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Abstract: In this paper, we report the development of the generalized proximal smoothing (GPS)
algorithm for phase retrieval of noisy data. GPS is an optimization-based algorithm, in which
we relax both the Fourier magnitudes and support constraint. We relax the support constraint
by incorporating the Moreau-Yosida regularization and heat kernel smoothing, and derive the
associated proximal mapping. We also relax the magnitude constraint into a least squares fidelity
term, whose proximal mapping is available as well. GPS alternatively iterates between the two
proximal mappings in primal and dual spaces, respectively. Using both numerical simulation and
experimental data, we show that the GPS algorithm consistently outperforms the classical phase
retrieval algorithms such as hybrid input-output (HIO) and oversampling smoothness (OSS), in
terms of the convergence speed, consistency of the phase retrieval, and robustness to noise.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phase retrieval has been fundamental to several disciplines, ranging from imaging, microscopy,
crystallography and optics to astronomy [1–4]. It aims to recover an object only from its Fourier
magnitudes. Without the Fourier phases, the recovery can be achieved via iterative algorithms
when the Fourier magnitudes are sampled at a frequency sufficiently finer than the Nyquist
interval [5]. In 1972, Gerchberg and Saxton developed an iterative algorithm for phase retrieval,
utilizing the magnitude of an image and the Fourier magnitudes as constraints [6]. In 1982,
Fienup generalized the Gerchberg-Saxton algorithm by developing two iterative algorithms:
error reduction (ER) and hybrid input-output (HIO), which use a support and non-negativity
as constraints in real space and the Fourier magnitudes in reciprocal space [7]. In 1998, Miao,
Sayre and Chapman proposed, when the number of independently measured Fourier magnitudes
is larger than the number of unknown variables associated with a sample, the phases are in
principle encoded in the Fourier magnitudes and can be retrieved by iterative algorithms [5].
These developments finally led to the first experimental demonstration of coherent diffractive
imaging (CDI) by Miao and collaborators in 1999 [8], which has stimulated wide spread research
activities in phase retrieval, CDI, and their applications in the physical and biological sciences
ever since [2, 9, 10].

For a finite object, when its Fourier transform is sampled at a frequency finer than the Nyquist
interval (i.e. oversampled), mathematically it is equivalent to padding zeros to the object in real
space. In another words, when the magnitude of the Fourier transform is oversampled, the correct
phases correspond to the zero-density region surrounding the object, which is known as the
oversampling theorem [5, 11]. The phase retrieval algorithms iterate between real and reciprocal
space using zero-density region and the Fourier magnitudes as dual-space constraints. A support
is typically defined to separate the zero-density region from the object. The support constraint,
which is also known as the non-negativity constraint, is applied to the density inside the support.
In the ER algorithm, the no-density region outside the support and the negative density inside the
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support are set to zero in each iteration [7]. The HIO algorithm relaxes the ER in the sense that
it gradually reduces the densities that violate the support constraint instead of directly forcing
them to zero [7]. This relaxation often leads to good reconstructions from noise-free patterns.
However, in real experiments, the diffraction intensities, which are proportional to the square of
Fourier magnitudes, are corrupted by a combination of Gaussian and Poisson noise and missing
data. In the presence of experimental noise and missing data, phase retrieval becomes much
more challenging, and the ER and HIO algorithms may only converge to sub-optimal solutions.
Simply combining ER and HIO still suffers from stagnation and the iterations can get trapped at
local minima [12]. To alleviate these problems, more advanced phase retrieval algorithms have
been developed such as the shrink-wrap algorithm and guided HIO (gHIO) [4, 13]. In 2010, a
smoothness constraint in real space was first introduced to improve the phase retrieval of noisy
data [14]. Later, a noise robust framework was implemented for enhancing the performance
of existing algorithms [15]. Recently, Rodriguez et al. proposed to impose the smoothness
constraint on the no-density region outside the support by applying Gaussian filters [16]. The
resulting oversampling smoothness (OSS) algorithm successfully reduces oscillations in the
reconstructed image, and is more robust to noisy data than the existing algorithms.
Since phase retrieval can be cast as a non-convex minimization problem, many efforts have

