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Packaging of the genome into a protein capsid and its subsequent 
delivery into a host cell are two fundamental processes in the life 
cycle of a virus. Unlike double-stranded DNA viruses, which pump 
their genome into a preformed capsid1–3, single-stranded RNA 
(ssRNA) viruses, such as bacteriophage MS2, co-assemble their 
capsid with the genome4–7; however, the structural basis of this  
co-assembly is poorly understood. MS2 infects Escherichia coli via the 
host ‘sex pilus’ (F-pilus)8; it was the first fully sequenced organism9 
and is a model system for studies of translational gene regulation10,11, 
RNA–protein interactions12–14, and RNA virus assembly15–17. Its 
positive-sense ssRNA genome of 3,569 bases is enclosed in a capsid 
with one maturation protein monomer and 89 coat protein dimers 
arranged in a T = 3 icosahedral lattice18,19. The maturation protein 
is responsible for attaching the virus to an F-pilus and delivering the 
viral genome into the host during infection8, but how the genome 
is organized and delivered is not known. Here we describe the MS2 
structure at 3.6 Å resolution, determined by electron-counting cryo-
electron microscopy (cryoEM) and asymmetric reconstruction. We 
traced approximately 80% of the backbone of the viral genome, 
built atomic models for 16 RNA stem–loops, and identified three 
conserved motifs of RNA–coat protein interactions among 15 of 
these stem–loops with diverse sequences. The stem–loop at the 3′ 
end of the genome interacts extensively with the maturation protein, 
which, with just a six-helix bundle and a six-stranded β-sheet, forms a 
genome-delivery apparatus and joins 89 coat protein dimers to form 
a capsid. This atomic description of genome–capsid interactions 
in a spherical ssRNA virus provides insight into genome delivery 
via the host sex pilus and mechanisms underlying ssRNA–capsid 
co-assembly, and inspires speculation about the links between 
nucleoprotein complexes and the origins of viruses.

We imaged MS2 particles embedded in vitreous ice with a K2 direct 
electron detector attached to the end of an energy filter in a Titan 
Krios electron microscope and averaged more than 330,000 particles 
to calculate a 3.6 Å resolution reconstruction without imposing any 
symmetry (Extended Data Fig. 1). The external structure of the asym-
metric reconstruction (Fig. 1a) appears to be similar to the icosahe-
drally averaged crystallographic structure of MS2, which contains 90 
coat protein dimers18,20. However, a small density bulge emerges at one 
of the two-fold axes and its structure differs from all of the other 89 
coat protein dimers (Fig. 1b, Supplementary Video 1). Initial analysis 
of secondary structures of this asymmetric feature and more detailed 
amino-acid tracing indicated it to be a maturation protein monomer. 
High-resolution structural features in the maturation protein, such as 
side chains, are consistent with the estimated 3.6 Å resolution of the 
map (Fig. 1d).

The reconstruction also reveals the ssRNA genome density inside the 
capsid. This density is a bit noisy and somewhat broken in the 3.6 Å res-
olution map, but structural features typical of RNA are apparent when 
the map is low-pass filtered to 6 Å resolution (Fig. 1c, Supplementary 

Video 1), indicating that the RNA chain shows some flexibility relative 
to the capsid shell. To identify possible structural heterogeneity due 
to the flexible RNA, we carried out further 3D classification of the 
dataset and obtained ten structures. These structures were almost iden-
tical to each other except for several short, possibly flexible, segments 
(Extended Data Fig. 2, Supplementary Video 2). The RNA density 
was not uniformly distributed within the capsid, with the maturation  
protein-proximal side of the space more densely packed than the distal 
side (Fig. 1c). The majority of the density shows prominent major and 
minor grooves (Fig. 1c), hallmarks of double helices, indicating that 
most of the ssRNA has folded into stem–loops. We identified more 
than 50 stem–loops, most of which contact the capsid at the tip (that 
is, the loop region; Fig. 1c).

