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Abstract: Recent advances in structured illumination are enabling a wide range of applications
from imaging to metrology, which can benefit from advanced beam characterization techniques.
Solving uniquely for the spatial distribution of polarization in a beam typically involves the use
of two or more polarization optics, such as a polarizer and a waveplate, which is prohibitive for
some wavelengths outside of the visible spectrum. We demonstrate a technique that circumvents
the use of a waveplate by exploiting extended Gerchberg–Saxton phase retrieval to extract the
phase. The technique enables high-resolution, wavefront-sensing, full-field polarimetry capable
of solving for both simple and exotic polarization states, and moreover, is extensible to shorter
wavelength light.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The generation of light beams with engineered structure and wavefront is an extremely active
research field due to their potential application in a wide range of areas from imaging to
communication [1–9]. Recent advances have made it possible to generate structured light at
wavelengths spanning from the THz to the extreme ultraviolet (EUV) and soft X-ray (SXR)
regions through control of wavefront, polarization, and orbital angular momentum (OAM)
[10–15]. The successful generation of structured beams can be challenging because it often
relies on high polarization purity and precise optical alignment. Integration of such beams into a
wide range of experiments, metrologies and technologies requires quantitative, high-resolution
techniques that can characterize structured beams to ensure that the desired shape is achieved.

Determining the vector electric field of arbitrary-shaped beams typically requires a set of
well-calibrated optics and/or a complicated setup involving interferometry or lenslet arrays
[15–21]. Calibration is critical for each of these approaches and relies on precise alignment of
the analyzing optics. Moreover, implementing such schemes in the EUV and SXR regions of the
spectrum is limited, due to the lack of high-quality polarizing optics (waveplates in particular)
for these wavelengths.

Recently, a collection of computational imaging techniques, known as coherent diffractive
imaging (CDI), have made it possible to circumvent the need for high-quality optics. CDI
can measure complex fields by collecting redundant intensity data and using a computational
algorithm to extract the phase. For instance, high-resolution, quantitative determination of
the scalar electric field can be performed using either ptychography [22,23] or an extended
Gerchberg–Saxton (eGS) technique [15,24].

We present an extension of eGS, called Polarimetry with extended Gerchberg–Saxton (PeGS),
that combines wavefront sensing with polarimetry to retrieve the full-field polarization of a beam,
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with high spatial resolution, using only a rotatable polarizer. In addition to simplifying high-
resolution polarimetry with visible light, this could pave the way for a host of short-wavelength
metrologies, since it is possible to fully control the polarization and shape of coherent short
wavelength high harmonic beams by controlling the driving laser field(s).

This paper is structured as follows: in Section 2, we outline the PeGS technique and show
that it recovers the full polarization state at each pixel of the light field. In Section 3, we show
experimental results of PeGS when applied to various exotic beams of practical use and scientific
import—namely dual-spot beams, full Poincaré beams, and vector and vector vortex beams.
Finally, in Section 4 we discuss the reconstructions in more detail and show examples of further
analysis that can be performed once the full vector fields have been retrieved.

Fig. 1. Experimental setup for characterizing several beams using Polarimetry with extended
Gerchberg–Saxton (PeGS). All of the experiments use a Ti:Sapphire oscillator to generate
a continuous-wave 785 nm beam, followed by the lens (L) and polarizer (P) and a CMOS
camera for collecting intensity measurements of the beam at multiple locations through
the focus. The optical components for PeGS are labeled in blue, while the optics used
to generate the beams to be characterized are labeled in red. (a) Setup for measuring
dual-spot beams. A calcite delay plate is used to prepare the beam in a state that has two
orthogonally polarized spots at the focus. Inserts show the total intensity of the beam
at the in-focus and out-of-focus planes, as well as the polarization spatial distribution
solved by PeGS using the colormap in Fig. 2. (b) Setup for measuring full Poincaré beams
(generated by superposing two orthogonally polarized orbital angular momentum beams)
using a Mach-Zehnder interferometer to individually alter two collinear beams of orthogonal
polarization. Polarizing beam splitters (PBS) and mirrors (M) are used to separate and
recombine the orthogonal polarization components, and spiral phase plates (SPP) are used
to generate orbital angular momentum beams. (c) Setup for measuring vector and vector
vortex beams generated with an S-waveplate.