been made to study phase retrieval algorithms from the viewpoint of optimization. For example,
Bauschke et al. [17] related HIO to a particular relaxation of the Douglas-Rachford algorithm [18]
and introduced the hybrid projection reflection algorithm [17,19]. Using similar ideas, researchers
further proposed several projection algorithms such as iterated difference map [20] and relaxed
averaged alternation reflection [21]. In [22], Chen and Fannjiang analyzed a Fourier-domain
Douglas-Rachford algorithm for phase retrieval. By taking noise into account, the Wirtinger
Flow [23] replaces the amplitude constraint by the intensity constraint which is then relaxed
into a least square fidelity term that measures the misfit of measured Fourier intensity data,
to which gradient descent is applied. Other methods in this line include alternating direction
methods [24–26] that have been widely used in image processing, as well as lifting approaches [27]
such as PhaseLift [28, 29] by Candès et al. and its variants [30, 31].
In this paper, we propose an optimization-based phase retrieval method, termed generalized

proximal smoothing (GPS), which effectively addresses the noise in both real and Fourier spaces.
Motivated by the success of OSS [16], GPS incorporates the idea of Moreau-Yosida [32, 33]
regularization with heat kernel smoothing, to relax the support constraint into a continuous
penalty term. We further relax the magnitude constraint into a least squares fidelity term, for
de-noising in Fourier space. To minimize the resulting primal-dual formulation, GPS iterates
back and forth between efficient proximal mappings of the two relaxed functions, respectively.
Our experimental results using noisy experimental data of biological and inorganic specimens
demonstrate that GPS consistently outperforms the state-of-the-art algorithms HIO and OSS in
terms of both speed and robustness. We also refer readers to the recent paper [34] about training
quantized neural networks, which shows another success of using Moreau-Yosida regularization
to relax the hard constraint.

Notations: Let us fix some notations. For any complex-valued vectors u, v ∈ Cn, u is the
complex conjugate of u, whereas u∗ := u> is the Hermitian transpose. Re(u) and Im(u) are the
real and imaginary parts of u, respectively.
〈u, v〉 := u∗v =

∑n
i=1 uivi is the Hermitian inner product of u and v. u � v is the element-wise

(Hadamard) product of u and v given by (u � v)i = uivi . ‖u‖ :=
√
〈u, u〉 denotes the `2 norm of

u. Given any Hermitian positive semi-definite matrix K ∈ Cn×n, we define ‖u‖K :=
√
〈u,K u〉.

arg(u) := tan−1
( Im(u)

Re(u)

)
denotes the argument (or phase) of a non complex-valued vector

u = Re(u) + i · Im(u). For convenience we set arg(0) = 1.
IX is the indicator function of a closed setX ⊂ Cn given by IX(x) = 0 if x ∈ X and IX(x) = ∞
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otherwise
projX(u) := arg minv∈X ‖v − u‖ is the projection of u onto X,
prox f (u) := arg minv

{
f (v) + 1

2 ‖v − u‖2
}
is the proximal mapping of the function f .

h∗(y) := sup
u∈C

{
Re〈y, u〉 − h(u)

}
is the extended Legendre transformation to the complex plane

of a real-valued function h.

2. The proposed model

We first fix some settings of the phase retrieval problem. Consider the reconstruction of a 2D
image u defined on a discrete lattice Ω := {(i, j) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}.
For simplicity, we represent u in terms of a vector in Rn by the lexicographical order with

n = n1 × n2. Then ui represents the density of image at the i-th pixel. Due to oversampling, the
object densities reside in a sub-domain S ⊂ Ω known as the support, and u is supposed to be zero
outside S. Throughout the paper, we assume that the support S is centered around the domain Ω.
The support constraint is S := {u ∈ Rn : ui ≥ 0 if i ∈ S, ui = 0 otherwise}.

The Fourier magnitude data is obtained as b = |Fu|, where F : Rn1×n2 → Cn1×n2 is the discrete
Fourier transform (DFT). We denote the magnitude constraint by T := {u ∈ Rn : |Fu| = b}.
In the absence of noise, phase retrieval (PR) problem is simply to

find u ∈ Rn, such that u ∈ S ∩ T . (1)

This amounts to the following composite minimization problem

min
u∈Rn

f (u) + g(Fu), (2)

where f (u) := IS(u) and g(z) := I|z |=b(z) are two indicator functions that enforce the object and
Fourier magnitudes constraints, respectively. Note that f is a closed and convex function while g
is closed but non-convex. This gives rise to the non-convex optimization problem of (2).

