errors
(third column), and relative errors (fourth column) for a large-scale
ptychographic reconstruction explained in Section 4.2.1. The x-axis
represents time in minutes. Green dot represents the transition
from the PFT-based ePIE to the FFT-based ePIE in the hybrid
algorithm.

However, the hybrid ePIE magnitude reconstructions achieve higher PSNR values
and overall slightly lower phase reconstruction PSNR values than vanilla ePIE.
In other words, the PSNR histograms support the result of the relative errors,
demonstrating the reconstruction of the magnitude makes up for the reconstruction
of the phase in the hybrid algorithm.



FAST PARTIAL FOURIER TRANSFORMS FOR LARGE-SCALE PTYCHOGRAPHY 15

0 100 200
Time (m)

0.0

0.2

0.4

0.6

0.8

Phase SSIM

ePIE
Hybrid PIE
Hybrid Transition

0 100 200
Time (m)

12

13

14

Phase PSNR

ePIE
Hybrid PIE
Hybrid Transition

0 100 200
Time (m)

0.2

0.4

0.6

0.8

Magnitude SSIM

ePIE
Hybrid PIE
Hybrid Transition

0 100 200
Time (m)

12

14

16

18

Magnitude PSNR

ePIE
Hybrid PIE
Hybrid Transition

Figure 15. SSIM and PSNR for ePIE (blue) and Hybrid ePIE
(orange) for the phase and magnitude over time (in minutes). The
green dot represents the transition from the PFT-based ePIE to
the FFT-based ePIE in the hybrid algorithm.

4.2.3. Large-scale reconstruction. As in the nonblind case, we demonstrate the com-
putational benefits of using a PFT-based ePIE in the proposed algorithm. Here,
n1 = n2 = m1 = m2 = 8200, and m̃1 = m̃2 = p1 = p2 = 64, leading to a
cropped image of size 128 × 128. The degree of the approximating polynomial in
this setting is given by degrees r1 = r2 = 13, which is obtained from the precom-
puted values ξ(ε, r) defined in Section 3.1.1. Here, we run the PFT-based ePIE
algorithm until a tolerance of ϵPFT = 10−2 or a maximum number of 10 iterations
is reached. Afterwards, we run the standard FFT-based ePIE until a tolerance of
ϵ = 5 × 10−4 or a maximum number of 50 iterations is reached. Here, we choose
step sizes γ = β = 10 for the FFT-based ePIE and γPFT = βPFT = 2×10−3 for the
PFT-based ePIE. These were chosen tuned using a logarithmic gridsearch over the
set {10−6, 10−5, . . . , 102, 103}, and afterwards using a standard gridsearch starting
from the currently chosen parameter, e.g., 10−2, to the next order of magnitude,
e.g., 10−1. The intuition for choosing a higher tolerance for the PFT-based ePIE
is based on the fact that the PFT-based ePIE will primarily capture large features,
whereas the FFT-based ePIE needs more iterations to capture fine details. For all
reconstructions, we use total variation regularization [28] with parameters λ = 10−6

for the FFT-based ePIE and λ = 103 for the PFT-based ePIE. These are the pa-
rameters that led to the lowest relative error and were found over a logarithmic
gridsearch over the set {10−6, 10−5, . . . , 102, 103}.

In Figure 14, we show the objective values of the full reconstruction (first col-
umn), the phase (second column), the magnitude (third column), and the relative
errors (fourth column). Here, the x-axis represents time in minutes. Similar results
are shown in Figure 15, where we only show the phase and magnitude structural
similarity index (SSIM) [34] and peak signal to noise ratio (PSNR) [26]. We ob-
serve that while using the PFT-based ePIE as warm up leads to overall improved
reconstructions, there are some trade-offs, this can be seen in, e.g., the hybrid ePIE
magnitude reconstruction. However, for this particular large-scale run, we obtain a
very good quality phase reconstruction as seen in Figure 13. This is appealing as
the primary object of interest in ptychography (also known as ptychographic phase
retrieval).

Note there is a nontrivial padding element for this ptychographic experiment,
where the image recovered consists of the reconstruction and corresponding noisy
padding. To address this, we use the built-in function match template algorithm
from scikit-image [14] to generate Figure 13.