2. Polarimetry with extended Gerchberg–Saxton (PeGS)

2.1. Background: extended Gerchberg–Saxton (eGS) algorithm

In this paper, we directly extend the eGS technique to a polarization-sensitive modality, and thus
we will start with a discussion of the eGS technique. The technique of Gerchberg and Saxton is a
phase-retrieval-based wavefront-characterization technique [25,26] wherein the intensity image
of a beam is recorded at two planes: one at the focus and one in the far-field. By numerically
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propagating the estimated field between the measurement planes and iteratively enforcing each
intensity measurement, the phase profile of the beam can be recovered. This works well in some
cases; however, it can fail to retrieve the field even in simple cases such as astigmatic beams. To
address this, this technique was extended by Allen and Oxley to include measurements at a series
of planes through the focus [24]. This approach, which we refer to as extended Gerchberg–Saxton
(eGS), can recover structured beams with scalar polarization [15]. We will use eGS as a step in
PeGS to solve for the wavefront of the beam for each orientation of an analyzer.

2.2. Using extended Gerchberg–Saxton for polarimetry

In this section, we describe Polarimetry with extended Gerchberg–Saxton (PeGS), which is our
extension of eGS that enables measurement of the polarization spatial distribution of arbitrary
beams with high spatial resolution, and is schematized in Fig. 1.

Using Jones calculus, the vector field at one pixel j of an arbitrary beam is written as a
two-component vector that contains the amplitude and phase of two orthogonal polarizations:

⎛⎜⎝
ajeiθaj

bje
iθbj

⎞⎟⎠ . (1)

Common in phase retrieval problems, there is an unmeasurable constant phase offset ambiguity.
Therefore, when considering a single pixel, the phase of one component can be assumed to
be zero; only the amplitude and relative phase of the two components determine that pixel’s
polarization. Importantly, the full wavefront and polarization spatial distribution of an arbitrary
beam can be defined by the complex field for two orthogonal polarizations, and a single, global
phase offset between them. The two fields can be measured by recording two eGS datasets, one
each for two orthogonal orientations of an analyzer. In other words, a single eGS reconstruction
can return the scalar, complex field of the beam for one polarization, with each pixel containing
the amplitude of the field at that point, as well as its phase relative to the other pixels within
the reconstruction. Unfortunately, the global phase between the two orthogonal polarizations is
not possible to determine from these two measurements alone. To solve for the complete light
field, we record a third eGS dataset with the analyzer set to mix the two polarizations. Only
one relative phase between the two orthogonal fields will match the third measurement. The
remainder of Section 2 derives the requisite equations to solve for this global phase offset.

2.3. Solving for global phase offset

If a beam is characterized by eGS after it passes through a linear polarizer oriented horizontally,
vertically, and at +45°, we obtain three complex measurements M̃ for each pixel indexed by j:

M̃↕,j = ajeiθaj eiθ↕ (2a)

M̃↔,j = bje
iθbj eiθ↔ (2b)

M̃⤢,j =
1
√

2

(︂
ajeiθaj + bje

iθbj
)︂

eiθ⤢ . (2c)

Notably, there is an additional phase component (θ↕, ↔,⤢) for each measurement that represents
the constant phase ambiguity that is common between all the pixels in a reconstruction but differs
between reconstructions. This is the source of the complication; while each of the reconstructed
images shows the phase relationship between the pixels for one polarization, the constant phase
ambiguity obfuscates the phase relationship between the three reconstructions.

Our goal is to resolve these phase ambiguities. First, we can set one of them to zero. Here, we
select θ↕, and so ∠M̃↕,j = θaj, where ∠ is the phase angle operator. Therefore, in our definition of
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a pixel’s polarization state in Eq. (1), the only unknown is θbj, which we can solve for using the
three measurements in Eq. (2). This can done by taking the ratios of Eq. (2a) and (2c):

M̃⤢,j

M̃↕,j
=

1
√

2

(︄
1 +

bje
iθbj

ajeiθaj

)︄
eiθ⤢ . (3)

Then, by taking the magnitude-squared, we eliminate θ⤢ and obtain the following. Note that
|M̃↕,j | = aj and |M̃↔,j | = bj.|︁|︁|︁|︁|︁√2

M̃⤢,j

M̃↕,j

|︁|︁|︁|︁|︁2 = 1 +

|︁|︁|︁|︁|︁M̃↔,j

M̃↕,j

|︁|︁|︁|︁|︁2 + 2

|︁|︁|︁|︁|︁M̃⤢,j

M̃↕,j

|︁|︁|︁|︁|︁ cos
(︂
θbj − θaj

)︂
. (4)