2.1. A new noise-removal model

In real experiments, the Fourier data are contaminated by experimental noise. Moreover, the
densities outside the support are not exactly equal to zero. In the noisy case, the image to be
reconstructed no longer fulfills either the Fourier magnitudes or the support constraint. The ER
algorithm (a.k.a. alternating projection), which performs alternatively projects onto these two
constraints, apparently does not take care of the noise. The HIO “relaxes” the support constraint
on densities wherever it is violated. This relaxation only helps in the noiseless case. In the
presence of noise, the feasible set S ∩ T can be empty, and alternating projection method and its
relaxation, like ER and HIO, may fail to converge and keep oscillating. The OSS [16] improves
the HIO by applying extra Gaussian filters to smooth the densities outside the support at different
stages of the iterative process. None of them, however, seems to properly address the corruption
of the Fourier magnitudes.
Introducing the splitting variable z = Fu ∈ Cn, we reformulate (2) as

min
u,z∈Cn

f (u) + g(z) subject to z = Fu. (3)

In the presence of noise, we seek to relax the indicator functions f and g that enforce hard
constraints into soft constraints. To this end, we first relax g into a least square fidelity, which is
the sum of squared errors as follows

gσ(z) =
1

2σ
‖|z | − b‖2. (4)
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This fidelity term has been considered in the literature by assuming the measurements being
corrupted by i.i.d. Gaussian noise; see [24] for example. In practice, we observe that it works
well even with a combination of Gaussian and Poisson noise. This relaxation is related to the
Moreau-Yoshida regularization [32, 33], which will be explained in detail in the appendix.
Following this line, we further relax f = IS into

fG(u) := inf
v

{
f (v) + 1

2
‖v − u‖2

G−1

}
= inf

v∈S

1
2
‖v − u‖2

G−1 (5)

for some Hermitian positive definite matrix G. The choice of G here is tricky, and will be
discussed later in section 3. The relaxation of both constraints thus leads to the proposed
noise-removal model

min
u,z∈Cn

fG(u) + gσ(z) subject to z = Fu. (6)

This constraint optimization can be solved by a splitting method, such as alternating direction
method of multipliers (ADMM) [35–37] or primal dual hybrid gradient (PDHG) algorithm
[38–41].

2.2. A primal-dual formulation

We solve the constraint optimization problem (6) by introducing the Lagrangian

L(u, z; y) = fG(u) + gσ(z) + Re〈y, F∗z − u〉, (7)

where F∗ = F−1 is the adjoint of F or the inverse DFT. The corresponding Karush-Kuhn-Tucker
(KKT) condition is

y ∈ ∂ fG(u), −Fy ∈ ∂gσ(z) ⇐⇒ F∗z = u ∈ ∂ f ∗G(y), −Fy ∈ ∂gσ(z), (8)

where the right hand side equivalence is obtained by the convex conjugate property and is exactly
the KKT condition of the following min-max saddle point problem

min
z

max
y

gσ(z) − f ∗G(y) + Re〈z, Fy〉, (9)

with f ∗G(y) is the generalized Legendre-Fenchel transformation of f ∗G and has an explicit form
thanks to Moreau-Yoshida decomposition

f ∗G(y) = f ∗(y) + 1
2
‖y‖2G, (10)

where f ∗ is the Legendre-Fenchel transformation of f defined as

f ∗(y) = sup
v∈S

Re〈y, v〉 =
{

0 if Re(y) ≤ 0 on S,
∞ otherwise.

(11)

For notational convenience, we denote S∗ := {y ∈ Sn : Re(y) ≤ 0 on S} the dual constraint set
of S. Our finalized min-max problem is thus given by

min
z

max
y∈S∗

1
2σ
‖|z | − b‖2 + 1

2
‖y‖2G + Re〈z, Fy〉. (12)
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3. Generalized proximal smoothing (GPS) algorithm

We carry out the minimization of the saddle point problem (9) or (12) by a generalized primal
dual hybrid gradient (PDHG) algorithm [38–41], which iterates{

zk+1 = proxtgσ
(
zk − tFyk

)
yk+1 = proxs f ∗

G

(
yk + sF−1(2zk+1 − zk)

) (13)

for some step sizes s, t > 0. The update of zk+1 calls for computing the proximal mapping of
tgσ [24], whose analytic solution is given by

proxtgσ (z) = arg min
v∈Cn

1
2σ
‖|v | − b‖2 + 1

2t
‖v − z‖2 = b � exp(i · arg(z)) + (σ/t)z

1 + σ/t , (14)

which is essentially a weighted average between z and its projection onto the magnitude constraint
{z ∈ Cn : |z | = b}.
Moreover, we need to find the proximal mapping of s f ∗G for updating yk+1, which reduces to

proxs f ∗
G
(y) = arg min

v∈Cn
f ∗G(v) +

1
2s
‖v − y‖2 = arg min

v∈Cn
f ∗(v) + 1

2
‖v‖2G +

1
2s
‖v − y‖2

= arg min
v∈S∗

1
2
‖v‖2G +

1
2s
‖v − y‖2. (15)

Eq. (15) has closed-form solution only when G is a diagonal matrix. In the other case, we
provide an approximation.
We devise two versions of GPS algorithm based on different choices of G.