Among the stem–loops identified, 16 showed clearly resolved indi-
vidual nucleotides and even features that distinguish purines from 
pyrimidines (Fig. 1d). Such features enabled us to derive possible 
sequences for each stem–loop, which were used to search against the 
viral genome to identify its genuine sequence. Using the identified 
sequences of these 16 stem–loops as landmarks across the genome, 
we were able to trace the backbone for more than 80% of the genome, 
build atomic models for the 16 stem–loops, and identify long-range 
base-pairing and kissing-loop interactions (Fig. 2, Extended Data  
Figs 3–9, and Supplementary Data 1–3).

Among the 16 stem–loops, the one at the 3′ end of the genome inter-
acts with the maturation protein and each of the remaining 15 binds 
to a coat protein dimer (Extended Data Fig. 9). The 15 stem–loops 
vary greatly in their lengths and sequences (Fig. 3a). Comparison of 
the 15 stem–loop–coat protein dimer structures reveals how these 
different stem–loops can be specifically recognized by the same coat 
protein during genome packaging. The non-sequence-specific, neg-
atively charged phosphates of the stem–loop RNA backbone interact 
with the coat protein dimer through a patch of positively charged/
polar residues on the two coat protein monomers (Lys43, Arg49, Ser51, 
Lys57 and Lys61 of one coat protein, and Arg49, Ser51, Ser52, Asn55, 
Lys57 and Lys61 of the other; Fig. 3b, c). At individual base level, three 
conserved motifs of RNA–coat protein interactions can be identified 
(Fig. 3d, e, Supplementary Video 3). First, Thr45 and Ser47 of a coat 
protein form hydrogen bonds with the base of a partially conserved 
nucleotide (red in Fig. 3a) in the RNA loop (Fig. 3e), preferably an 
adenine with two hydrogen bonds (for example, A1757; Fig. 3e), and 
alternatively a cytosine as in 3 of the 15 cases with only one hydro-
gen bond (for example, C109; Fig. 3h). Second, in 4 of the 15 cases 
(magenta in Fig. 3a), Thr45 and Ser47 of the second coat protein also 
form two hydrogen bonds with an unpaired and sticking-out base  
(a purine in all these four cases) in the stem region (Fig. 3d, f). However, 
this purine has a flipped conformation as compared to that in the loop 
region (compare A1751 in Fig. 3d or G2784 in Fig. 3f with A1757 in 
Fig. 3e). Third, Tyr85 of one coat protein establishes an aromatic- 
ring stacking interaction with another base in the loop region (for 
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example, U1756; Fig. 3e). This base (green in Fig. 3a) is preferentially 
a pyrimidine, but is a purine in 4 of the 15 cases. It can be either next 
to the base that interacts with Thr45 and Ser47 (Fig. 3e) or separated 
by a spacer (Fig. 3g). The aromatic-ring stacking is usually extended 
to include another unpaired base (for example, A1754; Fig. 3e) that is 
also in the loop region, before merging with the base stacking in the 
stem region (Fig. 3e). In addition to accommodation of diversities 
in sequence, these stem–loops also utilize the above described non- 
sequence-specific interactions and conserved motifs to accommodate 
differences in local environments (Fig. 3i, j).

Although each of the more than 50 stem–loops in the MS2 genome 
might act as a ‘packaging signal’ for capsid assembly, as previously  
proposed15–17,21, the higher resolution of the above-described 16 stem–
loops indicates that they interact more strongly with capsid proteins, 
and therefore might have more important roles in capsid assembly. 
Three of these 16 stem–loops are consecutive in sequence (stem–
loops 1714–1737, 1746–1764, and 1766–1806, Extended Data Fig. 8), 
cluster together (stem loops A–C in Extended Data Fig. 5) and bind 
three neighbouring coat protein dimers—a configuration that would 
be desirable for nucleating capsid assembly. Indeed, the middle one, 
which encompasses the start codon of the replicase gene, was proposed 
to nucleate capsid assembly12,22. Interestingly, the 16 stem–loops are 
non-uniformly distributed, with most of them clustered around the 
putative nucleation site (Fig. 2a). Because coat protein dimers alone 
can assemble into both octahedral and wild-type-like icosahedral  
particles23, guidance by the RNA stem–loops in the early stage of capsid 
assembly might be the size-determining factor leading to the assembly 
of a wild-type, icosahedral capsid.