From here, Eq. (4) can be used to solve for θbj:

θbj = ∠M̃↔,j − θ↔ = ∠M̃↕,j + cos−1
⎛⎜⎜⎜⎝
|︁|︁|︁√2 M̃⤢,j

M̃↕,j

|︁|︁|︁2 − |︁|︁|︁ M̃↔,j
M̃↕,j

|︁|︁|︁2 − 1

2
|︁|︁|︁ M̃↔,j

M̃↕,j

|︁|︁|︁2
⎞⎟⎟⎟⎠ . (5)

The solution in Eq. (5) does not completely determine θbj because inverting the cosine has a
sign ambiguity. Fortunately, there is a numeric solution to this problem. To this end, we subtract
∠M̃↕ from both sides of Eq. (5) and take the absolute value to form the following equation:

|︁|︁∠M̃↔,j − θ↔ − ∠M̃↕,j
|︁|︁ = cos−1

⎛⎜⎜⎜⎝
|︁|︁|︁√2 M̃⤢,j

M̃↕,j

|︁|︁|︁2 − |︁|︁|︁ M̃↔,j
M̃↕,j

|︁|︁|︁2 − 1

2
|︁|︁|︁ M̃↔,j

M̃↕,j

|︁|︁|︁2
⎞⎟⎟⎟⎠ . (6)

As shown in Eq. (5), each pixel in the reconstruction has two possible phases of the horizontal
field that precedes or follows the vertical field, corresponding to an ambiguity in the handedness
of the recovered field at that pixel. Fortunately, Eq. (6) must be satisfied for each pixel in the
reconstruction. For most beams, there is only one value of θ↔ that satisfies Eq. (6) for all pixels
in the beam; therefore, the task of solving for θ↔ is easily accomplished by performing a linear
search for θ↔ that minimizes the difference between the left- and right-hand sides in Eq. (6).
While we chose to use +45° orientation of the polarizer in the derivation, it is also possible to do
the same for M̃⤡,j a measurement taken with −45° orientation; these (and any other results taken
at sets of other polarizer angles) can be averaged to mitigate experimental error. It is worth noting
that for the −45° orientation, the arccos term in Eq. (5) will pick up a minus sign. Importantly,
recording this as an additional dataset can resolve the minor ambiguity noted below.

There is a pathological case that poses an issue for the PeGS technique as described so far.
If the beam has uniform polarization everywhere, then its ellipticity can be determined but its
handedness cannot. This is the trivial case of the more general ambiguity, in which the phase
images of the vertical and horizontal components are the same apart from an overall offset. This
corresponds to a constant phase difference between the fields, so the polarization states of the
beam all lie on a single half-circumference connecting the vertical and horizontal states on the
Poincaré sphere. In this case, the handedness cannot be determined by PeGS as yet described,
and two solutions exist that are mirrored across the equator of the Poincaré sphere.

There are two simple modifications to PeGS that each eliminate the ambiguity for non-trivially
polarized beams. First, if the amplitude images are different for the two polarizations, then
minimizing Eq. (6) at a different plane or across multiple planes will be unique. Second, no
beam can suffer this ambiguity for the measurements described and also for measurements
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using a different set of analyzer angles (e.g., ±45° and vertical polarization). Therefore, if the
vertical/horizontal basis is unsuitable, then using rotated measurements and minimizing Eq. (6)
in the rotated basis will be unique.

We finally note the calibration requirements in PeGS. If the analyzer has a low extinction
ratio or depolarizes the light substantially, we anticipate that the solution is likely no longer
closed-form and free of ambiguity; however, it may still be possible to find a solution using an
iterative method. If the polarizer has a high extinction ratio and low depolarization, the three
measurements are characterized by the relative angle of the polarizer between the measurements,
as well as their collective rotation relative to known (e.g., horizontal and vertical) axes. The
former is easily accomplished with common rotation mounts. As seen in the solution above, the
collective rotation plays no role in the solution other than defining the basis that the solution
represents. Therefore, if this value is unknown, the solution is the same other than a rotation
of unknown magnitude about the poles of the Poincaré sphere. Calibration of PeGS involves a
simple process of measuring the absolute orientation of the polarizer to eliminate this uncertainty.