3.1. Real space smoothing

One choice of G is G = γ D>D. Here D is the discrete gradient operator, and then D>D is the
negative of discrete Laplacian. In this case,

f ∗G(y) = f ∗(y) + γ
2
‖Dy‖2, (16)

which we shall refer as the real space smoothing. Since G is not diagonal, the closed-form
solution to Eq. (15) is not available. For small γ, we approximate the solution by 2 steps:
projection and smoothing,

proxs f ∗
G
(y) ≈ (I + sγD>D)−1projS∗ (y). (17)

The linear inversion is in fact the Laplacian smoothing that follows the projection to ensure
the smoothness of the reconstructed image after each iteration. The real space smoothing is
related to the diffusion process and can be approximated by a low-pass filter. Recall Gt (x) :=

1
(4πt)n/2 exp

(
− ‖x ‖

2

4t
)
is a (heat) Gaussian kernel and its Fourier transformWt (ξ) = exp(−4π2t |ξ |2)

is a normalized Gaussian function. Then replacing the linear inversion by the Gaussian kernel
and convolution give a fast approximated implementation of Eq. (17) for small γ

yk+1 = Gsγ ∗ projS∗
(
yk + sF−1(2zk+1 − zk)

)
, (18)

The projection on S∗ can be computed as follows

projS∗ (y)i =
{

Re(yi)− + i · Im(yi) if i ∈ S,
yi otherwise.

(19)
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Here x− := min(0, x) and x+ := max(0, x) for x ∈ R. The remaining convolution can be done via
the efficient DFT by computing

Gγ ∗ u = Re
{
F−1 (Wγ � Fu

)}
. (20)

Using Eq. (14), Eq. (19), and Eq. (20), we arrive at our first algorithm
Algorithm 1: GPS-R features low-pass filters for smoothing. Here we abuse notation γ to

imply the filter. Inspired by OSS [16], we choose a sequence of increasing spatial frequency
filters {γl} (a sequence of finer filters). In our experiments, we do 1000 iterations with a total of
10 stages. Each stage contains 100 iterations, in which the filter frequency is held constant. We
monitor the R-factor (relative error) during the iterative process, which is defined as

RF (uk) =
∑

i

��|Fuk |i − bi
��∑

i bi
. (21)

The reconstruction with minimal RF at each stage is fed into the next stage. By applying the
smoothing on the entire domain, GPS-R can remove noise in real space and obtain the spatial
resolution with fine features.

Algorithm 1 GPS-R: GPS with smoothing in real space.
Input: measurements b, regularization parameters {γl}10

l=1, step sizes s, t > 0
Initialize: z0, y0.
Rbest
F = 1, zbest = z0

for l = 1, . . . , 10 do
y0 = ybest , z0 = zbest
for k = 1, . . . , 100 do

zk+1 = proxtgσ
(
zk − tFyk

)
yk+1/2 = projS∗

(
yk + sF−1 (2zk+1 − zk

) )
yk+1 = Gγl ∗ yk+1/2

if Rk
F < Rbest

F , then Rbest
F = Rk

F , zbest = zk , end if
end for

end for
Output: Re

(
F−1zbest

)+
3.2. Fourier space smoothing

Another simple choice of G is the diagonal matrix G = γDiag(r � r) where r ∈ Rn and ri is the
distance in the original 2D lattice between the i-th pixel and the center of image. Note that G is
not invertible since ri = 0 for the pixel at the center. By Eq. (41),

fG(u) =

∑

i

��u−projS (u)
��2
i

2γ r2
i

if ui ≥ 0 at the center,

∞ otherwise.
(22)

So fG(u) is a weighted sum of squares penalty on u. The weight is inversely proportional to the
squared radius, which is infinity for density in the center. The further the density off the center,
the smaller the penalty for the support constraint being violated.
By Parseval’s identity, for a square-integrable function u, we have∫ ��� d

dξ
û(ξ)

���2dξ =
∫
|x u(x)|2dx, (23)
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where û is the Fourier transform of u. In the discrete setting, this amounts to