One maturation protein monomer replaces a coat protein dimer 
at one of the icosahedral two-fold axes, imparting structural changes 
to the neighbouring coat proteins (Fig. 4a). The maturation pro-
tein structure consists of an α-helix domain (amino acids 140–225, 
269–313, and 375–393) with a bundle of six α-helices, and a β-sheet 
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Figure 1 | CryoEM asymmetric reconstruction of MS2 at 3.6 Å 
resolution. a, b, Front (a) and back (b) views of the cryoEM density map 
along an icosahedral two-fold symmetry axis with some two-, three- 
and five-fold axes indicated. The capsid shell is radially coloured with 
the maturation protein highlighted in magenta and the ssRNA genome 
inside the capsid in blue. c, Cut-open view with half of the capsid shell 
removed to expose the genome. d, Segmented cryoEM densities (mesh) 
superimposed with their corresponding atomic models (sticks). Top and 
bottom left, typical β-strand and α-helix densities, respectively, from the 
maturation protein. Bottom right, part of a maturation protein-bound 
RNA stem–loop. Purines and pyrimidines are readily distinguishable.
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Figure 2 | Modelling the ssRNA genome. a, Backbone structure of the 
genome (wire) and non-uniform distribution of the high-resolution  
stem–loops (ribbons). Backbone is rainbow-coloured (blue to red) from  
5′ to 3′. b–d, Example of tracing RNA backbone. Part of the genome 
density (grey in b) is segmented out and superimposed with its backbone 
model (rainbow-coloured wire, blue to red from 5′ to 3′; b, c). For each 
of the two high-resolution stem–loops (ribbons in c) contained in this 
segment, a degenerate sequence was derived on the basis of the resolved 

bases and used to search against the genome to identify sequence 
candidates. Each of these short sequence candidates was expanded in both 
directions to include about 500 bases for secondary structure prediction. 
The predicted secondary structure was then correlated with the backbone 
obtained in b and only one of these sequence candidates yielded the 
correct sequence registration of individual stem–loops (indicated by  
letters Q–W in c, d). The backbone model reveals kissing-loop and  
long-range base-pairing interactions as indicated.
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domain (amino acids 1–139, 226–268, and 314–374) with six anti- 
parallel β-strands sandwiched between an N-terminal loop and a 
helix–loop–helix motif (Fig. 4b). The maturation protein is slightly 
tilted off the capsid surface with its α-helix domain inserting into 
the capsid lumen and its β-sheet domain projecting out (Fig. 4a, 
Supplementary Video 1).

The maturation protein has extensive (more than 20) interactions 
with one of the 16 high-resolution stem–loops of the genome struc-
ture (stem–loop 3540–3563 at the 3′ end of the genome; Fig. 4c, d). 
These interactions can be categorized into four types (Fig. 4e–h). 
First, phosphates in the RNA backbone can form charge–charge 
interactions with basic residues in the maturation protein (Lys50 and 
Arg43, 62, 358, and 229; Fig. 4e, f), or form hydrogen bonds with 
polar residues (Tyr60, Trp264, and Gln152; Fig. 4e, f, h) or even with 
an amide of the protein backbone (Val141; Fig. 4f). Second, there are 
two cases of RNA base stacking with an aromatic ring of the protein 
side chain: U3553 with Phe4 and U3557 with Trp54 (Fig. 4f, g).  
Third, there are multiple hydrogen bonds between RNA bases and 
protein side chains, primarily serines and threonines. These include 
interactions between U3549 and Thr47, U3552 and Asn45 (Fig. 4e), 
G3554 and Ser258/Thr324, and G3555 and Ser58 (Fig. 4f). Last, 
seven hydrogen bonds are formed between RNA bases and carboxyl 
or amide groups of the protein backbone in the long loop connect-
ing the first two β-strands of the maturation protein (Fig. 4e, g). 
In this regard, Pro57 and Pro59 (Fig. 4g) might be important for 
maintaining the twisted conformation of the protein backbone, 
preventing the formation of β-strand interactions in this segment, 
and freeing those carboxyl and amide groups for hydrogen bonding 
with the RNA bases. It is also noteworthy that the base pairing in the 