2.4. Summary of the solution

The PeGS algorithm solves for the four unknowns in the Jones calculus representation of an
electric field at each pixel, as shown in Eq. (1). This is achieved by collecting three complex
wavefront measurements M̃ of the beam. Each measurement is made by using eGS on the beam
after it passes through a polarizer at the following angles: two that are orthogonal to each other
and one half-way in between. As summarized in Eq. (7), the relative phase between the two
orthogonally polarized fields, θbj, can be obtained using either the M̃⤢ or M̃⤡ measurement.
Importantly, we have assumed a right-handed coordinate system and the camera data oriented
with the beam’s propagation coming out of the page; mirroring the camera data (often overlooked
experimentally) will necessitate inverting the sign of the min() term in Eq. (7)c.

ajeiθaj = M̃↕,j (7a)

bj = |M̃↔,j | (7b)

θbj = ∠M̃↔,j−

min
θ↔

⌜⃓⃓⃓⃓⃓⃓⃓
⎷∑︂|︁|︁|︁|︁|︁|︁|︁|︁

|︁|︁∠M̃↔,j − ∠M̃↕,j − θ↔
|︁|︁ − cos−1

⎛⎜⎜⎜⎝
|︁|︁|︁√2 M̃⤢,j

M̃↕,j

|︁|︁|︁2 − |︁|︁|︁ M̃↔,j
M̃↕,j

|︁|︁|︁2 − 1

2
|︁|︁|︁ M̃↔,j

M̃↕,j

|︁|︁|︁2
⎞⎟⎟⎟⎠
|︁|︁|︁|︁|︁|︁|︁|︁
2

(7c)

3. Experimental demonstration of PeGS

To demonstrate the efficacy of PeGS, we test it on three groups of scientifically relevant beams
with increasing complexity. First, we illustrate the technique on dual-spot beams that are useful
for Fourier transform spectroscopy with high harmonic generation (HHG). Next, we characterize
full Poincaré beams that are generated by superposing OAM beams of orthogonal polarizations.
These beams fully span the surface of the Poincaré sphere and can be used in a wide variety of
applications from machining to imaging due to their unique propagation and scattering resistance
characteristics. Finally, we demonstrate PeGS on vector and vector vortex beams that can be
used for optical trapping and photoinduced magnetic excitation for their tight-focusing ability.

In each experiment, the same underlying setup was used, with variations introduced for
generating the different types of beams, as shown in Fig. 1. A Ti:Sapphire oscillator generates
continuous-wave 785 nm light, which is prepared in the desired linear polarization using a
half-wave plate. The beam is focused with an f = 30 cm lens and then passes through a linear
polarizer and onto the camera. The absolute angle of the linear polarizer was measured by using
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the throughput of the polarizing beamsplitters. Before or in between these PeGS optics, we use
other optics to generate characteristic beams that we wish to measure. We record a series of
images with the detector moved to known positions through the beam’s focus. The detector
is an 8-bit CMOS camera (Mightex SME-B050-U with the sensor glass removed to prevent
back-reflections), and is moved along the optical axis by a motorized stage (Zaber X-LHM100A).
The data range spans roughly 10 cm, sampled at 40 planes evenly spaced through the focus. It
is critical that the measurements span the focus; here, the minimum beam diameter is ∼165
µm (75 pixels) and the maximum is ∼365 µm (166 pixels). At each plane, an exposure time
is selected so that the peak intensity is roughly 200 counts. We repeat this data collection
for four analyzer orientations (0°, 90°, and ±45°), creating a full eGS dataset for each. Only
three are required for the beams studied here, but we recorded the fourth to provide consistency
checks of our reconstructions. The images are first cropped to remove regions without signal,
then normalized by exposure time to ensure that the intensities are meaningful between frames,
and finally processed with the eGS algorithm. The result is a complex field for each polarizer
orientation, which can be analyzed by PeGS as discussed in Section 2 to solve for the beam’s full
polarization state.

3.1. Dual-spot beam

The first group of beams we measured using PeGS were dual-spot beams, which have two
lobes of orthogonal polarization at the focal plane. These beams are useful for generating
extreme ultraviolet polarization-structured beams using HHG, which can then be used for Fourier
transform magneto-optical spectroscopy [28,29]; in these cases, the purity of the polarization
states is quite important, as are the positions of the beamlets. Characterizing their relatively
simple structure serves as a good pilot demonstration of the PeGS technique. We generated
dual-spot beams by focusing a 45° polarized beam through a calcite delay plate (which had been
cut at an angle relative to the crystal axis) as shown in Fig. 1(a). Due to the spatial walk-off
within the birefringent crystal, the vertical and horizontal components separated by roughly 165
µm at the focus, but overlapped away from the focus.