‖D Fu‖2 = ‖r � u‖2, (24)

Therefore, by Eq. (10),

f ∗G(y) = f ∗(y) + γ
2
‖r � y‖2 = f ∗(y) + γ

2
‖D Fy‖2. (25)

This means that we are smoothing f ∗(y) by regularizing with the `2 gradient of Fourier coefficients
of y. We thus refer to it as Fourier space smoothing.
Since G is diagonal, Eq. (15) has the closed-form solution

proxs f ∗
G
(y) = 1

1 + sγr2 � projS∗ (y) ≈ exp(−sγr2) � projS∗ (y). (26)

Define W sγ

4π2
:= exp(−sγr2). The above quantity can be approximated by a direct multiplication

for small γ. We update yk+1 as

yk+1 = W sγ

4π2
� projS∗

(
yk + sF−1(2zk+1 − zk)

)
. (27)

GPS with smoothing in Fourier space (GPS-F) is summarized in Algorithm 2.

Algorithm 2 GPS-F: GPS with smoothing in Fourier space.
Input: measurements b, regularization parameters {γl}10

l=1, step sizes s, t > 0.
Initialize: z0, y0.
Rbest
F = 1, zbest = z0

for l = 1, . . . , 10 do
y0 = ybest , z0 = zbest
for k = 1, . . . , 100 do

zk+1 = proxtgσ
(
zk − tFyk

)
yk+1/2 = projS∗

(
yk + sF−1(2zk+1 − zk)

)
yk+1 = W sγl

4π2
� yk+1/2

if Rk
F < Rbest

F , then Rbest
F = Rk

F , zbest = zk , end if
end for

end for
Output: Re

(
F−1zbest

)+
We illustrate the core of GPS algorithm as a flowchart in Fig. 1

3.3. Incomplete measurements

In practice, not all diffraction intensities can be experimentally measured. For example, to prevent
a detector from being damaged by an intense X-ray beam, either a beamstop has to be placed in
front of the detector to block the direct beam or a hole has to be made at the center of the detector,
resulting in missing data at the center [42]. Furthermore, missing data may also be present in the
form of gaps between detector panels. For incomplete data, the alternating projection algorithms
skip the projection onto the magnitude constraint in this region. Similarly, we only apply the
relaxation gσ =

1
2σ

∑
i

��|zi | − bi
��2 on the known data for GPS. A simple exercise shows that

zk+1
i =

{(
proxtgσ

(
zk − tFyk

) )
i

if bi is known,(
zk − tFyk

)
i otherwise.

(28)
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Initialize
z0=b�ei·θ
y0=0

ẑ = zk−tFyk zk+1=(1−ε)b�ei·arg(ẑ)+εzk

ŷ=projS∗(yk+sF−1(2zk+1−zk))
yk+1=Gγ ∗ ŷ (GPS-R)

or
yk+1=Gγ�ŷ (GPS-F)

uk+1=Re
(
F−1zk+1

)+

Fig. 1: Flowchart of GPS algorithm for stage 1. For simplicity, we denote
ε = σ

σ+t in Eq. (14). The input z0 is initialized with random phases and
magnitudes are equal the measurements, while y0 is a zero vector. The projS∗
and the convolution ∗ follows Eq. (19) and Eq. (20) respectively. zk and
yk with the smallest RF will be fed as an input into the next stage where a
Gaussian kernel Gγ with larger γ is applied.

4. Experimental results

4.1. Reconstruction from simulated data

We expect GPS to be a reliable PR algorithm in the reconstruction of the images of weakly
scattering objects, in particular biological specimens, which have become more popular [43].
Since OSS has been shown to consistently outperform ER, HIO, ER-HIO, NR-HIO [16], we
perform both quantitative and qualitative comparisons between GPS and OSS.

Due to the discrete nature of photon counting, experimentally measured data inherently contain
Poisson noise that is directly related to the incident photon flux on the object. In addition to
Poisson noise, the data is also corrupted with zero-mean Gaussian noise to simulate readout from
a CCD. Any resulting negative values are set to zero. Therefore, an accurate simulation of bi can
be calculated as

bi =

√
Poisson

( |Fuo |2i · flux
‖Fuo‖2

)
+N(0, σ), (29)

where uo is the noise-free model, and b are noisy Fourier magnitudes. σ is proportional to the
readout noise. [44]. We use Rnoise to quantify the relative error with respect to the noise-free
Fourier measurements

Rnoise =

∑
i

��bi − |Fuo |i
��∑

i |Fuo |i
, (30)

For simulation, the Fourier magnitudes of a vesicle model are corrupted with Poisson and
Gaussian noises by Eq. (29). The corresponding relative error is approximated Rnoise ≈ 6%.
In some cases, the reconstructed image yields a small relative error RF but has low quality.