maturation protein-bound state of this stem–loop is not optimal. If 
the maturation protein binds to the RNA after the stem–loop has been 
folded, four base pairs have to be melted and two new ones formed 
(Fig. 4d) to accommodate the RNA–maturation protein interactions 
described above. How this dynamic process is achieved remains to 
be determined.

This maturation protein-interacting stem–loop also interacts with 
coat proteins, albeit much less extensively and in a manner that bears no 
similarity to that of the other 15 stem–loop–coat protein dimer struc-
tures. Two phosphates in the stem region of this stem–loop interact 
with the same coat protein (yellow in Fig. 4h): one through a hydrogen 
bond with Asn27 and the other through a charge–charge interaction 
with Arg49. Base C3548, which sticks out from the loop region, forms 
a hydrogen bond with the terminal carboxylic acid group of Tyr129 of a 
second coat protein (beige in Fig. 4h). It may also stack with the Tyr129 
aromatic ring of a third coat protein (purple in Fig. 4h).

Apart from its extensive interactions with the 3′ end stem–loop, 
the maturation protein also binds the backbone of three other stem–
loops with positively charged Arg and Lys residues (Fig. 5a, b). Three 
arginines in the β-sheet domain of the maturation protein bind a very 
short stem–loop (3524–3532) in the 3′ untranslated region (3′-UTR) of 
the RNA. The other six arginines and two lysines are clustered at the tip 
of the α-helix bundle and bind stem–loops 1766–1806 and 1960–1995, 
with Arg188 inserted into the minor groove of stem–loop 1960–1995 
(Fig. 5a).

During infection, the maturation protein is responsible for attach-
ing the MS2 virion to the bacterial F-pilus and delivering the genome 
into the host8. Fitting our MS2 model into the structure of the MS2–
F-pilus complex19 revealed interactions between the F-pilus and the 
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Figure 3 | Conserved interaction motifs between RNA stem–loops and 
coat protein dimers. a, Secondary structures of RNA stem–loops with 
nucleotides involved in the three types of conserved interaction motif 
coloured. Letters beneath some of the stem–loops identify panels in which 
the atomic model for that stem–loop is shown. b–e, Atomic model of 
stem–loop 1747–1763 and its interactions with a coat protein dimer  
(pink and sky blue ribbons). In c, positively charged or polar residues of 
the coat protein dimer interacting with phosphates of the RNA backbone 
(sticks) are indicated. Expanded views of the stem (d) and loop (e) regions 
show the interaction motifs conserved among the 15 stem–loops.  
f–j, Accommodation of diversities in sequence or local environment. 