The reconstruction of the beam at the focal plane is shown in Fig. 2, and can easily be
propagated to any other plane, as shown in the insert of Fig. 1(a). Figure 2(a,b) displays the
orthogonally polarized components of the beam, where the amplitude is shown as brightness and
the phase as hue. Figure 2(c) shows the per-pixel polarization of the beam using the colormap
defined on the flattened surface of the Poincaré sphere shown at the bottom-left, and the top-right
insert shows the total intensity of the beam. The PeGS technique solves for the polarization state
of each pixel, but for visualization purposes, we superimpose polarization ellipses sparsely and
over only the higher-intensity regions of the image. A linear phase (corresponding to a non-zero
angle between the beam’s propagation axis and the camera stage motion) has also been removed
from both fields to better visualize the beam’s structure. The rest of the reconstructions in this
paper (Figs. 2–9) are all shown using the same visualization scheme, also at the focal plane and
with the beam’s propagation coming out of the page. In Fig. 2, the beamlets can be seen to be
both linearly polarized and orthogonal to one another, as expected. Outside the focus, the vertical
and horizontal polarizations mix, as shown in the insert of Fig. 1(a).

We then inserted a λ/4 waveplate after the calcite crystal to give the beamlets circular
polarization with opposite handedness, as seen in Fig. 3. As shown, the PeGS method correctly
returned the handedness of the two respective beams.

3.2. Full Poincaré beams

OAM beams have a characteristic helix-shaped wavefront that rotates around the propagation axis,
and have been used in a wide range of applications from optical communication to super-resolution
microscopy [1–3,5,6]. In many cases, the OAM beams are used on their own, but sometimes they
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Fig. 2. Linearly polarized dual-spot beam PeGS reconstruction at the focal plane. (a,b)
Complex field of the vertically and horizontally polarized components of the beam. Brightness
corresponds to field amplitude and hue to phase as shown in the color wheel. (c) High-
resolution reconstruction of the beam’s polarization. Each pixel’s polarization is encoded in
the colormap at bottom-left, where each color corresponds to a unique point on the Poincaré
sphere [27]. Polarization ellipses are overlaid sparsely for visualization but contain no
additional information. All subfigures (a–c) as well as the intensity insert in (c) share the
same field of view.

Fig. 3. Circularly polarized dual-spot beam reconstruction. (a,b) Complex field of the
vertically and horizontally polarized components of the beam. (c) The polarization spatial
distribution of the total beam.

Fig. 4. Full Poincaré beam generated by superimposing a vertically polarized Gaussian
beam and a horizontally polarized OAM beam of charge l=−1. (a,b) Complex field of the
vertically and horizontally polarized components of the beam. (c) The polarization spatial
distribution of the total beam.
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Fig. 5. Full Poincaré beam generated by superimposing a vertically polarized OAM beam
of charge l=+1 and a vertically polarized OAM beam of charge l=−2. (a,b) Complex field
of the vertically and horizontally polarized components of the beam. (c) The polarization
spatial distribution of the total beam.

Fig. 6. Vector beam with radial polarization, generated by inputting a horizontally polarized
Gaussian beam into an S-waveplate. (a,b) Complex field of the vertically and horizontally
polarized components of the beam. (c) The polarization spatial distribution of the total
beam.

Fig. 7. Vector beam with azimuthal polarization, generated by inputting a vertically
polarized Gaussian beam into an S-waveplate. (a,b) Complex field of the vertically and
horizontally polarized components of the beam. (c) The polarization spatial distribution of
the total beam.
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Fig. 8. Vector beam generated by inputting a 45-degree linearly polarized Gaussian beam
into an S-waveplate. (a,b) Complex field of the vertically and horizontally polarized
components of the beam. (c) The polarization spatial distribution of the total beam.

Fig. 9. Vector vortex beam generated by inputting a horizontally polarized OAM beam of
charge l=−1 into an S-waveplate. (a,b) Complex field of the vertically and horizontally
polarized components of the beam. (c) The polarization spatial distribution of the total
beam.

can be superposed with each other or other beams to form more complicated beam structures. For
example, superpositions of OAM beams have been used with HHG to create short-wavelength
beams with exotic structure [30,31]. In these experiments, the alignment and overlap between the
two modes is critical; with even a slight misalignment, the structure of the resulting beam can
suffer drastically. With a similar setup, full Poincaré beams, which span the entire surface of
the Poincaré sphere, can be generated by superimposing orthogonally polarized OAM beams of
different charges. These beams can be used in a wide range of applications from laser machining
(by forming high quality flattop beams) to communication and imaging (for their scattering
resistance in dispersive media) [32–36].