This is the issue of over-fitting, an example of which can be seen in certain reconstructions
using ER-HIO [16]. Smoothing is a technique to avoid data over-fitting. To validate results and
show that our algorithm does not develop over-fitting, we measure the difference between the
reconstructed image and the model by

Rreal =

∑
i

��uk
i − uo

i

��∑
i uo

i

. (31)

In addition, we also look at the residual Res = ‖Fu| − b‖ which measures the difference
between the Fourier magnitudes of the reconstructed image and the experimental measurements.
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Fig. 2: First row: vesicle model with log-scaled diffraction pattern (left) ,
zoom-in image (center) and residual (right). Second row: HIO: RF = 12.87%,
Rreal = 21.14%. Third row: OSS: RF = 6.08%, Rreal = 3.59%. Fourth row:
GPS-R RF = 5.90%, Rreal = 2.85%. Fifth row: GPS-F RF = 5.89% and
Rreal = 0.7%. Third column: residual.
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Fig. 3: Histogram (first row), and convergence (second row) of RF and Rreal

on Vesicle data using HIO, OSS, GPS. GPS consistently produces smaller RF

and Rreal than HIO or OSS. Moreover, GPS converges fastest with the fewest
oscillations.

HIO OSS GPS-F GPS-R

m
ea
n

va
ria

nc
e

Fig. 4: The (scaled) means and variances of the best five of 500 independent
reconstructions by HIO, OSS, GPS-F and GPS-R
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The residual can validate the noise-removal model, telling how much noise is removed. Figure 2
shows the reconstruction of vesicle model from simulated noisy data using HIO, OSS, GPS-R,
and GPS-F. GPS-F and GPS-R obtain lower RF and Rreal than OSS. Moreover, GPS-F can
get very close to the ground truth with RF = 5.90% and Rreal = 0.7%. In addition to lower R
values, GPS-R and GPS-F converge to zero outside the support. They both obtain lower residuals
than OSS, specifically GPS-F produces the least residual. If we choose larger parameter for the
`2 gradient regularizer in Fourier space, we will get a smoother residual. Overall for realistic
Gaussian and Poisson noise in Fourier space, GPS-F is a suitable noise-removal model.
Figure 3 shows the histogram and the convergence of RF and Rreal on 100 independent,

randomly seeded runs using HIO, OSS and GPS on the simulated vesicle data. The histogram
shows that GPS is more consistent and robust than OSS. It has a higher chance to converge to
good minima with lower RF and Rreal than OSS. Furthermore, RF and Rreal of OSS scatter
widely due to the initial value dependency. In contrast, GPS is more selective and less dependent
on initial values. RF and Rreal of GPS are seen at a lower mean minimum with less variance.

Similar to HIO and ER, OSS keeps oscillating until a finer low-pass filter is applied. In contrast,
GPS converges faster and is less oscillatory than OSS. In the presence of noise, alternating
projection methods (ER, HIO, OSS) keep oscillating but do not converge. Applying smoothing
and replacing the measurement constraint by the least squares fidelity term gσ(z) = 1

2σ ‖|z | − b‖2
helps to reduce the oscillations; hence, the method can converge to a stationary point. Note that
larger σ reduces more oscillations, but also decreases the chance to escape from local minima.
Alternating projection methods have σ = 0 since they impose measurement constraints. GPS
obtains both smaller RF , Rreal , and lower variance. Even though RF are close to each other,
Rreal of GPS is much smaller than OSS. This means GPS recovers the vesicle cell with higher
quality than OSS.

Next, we test the consistency of GPS algorithm for vesicle model. Since OSS has been shown
to outperform HIO, ER-HIO and HR-HIO [16], it suffices to carry out the comparison among
HIO, OSS and GPS. We look for the mean and variance of the best five of 500 independent
reconstructions by HIO, OSS, GPS-F and GPS-R (lowest RF ). Figure 4 shows that GPS has
much smaller variance than OSS and HIO. These tests shows that GPS is more reliable and
consistent than OSS and HIO.