Stem–loop 2781–2796 (f), viewed in the same orientation as in d, shows 
that a guanine forms the same kind of hydrogen bond with Thr45 and 
Ser47 as an adenine in d. Stem–loops 977–990 (g) and 102–114 (h), viewed 
in the same orientation as in e, show that a purine (G983 in g) instead of a 
pyrimidine (U1756 in e) stacks with Tyr85 and that a pyrimidine  
(C109 in h) forms only one hydrogen bond instead of a purine (A1757 in 
e) forming two hydrogen bonds with Thr45 and Ser47. Stem–loop 179–
200 (i, j) binds to a coat protein dimer from a very different angle owing to 
steric hindrance of a neighbouring stem–loop (not shown). Nonetheless, 
the RNA fold and one of the three interaction motifs are conserved, 
although a hydrogen bond is formed with Thr59 instead of Ser47.
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helix–loop–helix motif on one side of the β-sheet domain of the 
maturation protein. All of the β-strands were nearly parallel to the 
pilus axis (Fig. 5c), resulting in slight tilting of the virion, as observed 
previously19,24 (Fig. 5d). Our results shed light on why genome release 
occurs only when MS2 binds to an F-pilus on a living bacterium25, 
but not when it binds to a detached F-pilus8. Considering that F-pili 
in living bacteria are highly dynamic, with extension and retraction 
accompanied by rotation26, the driving force for MS2 genome deliv-
ery might come from the dynamics of, rather than the binding to, 
the F-pilus. As the pilus retracts, the virion would get stuck outside 
the cell owing to its relatively large size, but the maturation protein 
and its tightly bound ssRNA genome are pulled together out of the 
capsid shell, leading to the delivery of this ribonucleoprotein com-
plex into the host. Indeed, the maturation protein is delivered into 
the host cell with the genome during infection27,28 while the empty 
MS2 capsid is left outside29, and infectious ribonucleoprotein com-
plexes can be reconstituted by mixing the maturation protein and 
ssRNA genome of MS230. One might even imagine that after the 
proposed primitive ‘RNA world’, such a minimalist ribonucleopro-
tein complex could constitute a simple replicator to set the stage for 
evolution towards more sophisticated complexes. Selective pressure 
towards better fitness of the replicator naturally could have led to 
the acquisition of a protein coat to protect the RNA from a hostile  
environment.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Sample preparation. Coliphage MS2 (ATCC 15597-B1) and its host E. coli strain 
C-3000 (ATCC 15597) were obtained from American Type Culture Collection 
(ATCC). Bacteria were cultured in ATCC-recommended broth medium at 37 °C 
and infected with MS2 phage at middle log-phase. After complete lysis of the 
bacteria within a few hours, the lysate was centrifuged at 10,000g for 15 min to 
remove cell debris, and then centrifuged again at 100,000g for 4 h to pellet the phage 
particles. The pellet was resuspended in buffer containing 50  mM Tris (pH7.5), 
150 mM NaCl, 5 mM CaCl2 and 5 mM MgCl2. The suspension was applied to an 
OptiPrep (Sigma-Aldrich) density gradient (10–50% w/v with 10% steps) and 
centrifuged at 100,000g overnight. The phage band was clearly visible and was 
collected, diluted with buffer, and centrifuged at 100,000g for 4 h. The purified 
phage particles were resuspended in 100 μl buffer. To prepare the cryoEM sample, 
an aliquot of 2.5 μl phage sample was applied to a Quantifoil grid, blotted with filter 
paper and plunge-frozen in liquid ethane with an FEI Vitrobot.
Cryo-electron microscopy and movie preprocessing. CryoEM images were col-
lected with Leginon31 on an FEI Titan Krios electron microscope equipped with 
a Gatan imaging filter (GIF) and K2 Summit direct detection camera. A nominal 
magnification of 130,000× was used, giving a pixel size of 1.06 Å at the sample level. 
A slit width of 20 eV was set for the energy filter. Movies were recorded with the 
K2 camera operating in counting mode with an electron dose rate below 8e− per 
pixel per s. An accumulated dose of 50e− per Å2 on the sample was fractionated 
into a movie stack of 29 image frames.