Here, we demonstrate the ability of PeGS to recover with high resolution the overlap, relative
tilt, and phase structure of the individual beams when OAM beams of different charge and
polarization are superimposed on top of each other. We generated these beams by using variations
of a polarizing Mach-Zehnder interferometer, as shown in Fig. 1(b). If there is no optic placed in
one of the arms, the beam in that arm remains a Gaussian (l= 0) beam, and when spiral phase
plates are used, OAM beams with l=±1 or ±2 are generated.

There are multiple combinations of OAM beams that can be superimposed to generate a full
Poincaré beam. First, we used an l=±1 OAM spiral phase plate (Holo/Or VL-214-795-Y-A)
in the horizontally polarized arm of the interferometer and left the vertically polarized arm
unaltered as a Gaussian beam. As seen in Fig. 4, we recovered the OAM beam and the Gaussian
beam as separate fields and then retrieved the full-field polarization at each pixel. As can be
seen in Fig. 4(c), the polarization spatial distribution of the total beam spans a wide range of the
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polarization colormap, from both handedness of the circular polarization to all the angles of the
linear polarization. This is shown in more detail in Section 4.

Next, we placed the l=±1 spiral phase plate in the vertically polarized arm and an l=±2
spiral phase plate (Holo/Or VL-220-795-Y-A) in the horizontally polarized arm. The result is
shown in Fig. 5. There was a slight noncollinearity between the vertical and the horizontal fields,
resulting from a slight misalignment of the interferometer. This is visible in Fig. 5(a) as an
appearance of asymmetry in the l=+1 beam and in the retrieved polarization. That PeGS was
able to successfully reveal this misalignment demonstrates its utility in sensitive applications.

3.3. Vector and vector vortex beams (S-waveplate)

Vector and vector vortex beams, which have spatially inhomogeneous polarization distribution
and a phase or polarization singularity, are gaining interest for a wide range of applications
[37,38]. In particular, radial- and azimuthal-polarization beams are linearly polarized everywhere,
but the polarization varies across the beam, with radial or azimuthal isocontours. For example,
radial-polarization beams allow very tight focusing, which makes them well-suited for optical
trapping and Raman scattering microscopy [39–43]. Azimuthal-polarization beams have a
very strong axial magnetic field and near-zero electric field under tight focusing conditions,
which makes them useful for photoinduced magnetic excitation [44,45]. These beams are often
generated with finely machined optics, such as azimuthally varying retarders (S-waveplates),
which are very sensitive to misalignment [46]. Quantitative characterization of this misalignment
can be challenging with existing techniques, so we demonstrate PeGS on these beams.

First, a Gaussian beam with a controlled linear polarization was sent into an S-waveplate
(Workshop of Photonics RPC-800-15). As expected, when a horizontally polarized beam was
used, the S-waveplate produced a beam with radial polarization, shown in Fig. 6. Likewise,
a vertically polarized input generated a beam with azimuthal polarization, as shown in Fig. 7.
Lastly, a diagonally polarized input produced a mixture of radial and azimuthal polarizations,
seen in Fig. 8. We note that, even though the intensity profile of the total beam appears similar
between the cases, intensity profiles after the analyzer were distinct and the spatially dependent
polarization is exquisitely and uniquely recovered in the final reconstructions. In addition, PeGS
also showed slight imperfections in the beams—for example, the lack of separation between the
two lobes in Fig. 7(a) suggests a minor misalignment of the experiment.

We also characterized a vector vortex beam that was generated by inputting a horizontally
polarized OAM beam of charge l=−1 into the S-waveplate. A very similar setup has been used
to generate an IR vector vortex driver that was then used to obtain EUV vector vortex beams
via HHG [47]. The generated beam has a deceptively simple intensity pattern with a bright
central lobe on a pedestal, but PeGS reveals a rich underlying structure: the central lobe has
circular polarization, and is surrounded by a ring of azimuthal linear polarization that gradually
transitions to a ring of radial polarization.

4. Discussion

As demonstrated in the reconstructions above, PeGS is a powerful technique that can retrieve
the full polarization state of very complicated beams, quantitatively and with high resolution
(defined by the pixel size of the camera, here 2.2 µm). It requires only a linear polarizer and
intensity measurements of the beam through the focus—a relatively simple setup that uses CDI
to sidestep the use of a waveplate or careful calibrations.