4.2. Reconstructions from experimental data

4.2.1. S. pombe yeast spore

To demonstrate the applicability of GPS to biological samples, we do phase retrieval on the
diffraction pattern in Fig. 5 taken of a S. Pombe yeast spore from an experiment done using
beamline BL29 at SPring-8 [45]. We do 500 independent, randomly seeded reconstructions with
each algorithm and record RF , excluding the missing center. We choose default parameters for
these experiments: t = 1, s = 0.9. The sequence of low-pass filters are chosen to be the same as
in OSS [16]. For the first 400 iterations, σ = 0.01, then is increased to σ = 0.1 for the remaining
600 iterations. The left column of Fig. 5 is the mean of the best 5 reconstructions obtained by
the respective algorithm. The right column shows the variance of the same 5 reconstructions. It
is evident from the variance that GPS achieves more consistent reconstructions. Figure 6 shows
the histogram and convergence of RF . We can conclude that not only are GPS-R results the most
consistent, but also the most faithful to the experimental data.

4.2.2. Nanorice

To demonstrate the generality of GPS, we also do testing with experimental data of inorganic
samples. The diffraction patterns shown in the top row of Fig 7 from ellipsoidal iron oxide
nanoparticles (referred to as ‘nanorice1’and ‘nanorice2’) were taken at the AMO instrument at
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HIO OSS GPS

Fig. 5: S. pombe yeast spore log-scaled diffraction pattern, size 500 × 500
(top). Means (first row) and variance (second row) are computed from the best
5 of 500 independent reconstructions. HIO: RF = 15.697% ± 0.526%, OSS:
RF = 9.775% ± 0.202%, and GPS: RF = 8.672% ± 0.025%.

Fig. 6: Top: histogram of RF in 500 independent runs (top). Bottom: the
convergence curves of a singe construction of RF on S. pombe yeast spore by
GPS-RF, OSS, and HIO.
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OSS GPS-F

nanorice1

nanorice2

Fig. 7: Diffraction pattern of nanorice1 and nanorice2 253 × 253 (first
column) and reconstructions using OSS: RF = 18.23%, 16.32% and GPS-F:
RF = 17.40%, 15.83% respectively. GPS obtains less noise on the boundary
and lower relative error RF .

Fig. 8: Histogram (first row) and convergence (second row) of OSS and GPS-F
on nanorice1 (first column) and nanorice2 (second column). The results of
HIO are omitted due to lack of convergence.
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LCLS at an X-ray energy of 1.2keV [46]. This data is freely available online on the CXIDB [47].
We choose default parameters for these experiments: t = 1, s = 0.9. The sequence of low-pass
filters are chosen to be the same as in OSS [16]. The fidelity parameter σ is chosen small for
the first 800 iterations, specifically σ ∈ [0, 0.01], to produce oscillations which is necessary
for the algorithm to skip bad local minima. Once the reconstruction arrives at a good local
minimum region, we increase σ to reduce oscillations. This later value of σ depends on noise
level and data. We test different values of σ and σ = 1 has been found to be the optimal for
both nanorice data. Figure 7 shows OSS(second row) and GPS-F(third row) reconstructions of
the two nanorice particles. Figure 8 shows again that GPS obtains more consistent and faithful
reconstructions as compared to those obtained by OSS. GPS-F with σ = 1 converges to lower
relative error than OSS at all times. OSS cannot get lower relative error because σ = 0 does
not work for this case. In general, alternating projection methods do not treat noise correctly.
For example, in this case, HIO keeps oscillating but does not converge. Therefore, its results
are omitted here. The better approach, OSS model, can reduce oscillations by smoothing but
this is not enough. In contrast, the least squares gσ(z) = 1

2σ ‖|z | − b‖2 of GPS works for noise
removal since relaxing the constraints allows GPS to reach lower relative error. The values of σ
depend on noise level and type. To optimize the convergence of GPS-F on nanorice2, we apply
σ = 0.01 for the first 400 iterations, σ = 0.1 for the next 300 iterations, and σ = 1 for the last
300 iterations. This test shows the effect of σ on the convergence. OSS (σ = 0) oscillates the
most. GPS with σ = 0.01, 0.1, 1 oscillates less and less. As σ increases, GPS also gets to lower
RF . The algorithm finally reaches a stable minimum as σ goes up to 1. Continuing to increase σ
does not help with RF . Choosing large σ in the beginning may reduce oscillations but also limit
the mobility to skip local minima. We recommend start with small σ and then gradually increase
it until the iterative process reaches a stable minimum.