For each of the total 6,080 movies recorded, the frames were aligned for drift 
correction with the method described previously32. The images averaged from all 
29 frames were used for initial model searching and structure refinement, while 
images averaged from the first 14 frames were used for calculation of the final 
density map. The defocus value was set to −2 μm during the imaging session, and 
was determined with CTFFIND3 (ref. 33) to be in the range of −0.5 to −3 μm in 
the images. Particles were picked with Ethan34 and preprocessed with EMAN35.
Asymmetric model generation. Two-dimensional classification of particle images 
was performed with refine2d of EMAN. The resulted 2D class averages were used 
to calculate an initial model with the starticos command of EMAN35. The resulting 
reconstruction consisted of two layers of smooth, featureless spherical shells, with 
the outer and inner layers corresponding to the averaged densities of the viral 
capsid and packaged RNA, respectively. This initial reconstruction was used to 
run 3D classification of the images using Relion36, with C1 symmetry applied. 
Within fewer than 10 iterations, one of the emerged 3D classes showed densities 
of separated RNA chains inside the capsid. Three-dimensional classification was 
then started over again with the converged RNA-containing structure as the initial 
model. All of the resulting 10 classes showed similar structures with prominent 
RNA densities, suggesting that the RNA genome was indeed well organized inside 
the capsid of MS2 phage and the initial model was solid.

It is noteworthy that two recent attempts at cryoEM reconstruction of a 
segmented dsRNA virus relied on subtraction of the icosahedrally symmetric 
capsid contribution from the raw cryoEM images to minimize interference of the 
symmetric capsid in the orientation search for the asymmetric components37,38. 
Our success in generating the asymmetric model of MS2 without applying such 
computationally demanding subtraction methods suggests that the asymmetric 
RNA genome has sufficient power to drive asymmetric orientation search even 
in the presence of icosahedral capsid signal. This simpler computational strategy 
opens the door to modelling viral genomes and genome–capsid interactions in 
spherical viruses.
Structure refinement. The dataset was divided into two random halves and  
refined separately against the Relion-generated model using Frealign39, considering 
that Frealign demands much less computational resources than Relion in process-
ing such a large dataset. The refinement procedure included five rounds of grid 
search (mode 3) with data points lower than 20 Å resolution, followed by several 
iterations of local refinement (mode 1) with gradually increasing resolution range. 
Particle images binned for 4× or 2× were used throughout the refinement proce-
dure to speed up calculations. The unbinned particle images from averaging 14 of 
the 29 frames in the drift-corrected image stacks were used in the last few iterations 
of the refinement. A final density map was calculated by merging the two half 
datasets, containing a total number of 339,718 particles. The average resolution was 
determined based on the ‘gold-standard’ FSC (Fourier shell correlation) = 0.143 
criterion40. Local resolutions were assessed with ResMap41 (Extended Data Fig. 1b).
Atomic model building for proteins. The atomic model of the maturation pro-
tein was built ab initio with Coot42. To model the coat proteins, the crystallo-
graphic structure with PDB ID 2MS2 (ref. 20) was fitted into the density map with 
Chimera43, and then manually adjusted with Coot. Only 6 of the 178 copies of the 
coat protein needed partial modification. All the models were refined with the 
Phenix real space refinement program44.

Backbone tracing and atomic model building for RNA. In modelling the 16 
high-resolution RNA stem–loops, we took advantage of the available RNA moiety 
model in the crystallographic structure 2B2G45. This model was first fitted into 
our cryoEM densities, mutated into the genuine sequence, and then manually 
adjusted in Coot. To trace the backbone of the genome, we low-pass filtered the 
density map to 6 Å resolution so that the RNA backbone became visible and was 
manually traced with the baton mode in Coot. For some RNA densities that are 
weak in the final density map (that is, flexible) but show better quality in some of 
the 10 classes from 3D classification, the density map of the best class was used to 
guide the backbone tracing.