5. Discussion. We present a new hybrid algorithm for ptychographic phase re-
trieval based on the fast partial Fourier transform (PFT), which only computes
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the coefficients corresponding to low frequencies. The PFT is utilized within the
ptychographic iterative engine (PIE). The hybrid algorithm consists of using PFT-
based PIE in early iterations as a warm up followed by the standard FFT-based
PIE algorithm. The core idea is to let the PFT-based PIE iterations capture
large features corresponding to low frequencies whereas the FFT-based PIE it-
erations capture fine details in the reconstruction. Our numerical results demon-
strate that the proposed hybrid PIE algorithm accelerates convergence by reducing
the time-to-solution. This work also provides a PyTorch implementation of the
PFT with automatic differentiation capabilities, enabling ease of use of the PFT
within, e.g., deep learning architectures and other optimization algorithms. Fu-
ture works include exploring a differentiable optimization methodology [1, 11, 19]
of the proposed hybrid algorithm as well as distributed methods such as alternat-
ing direction method of multipliers [2, 3, 35]. Our code can be found in https:

//github.com/mines-opt-ml/pft-for-ptycho.
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Appendix A. 2D PFT algorithm. We present the two-dimensional (2D) exten-
sion of the PFT algorithm. Analogous to the 1D case, we begin by recalling the 2D
DFT given by:

ẑt1,t2 =
∑

(k1,k2)∈[n1]×[n2]

zk1,k2
e−2πit1k1/n1e−2πit2k2/n2 (16)

where now z ∈ Cn1×n2 is a complex-valued matrix of size n1 × n2. We assume
that n1 = p1q1 and n2 = p2q2 are composite integers where p1, p2, q1, q2 > 1. Then
rearranging the above expression, we get:

ẑt1,t2 =
∑

k1,k2,j1,j2

zq1k1+j1,q2k2+j2

∏
ν

e−2πitν(jν−qν/2)/nν ·e−2πitνkν/pν ·e−πitν/pν (17)

where k1 ∈ [p1], k2 ∈ [p2], j1 ∈ [q1], j2 ∈ [q2], and ν = 1, 2. As before, we want to use
polynomial approximations for the exponential eπix. Afterwards, by re-scaling the
polynomials and using exponent laws, one can get an approximation of the twiddle

factors in the collection
{
e−2πitν(jν−qν/2)/nν

}qν−1

jν=0
. Using the same definitions and

notation as in Section 3.1.1, choose the minimum rν satisfying ξ(ε, rν) ≥ m̃ν/pν to
get the re-scaled polynomial approximations{
Prν−1,ξ(ε,rν)(−2tν(jν − qν/2)/nν)

}qν−1

jν=0
. Algorithm 4 shows how to build the poly-

nomial approximation. The polynomial coefficients wε,rν−1,j are precomputed, and
we obtain them from the code database of [22].

Algorithm 4 : Configuration (Offline) Phase of 2D PFT

Input: Input size (n1, n2) ∈ N2, crop size (m̃1, m̃2) ∈ N2, divisors
(p1, p2) ∈ N2, and tolerance ε

Output: Matrices B1 ∈ Cq1×r1 , B2 ∈ Cq2×r2 , tensor
W ∈ C(2m̃1+1)×(2m̃2+1)×r1×r2 , configuration results p1, p2, q1, q2, r1, r2

1: for ν = 1, 2 do
2: qν = nν/pν
3: rν = min{rν ∈ N : ξ(ε, rν) ≥ m̃/p} ▷ degree of polynomial P approximating

eπix within tolerance ε
4: for l ∈ [qν ], j ∈ [rν ] do
5: x = (1− 2l/qν)
6: Bν = wε,rν−1,j · xj ▷ Using precomputed wε,rν−1,j

7: end for
8: end for
9: for (t1, t2) = ([−m̃1, . . . , m̃1]× [−m̃2, . . . , m̃2]) do