5. Conclusion

In this work, we have developed a fast and robust phase retrieval algorithm GPS for the
reconstruction of images from noisy diffraction intensities. Similar to [34], the Moreau-Yosida
regularization was used to relax the hard constraints considered in the noiseless model. GPS
utilizes a primal-dual algorithm and a noise-removal technique, in which the `2 gradient smoothing
is effectively applied on either real or Fourier space of the dual variable. GPS shows more
reliable and consistent results than OSS, HIO for the reconstruction of weakly scattered objects
such as biological specimens. Looking forward, we aim to explore the role of dual variables in
non-convex optimization. Smoothing the dual variable, which is equivalent to smoothing the
gradient of convex conjugate, represents a new and effective technique that can in principle be
applied to other non-smooth, non-convex problems.

Appendix

Proximal mapping on complex domain

We extend the definition of the Moreau-Yosida regularization [32,33] to complex domain. Let
G ∈ Cn×n be a Hermitian positive definite matrix. The Moreau-Yosida regularization of a lower
semi-continuous extended-real-valued function h : Cn → (−∞,∞], associated with G, is defined
by

hG(u) := inf
v∈Cn

{
h(v) + 1

2
‖v − u‖2

G−1

}
. (32)
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We see that hG converges pointwise to h as ‖G‖ → 0+. In the special case where G = t I is a
multiple of identity matrix with t > 0, hG reduces to

ht (u) := inf
v∈Cn

{
h(v) + 1

2t
‖v − u‖2

}
. (33)

For any indicator function h = IX of a closed set X ⊂ Cn,

ht (u) :=
1
2t

inf
v∈X
‖v − u‖2 = 1

2t
‖u − projX(u)‖2 (34)

is 1
2t of the squared `2 distance from u to the set X. Similar idea of relaxing an indicator function

into a distance function has been successfully applied to the quantization problem of deep neural
networks in [34]. Taking X = {z ∈ Rn : |z | = b} to be the magnitude constraint set and σ > 0,
we first relax g = I|z |=b in (3) into

gσ(z) :=
1

2σ
inf
|v |=b

‖v − z‖2. (35)

Since proj |z |=b(z) = b � exp(i · arg(z)) is the projection of z onto the set {z ∈ Rn : |z | = b}, a
simple calculation shows that

gσ(z) =
1

2σ
‖b � exp(i · arg(z)) − z‖2 = 1

2σ
‖(b− |z |) � exp(i · arg(z))‖2 = 1

2σ
‖|z | − b‖2 (36)

is a least squares fidelity, which measures the difference between the observed magnitudes and
fitted ones.

Generalized Legendre-Fenchel transformation

We can express any function h : Cn → R as a function h̃ defined on R2n in the following way

h(u) := h̃
(
Re(u), Im(u)

)
= h̃(ũ), (37)

where ũ =
[
Re(u); Im(u)

]
∈ R2n and h̃ : R2n → R. We define that h is convex, if h̃ is convex on

R2n. Note that for any u, y ∈ Cn,

Re〈u, y〉 = 〈Re(u),Re(y)〉 + 〈Im(u), Im(y)〉 = 〈ũ, ỹ〉. (38)

We propose to generalize the Legendre-Fenchel transformation (a.k.a. convex conjugate) [48] of
an extended-real-valued convex function h defined on Cn as

h∗(y) := sup
u∈Cn

{
Re〈y, u〉 − h(u)

}
. (39)

Infimal convolution and Moreau-Yoshida decomposition

By Eq. (5), fG is the infimal convolution [49] between the convex functions f and 1
2 ‖ · ‖2G−1 .

The Moreau-Yoshida decomposition decouples the Legendre-Fenchel transformation of fG

f ∗G(y) = f ∗(y) +
(1
2
‖ · ‖2

G−1

)∗
(y), (40)

where
(

1
2 ‖ · ‖2G−1

)∗
(y) = 1

2 ‖y‖2G . Here we remark that G only needs to be positive semi-definite
in Eq. (5), as fG can take the extended value∞. In this case, although G−1 does not exist, since
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fG is convex and lower semi-continuous, and the strong duality f ∗∗G = fG holds here, we can
re-define fG via the biconjugate as

fG(u) = f ∗∗G (u) =
(
f ∗G(y)

)∗
= sup

y∈Cn

{
Re〈u, y〉 − f ∗G(y)

}
= sup

y∈Cn

{
Re〈u, y〉 − f ∗(y) − 1

2
‖y‖2G

}
= sup

y∈S∗

{
Re〈u, y〉 − 1

2
‖y‖2G

}
. (41)
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