The reconstructions of a wide range of beams retrieved using PeGS are each consistent with
their expected structure. In the polarization spatial distributions plotted in Figs. 2–9(c), the
polarizations are very cleanly solved in the central bright parts of the beam with only a small
amount of noise, but towards the dimmer outer edges of the beams, the retrieved polarizations
become noisier. It is possible to draw an approximate boundary to which PeGS was able to solve
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for the polarization states with high signal-to-noise ratio; we estimate this boundary to be roughly
1/e6 of the beam’s peak intensity (1/e3 peak amplitude) in these measurements, as displayed by
the intensity contour lines plotted in Fig. 10. This is unexpected, considering that we used an
8-bit camera, but can be explained by the fact that each dataset used many camera measurements
(40 per polarizer angle).

Fig. 10. Polarization spatial distributions with total intensity contours overlaid, spanning
from 1/e to 1/e8 of the peak intensity. We see that the PeGS technique can reliably solve to
at least the 1/e6 contour for both (a) the linearly polarized dual-spot beam from Fig. 2 and
(b) the full Poincaré beam from Fig. 4.

Some of the reconstructions in this paper revealed minor imperfections in the beam, which
shows that PeGS can be used to identify experimental misalignments within a physical system.
We think that the imperfections seen in our beams are largely explained by simple experimental
challenges; for instance, the 785 nm illumination that was used in the experiments had a native
slight astigmatism, and this wavelength was at the edge of the bandwidth of the coatings on the
polarizing beam splitters.

The simplicity of the PeGS setup is realized through the use of eGS, a computational algorithm;
this comes with a minor drawback in that the algorithm can sometimes struggle to converge
to the correct solution depending on the signal-to-noise level of the data; the convergence can
be monitored by measuring the difference between the amplitudes of the estimated field and
the measured data in the eGS algorithm. While there is no simple way to relate the error in the
retrieved polarization spatial distribution to the error of the Gerchberg–Saxton algorithm (i.e.
difference between the intensity of the collected data and the reconstruction), it is reasonable
to assume that they are at least partially correlated. In our reconstructions, in regions with
1/e of the peak intensity or above, the mean of the pixel-wise error of the Gerchberg–Saxton
algorithms was around 6% (though some of that is due to noise in the data). It should be noted
that, despite this level of frame-to-frame error in the Gerchberg–Saxton reconstruction, the
precision of the solved-for polarization states can be quite high. For example, in the linearly
polarized dual-spot beam in Fig. 10(a), within the 1/e intensity contour (where the lobes don’t
mix and the polarization is mostly constant in each lobe), the standard deviation in the azimuth
and the ellipticity angles ranged between 0.4 and 1.9 degrees for both lobes of the beam. In
future implementations, the error in the Gerchberg–Saxton algorithm could be further reduced
by refining the stage positions within the algorithm to account for slight experimental error. If
convergence is poor, it can be improved by using an educated guess for the phase of the field. For
example, applying a crude guess with the correct OAM charge sometimes helped OAM beam
datasets to converge.

Once the beam’s polarization is reconstructed using PeGS, further analysis can be performed on
the full vector field. First, the field can be visualized in a polarization basis which is better-suited
to describe the behavior of the beam or optical element. For example, the operation of the
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S-waveplate is more easily understood in terms of spin angular momentum (SAM, or circular
polarization) and OAM of light. As discussed in Gecevičius et al., S-waveplates reverse the
handedness of circular polarization, and then add an OAM charge in the new direction of the
spin (−1 for right circular, RCP; +1 for left circular, LCP) [48]. This is trivialized in the case
of linearly polarized input beams, where both RCP and LCP have equal OAM charge: the
S-waveplate subtracts an OAM charge from the RCP beam, and adds one to the LCP beam. This
is visualized in Fig. 11, where we cast the radial-polarization beam from Fig. 6 and the vector
vortex beam from Fig. 9 into the circular polarization basis. To generate the radial-polarization
beam, a horizontally polarized Gaussian beam—in other words, a superposition of identical RCP
and LCP beams with l= 0—was passed through the S-waveplate. The resultant beam was a
superposition of an RCP OAM beam of charge l=−1 and an LCP OAM beam of charge l=+1.
Similarly, to generate the vector vortex beam, the input was equivalent to a superposition of RCP
and LCP OAM beams of charge l=−1 and the resultant beam was a superposition of an RCP
OAM beam of charge l=−2 and an LCP OAM beam of charge l= 0.