10: W [t1, t2, j1, j2] = (t1/p1)
j1e−πit1/p1 · (t2/p2)j2e−πit2/p2 ▷ Precompute

remaining terms
11: end for

Substituting the approximating polynomials for the twiddle factors in (17) and
performing some algebraic manipulations (in particular, swapping and rewriting
summations), we represent the summations as matrix-matrix multiplications be-
tween C(k1,k2) = B⊤

1 × Z(k1,k2) × B2 where Z(k1,k2) ∈ Cq1×q2 are slices of the
data matrix z, the matrices B1 ∈ Cq1×r1 and B2 ∈ Cq2×r2 are defined in line
6 of Algorithm 4 followed by a series of 2D FFT computations on C for each
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(k1, k2) ∈ [p1] × [p2]. As in the 1D PFT, we note that the primary cost of Algo-
rithm 5 lies in the matrix multiplications between Z(k1,k2), B1, and B2 and the 2D
FFT computations on each of the matrices C(k1,k2) ∈ Cr1×r2 . This gives us time
complexity O(n+ m̃ log m̃), where n = n1n2 and m̃ = m̃1m̃2. For thorough details,
we refer the reader to [22, Appendix B].

Algorithm 5 : Computation (Online) Phase of 2D PFT

Input: 2D array Z of size n1 × n2, crop size (m̃1, m̃2), tensor
W ∈ C(2m̃1+1)×(2m̃2+1)×r1×r2 , configuration results

B1 ∈ Cq1×r1 , B2 ∈ Cq2×r2 , p1, p2, q1, q2, r1, r2
Output: 2D array ẐPFT of estimated Fourier coefficients of Z

1: Z = Z.reshape(p1, q1, p2, q2)
2: Z = Z.permute(0, 2, 1, 3).contiguous()
3: Z = Z.reshape(p1, p2, q1, q2) ▷ reshape z into p1 × p2 × q1 × q2 tensor
4: for (k1, k2) ∈ [p1]× [p2] do
5: C[k1, k2, :, :] = B⊤

1 × Z[k1, k2, :, :]×B2 ▷ matrix multiply B⊤
1 by

Z[k1, k2, :, :] by B2

6: end for
7: for (j1, j2) ∈ [r1]× [r2] do

8: Ĉ[:, :, j1, j2] = FFT2(C[:, :, j1, j2]) ▷ apply 2D FFT to matrices C[:, :, j1, j2]
9: end for

10: for (t1, t2) = ([−m̃1, . . . , m̃1]× [−m̃2, . . . , m̃2]) do

11: ẐPFT [t1, t2] =
∑

j1∈[r1],j2∈[r2]
Ĉ[t1%p1, t2%p2, j1, j2] ·W [t1, t2, j1, j2] ▷

Hadamard product
12: end for

Appendix B. Illumination windows for large-scale blind ptychography.
We provide an illustration of the illumination window for the large-scale experiment.
The size of the image is 8200×8200, each circular probe has a radius of 2553 pixels,
and shifts 2188 pixels at a time.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Figure 16. Scanning positions of the illumination window described
in Section 4.2.1. Here, each probe illuminates a circle of radius 2553
pixels and shifts 2188 pixels at a time, leading to roughly 50% overlap
between consecutive probes.

Appendix C. Additional experiments. We perform additional experiments us-
ing more realistic cell images and investigate the effect of different overlaps in the
PIE experimental setup.
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C.1. Additional PIE experiments.

a) z b) Magnitude of z c) Phase of z

Figure 17. Histogram of the final reconstruction relative errors
for the cell images. The blue histogram shows the relative error
frequency for PIE and the orange histogram shows the relative
error frequency for hybrid PIE. a) shows the relative error of the
reconstructed object, b) shows relative errors of only the magnitude
of the object, and c) shows the relative errors of the phase of the
object.

Magnitude SSIM Phase SSIM Magnitude PSNR Phase PSNR

Figure 18. Histogram of the final SSIM and PSNR values
for the reconstructed cell images. The blue histogram shows
the SSIM/PSNR for PIE and the orange histogram shows the
SSIM/PSNR for hybrid PIE.