Three constraints were used in conjunction to determine the sequences of 
high-resolution stem–loops and to trace the genome backbone simultaneously. 
First, at 3.6 Å resolution, purines and pyrimidines are readily distinguishable 
based on the fact that the densities of purines are relatively fattier than those of 
pyrimidines (Fig. 1d). Therefore, a degenerate sequence can be derived for each 
stem–loop: R = A/G or Y = C/U was assigned to each nucleotide (nt) in high 
quality regions, while N = A/G/C/U was assigned to nucleotides that had poor 
density. This degenerate sequence was then searched against the MS2 genome 
with the JDSA program46. With a typical length of 9–12 nt for a high quality 
stem–loop, and considering that bases in the stem region should be paired (G–U 
was counted as paired in addition to the Watson–Crick pairs), the degenerate 
search usually produced fewer than three candidates, and a single hit was not 
uncommon. Constraint from the backbone tracing was then used to further 
narrow down the candidate sequence and/or to confirm the assignment. For 
two tandem stem–loops in the path of the tracing, if their assigned sequences 
are also in tandem and have a distance in the genome agreeing with that in 
the tracing, then both assignments are likely to be correct. A third constraint 
we used to validate the sequence assignments and backbone tracing was the  
secondary structure prediction of the RNA sequence. Although the full-length 
MS2 genome of 3,569 bases was too long for most RNA secondary structure  
prediction algorithms, we found that prediction results for sequences in the 
length of a few hundred bases are consistent among different prediction soft-
ware and thus more reliable. Therefore, we divided the entire genome into several  
segments, predicted the secondary structure of each segment with the RNAfold 
webserver47, and compared it with the corresponding backbone as identified 
by the assigned sequences of the high-resolution stem–loops contained in that 
segment. The predicted secondary structure and traced backbone matched for 
most of the genome (Fig. 2c, d, Extended Data Figs 3–7), thus confirming the 
validity of the backbone tracing and sequence assignments of the high-resolution 
stem–loops. From the correspondence between the traced backbone and the 
predicted secondary structure, we can also roughly assign sequences for most of 
the low-resolution stem–loops.

Modelling the high-resolution stem–loops individually was challenging owing 
to the relatively low resolution of the genome structure. Ambiguity may arise from 
multiple results of the degenerate sequence search in some cases and also from 
the generation of the degenerate sequence itself (that is, ambiguity in assigning 
purine or pyrimidine to some of the nucleotides based on features of the density 
at the current resolution). Tracing the backbone of the genome based solely on 
the 6 Å resolution map is impractical because there are numerous junctions and 
crossovers in the genome (see Fig. 2b for example). Our strategy combines the 
two levels of structural information with secondary structure prediction of the 
genome sequence to eliminate ambiguities by trial and error, greatly improving the 
reliability of the model. This strategy is generally applicable for modelling genome 
organization in many other viruses.
Data availability. The cryoEM density map and the atomic models have been 
deposited in EMDB and PDB under the accession numbers EMD-8397 and 5TC1, 
respectively. The traced backbone model and the annotated secondary structure 
of the MS2 genome are available as Supplementary Information. All other data are 
available from the corresponding author upon reasonable request.
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Extended Data Figure 1 | Resolution assessment of the cryoEM 
reconstruction. a, ‘Gold-standard’ FSC curve of the cryoEM 
reconstruction. The average resolution of the final density map is 3.6 Å as 
determined by the FSC = 0.143 criterion40. b, Local resolution assessed by 
ResMap41. Density voxels are coloured according to their local resolution 
as defined in the colour scale on the right. Only half of the capsid is shown 

to expose the RNA densities inside. c, d, CryoEM densities of a coat 
protein dimer (c) or the maturation protein (d) with their bound RNA 
stem–loops to show quality of the density map. In both cases, the cryoEM 
densities are semitransparent to show the fitted atomic models of the 
protein and RNA.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Three-dimensional classification. The entire  
dataset of the cryoEM images were subjected to 3D classification  
and refinement starting from a single initial model of the asymmetric 
reconstruction. Ten classes were arbitrarily set. The resulting density maps 
were compared with the reconstruction of the whole dataset and with each 