Fig. 11. Beams generated with an S-waveplate shown in the right- and left-handed circular
polarization basis (RCP and LCP respectively). For linearly polarized input beams, S-
waveplates subtract an OAM charge from the RCP field while adding an OAM charge to the
LCP field. (a,b) Complex field of the radial-polarization beam from Fig. 6 cast into the RCP
and LCP basis; the beam was generated by sending a horizontally polarized l= 0 (Gaussian)
beam into the S-waveplate. (c,d) Complex field of the vector vortex beam from Fig. 9 cast
into the RCP and LCP basis. The beam was generated by sending a horizontally polarized
l=−1 OAM beam into the S-waveplate. Note that our coordinate system requires that RCP
fields rotate clockwise in time when looking towards the source, and these fields are plotted
with the beam’s propagation coming out of the page.

Upon comparison of the polarization map in Fig. 9(c) and this representation in the circular
polarization basis, we can see how the superposition of the fields yield the observed polarization
spatial distribution. The LCP in the central region is attributed to the amplitude minimum of the
RCP field and the maximum of the LCP field. Moving outward, we encounter a ring of azimuthal
polarization where the RCP and LCP amplitudes are nearly equal, the phase of LCP field is
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roughly constant but the phase of RCP field is rotating through 4π. Progressing further outward,
RCP elliptical polarization states arise as the RCP amplitude begins to dominate until once more
reaching near-equal amplitudes and radial polarization; the angle of the linear polarizations are
rotated by 90 degrees compared to the inner ring of azimuthal polarization, due to the phase of
the left circular field having shifted roughly by π.

As another example of analysis that can be performed on full vector fields retrieved by PeGS,
the polarization states present in a beam can be plotted over the surface of the Poincaré sphere.
This is shown in Fig. 12 for (a) the linear dual-spot beam of Fig. 2 and (b) the full Poincaré beam of
Fig. 4. In the figure, each black dot corresponds to a single pixel in the polarization reconstruction
and is plotted on the surface of the Poincaré sphere. Pixels that were not reconstructed with
enough signal-to-noise ratio were omitted while generating Fig. 12.

Fig. 12. Polarization states in (a) the linearly polarized dual-spot beam and (b) the
superposition of vertically polarized Gaussian beam and the horizontally polarized OAM
beam of charge l=−1. Each black dot corresponds to a single pixel in the polarization
reconstruction and is plotted on the flattened surface of the Poincaré sphere, where the
azimuth angle (ψ) has been mapped to the horizontal axis and the ellipticity (χ) has
been mapped to the vertical axis. Irregularities in these plots can indicate experiment
misalignments. Bottom-left insert shows the polarization plot shown in Fig. 2(c) and 4(c)
respectively, with the same colormap shown in the background of the main images.

For the linearly polarized dual-spot beam from Fig. 2, the polarization spatial distribution is
mostly split between two linear polarizations, with a transition between the two that approaches
LCP. The phase shift between the two beamlets determines the path taken between the two linear
polarizations; with a different phase shift, the path could have approached RCP or might have
traveled in either direction along the equator of the Poincaré sphere. Black dots appear grouped
as a result of the discretized nature of the reconstruction, and each group of dots represents
roughly one row of pixels in the reconstruction. The vertical spread corresponds to a different
ellipticity at each y-coordinate in the low-intensity region between the two spots, and is caused
by a slight astigmatism in the beam before it entered the calcite plate.

For the superposition of the vertically polarized Gaussian beam and the horizontally polarized
l=−1 OAM beam from Fig. 4, the black dots cover the entire surface of the Poincaré sphere,
showing that this beam is indeed a full Poincaré beam. The high concentration of dots at the
horizontal linear polarization is due to the fact that the horizontally polarized OAM beam was
larger than the Gaussian beam, so the pixels at the outer edge of their superposition were mostly
horizontally polarized.
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5. Conclusion

We have shown that combining the extended Gerchberg–Saxton phase retrieval technique with a
polarizer enables a novel wavefront-sensing polarimeter that achieves high-resolution mapping
of the polarization spatial distribution of arbitrary beams with minimal optics or alignment
[15]. New methods for computational phase retrieval and polarimetry are a topic of much
interest as researchers develop and use novel structured light beams for imaging and metrology,
or for characterizing and diagnosing optical systems. The technique does not need multiple,
well-calibrated optics, and is applicable to the extreme UV and soft X-ray regions of the spectrum,
where in many cases, optics are either unavailable, imperfect or lossy.
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