C.2. Additional LBFGS experiments.

a) z b) Magnitude of z c) Phase of z

Figure 19. Histogram of the final reconstruction relative errors
for the cell images. The blue histogram shows the relative error
frequency for LBFGS and the orange histogram shows the relative
error frequency for hybrid LBFGS. a) shows the relative error of the
reconstructed object, b) shows relative errors of only the magnitude
of the object, and c) shows the relative errors of the phase of the
object.
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Magnitude SSIM Phase SSIM Magnitude PSNR Phase PSNR

Figure 20. Histogram of the final SSIM and PSNR values for
the reconstructed cell images. The blue histogram shows the
SSIM/PSNR for LBFGS and the orange histogram shows the
SSIM/PSNR for hybrid LBFGS.

C.3. Additional ePIE experiments.

a) z b) Magnitude of z c) Phase of z

Figure 21. Histogram of the final reconstruction relative errors
for the cell images. The blue histogram shows the relative error
frequency for ePIE and the orange histogram shows the relative
error frequency for hybrid ePIE. a) shows the relative error of the
reconstructed object, b) shows relative errors of only the magnitude
of the object, and c) shows the relative errors of the phase of the
object.

Magnitude SSIM Phase SSIM Magnitude PSNR Phase PSNR

Figure 22. Histogram of the final SSIM and PSNR values
for the reconstructed cell images. The blue histogram shows
the SSIM/PSNR for ePIE and the orange histogram shows the
SSIM/PSNR for hybrid ePIE.
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C.4. Investigating overlap. In the following experiments, we examine the effects
on performance by changing the overlap percentage of the illumination windows.
In particular, we investigate 25%, 50%, and 75% overlap for both PIE, LBFGS, and
their hybrid counterparts.

True Magnitude True Phase

Figure 23. The ground truth used to simulate data in numerical
experiments. Two distinct cell images are used as the magnitude
and phase of the object of interest.

LBFGS Phase PFT Warmup Phase Hybrid LBFGS Phase

LBFGS Magnitude PFT Warmup Magnitude Hybrid LBFGS Magnitude

Figure 24. Phase and magnitude reconstructions of LBFGS (first
column), PFT-based LBFGS warmup (second column), and hybrid
LBFGS (third column). These reconstructions are done on illumi-
nations windows with 25% overlap.
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LBFGS Phase PFT Warmup Phase Hybrid LBFGS Phase

LBFGS Magnitude PFT Warmup Magnitude Hybrid LBFGS Magnitude

Figure 25. Phase and magnitude reconstructions of LBFGS (first
column), PFT-based LBFGS warmup (second column), and hybrid
LBFGS (third column). These reconstructions are done on illumi-
nations windows with 50% overlap.

LBFGS Phase PFT Warmup Phase Hybrid LBFGS Phase

LBFGS Magnitude PFT Warmup Magnitude Hybrid LBFGS Magnitude

Figure 26. Phase and magnitude reconstructions of LBFGS (first
column), PFT-based LBFGS warmup (second column), and hybrid
LBFGS (third column). These reconstructions are done on illumi-
nations windows with 75% overlap.
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PIE Phase PFT Warmup Phase Hybrid PIE Phase

PIE Magnitude PFT Warmup Magnitude Hybrid PIE Magnitude

Figure 27. Phase and magnitude reconstructions of PIE (first col-
umn), PFT-based PIE warmup (second column), and hybrid PIE
(third column). These reconstructions are done on illuminations
windows with 25% overlap.

PIE Phase PFT Warmup Phase Hybrid PIE Phase

PIE Magnitude PFT PIE Magnitude Hybrid PIE Magnitude

Figure 28. Phase and magnitude reconstructions of PIE (first col-
umn), PFT-based PIE warmup (second column), and hybrid PIE
(third column). These reconstructions are done on illuminations
windows with 50% overlap.
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PIE Phase PFT Warmup Phase Hybrid PIE Phase

PIE Magnitude PFT Warmup Magnitude Hybrid PIE Magnitude

Figure 29. Phase and magnitude reconstructions of PIE (first col-
umn), PFT-based PIE warmup (second column), and hybrid PIE
(third column). These reconstructions are done on illuminations
windows with 75% overlap.
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