other. The overall structures of the ten classes are almost identical, except 
for small regions as exemplified by the region enclosed in the dashed 
circle in the superimposed map. The RNA fragments of these regions have 
multiple conformations, and are thus not traced in our model. Overall, we 
were able to trace an RNA density amounting to 80% of the genome.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 3 | Backbone model of MS2 genome segment 
1–615. Part of the traced backbone model of MS2 genome (top panel; 
rainbow-coloured blue to red from 5′ to 3′) is compared with the predicted 
secondary structure (bottom panel) of genome sequence 1–615. Matching 
stem–loops in the two are marked with the same letter. Atomic models 
of high-resolution stem–loops (ribbons in top panel) contained in the 

segment are also shown. Some of the base pairings in the predicted 
secondary structure have been modified to make it more consistent with 
the observed structure. Dashed box in the bottom panel denotes flexible 
stem–loop that is not well resolved in the cryoEM density map and thus 
not traceable for the backbone.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 4 | Backbone model of MS2 genome segment 
881–1290. Part of the traced backbone model of MS2 genome (top  
panel; rainbow-coloured blue to red from 5′ to 3′) is compared with 
the predicted secondary structure (bottom panel) of genome sequence 
881–1290. Matching stem–loops in the two are marked with the same 

letter. Atomic models of high-resolution stem–loops (ribbons in top panel) 
contained in the segment are also shown. Some of the base pairings in 
the predicted secondary structure have been modified to make it more 
consistent with the observed structure.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 5 | Backbone model of MS2 genome segment 
1711–2340. Part of the traced backbone model of MS2 genome (top 
panels; rainbow-coloured blue to red from 5′ to 3′) is compared with  
the predicted secondary structure (bottom panel) of genome sequence 
1711–2340. Matching stem–loops in the two are marked with the same  

letter. Atomic models of high-resolution stem–loops (ribbons in top 
panels) contained in the segment are also shown. Some of the base pairings 
in the predicted secondary structure have been modified to make it more 
consistent with the observed structure.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 6 | Backbone model of MS2 genome segment 
2753–3388. Part of the traced backbone model of MS2 genome (top  
panel; rainbow-coloured blue to red from 5′ to 3′) is compared with  
the predicted secondary structure (bottom panel) of genome sequence 
2753–3388. Matching stem–loops in the two are marked with the same 
letter. Atomic models of high-resolution stem–loops (ribbons in top  
panel) contained in the segment are also shown. Some of the base pairings 

in the predicted secondary structure have been modified to make it more 
consistent with the observed structure. Dashed boxes in the bottom 
panel denote flexible stem–loops that are not well resolved in the cryoEM 
density map and thus not traceable for the backbone. Black wire in the top 
panel denotes RNA segment 2341–2359 that has long-range base-pairing 
interactions (also illustrated in Fig. 2d) with this segment, and the pairing 
bases are marked with black arc in the bottom panel.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 7 | Backbone model of MS2 genome segment 
3418–3569. Part of the traced backbone model of MS2 genome (top panel; 
rainbow-coloured blue to red from 5′ to 3′) is compared with the predicted 
secondary structure (bottom panel) of genome sequence 3418–3569. 

Matching stem–loops in the two are marked with the same letter.  
Some of the base pairings in the predicted secondary structure have been 
modified to make it more consistent with the observed structure.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 8 | Secondary structure of the MS2 genome. 
Secondary structures of all genome segments in Fig. 2d and Extended 
Data Figs 3–7 are assembled to show the secondary structure of the entire 
MS2 genome. The genome sequences are coloured according to the genes 

encoded as depicted in the schematic diagram at the bottom, except for the 
lysis gene which overlaps with the coat protein gene and the replicase gene. 
The star signs denote the positions of the 16 high-resolution stem–loops. 
Segments enclosed with dotted boxes or ellipses are flexible.
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Extended Data Figure 9 | CryoEM densities (mesh) and atomic models (stick) of the 15 high-resolution RNA stem–loops that interact with coat 
protein dimers (ribbon). 
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