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Abstract: The influence of surface and interface roughness on X-ray and extreme ultraviolet
(EUV) reflectometry is becoming increasingly important as layer thicknesses decrease to a few
nanometers in next-generation nanodevices and multilayer optics. Here we simulate two different
approaches for numerically modeling roughness, the Névot—Croce factor and the graded-interface
method, in the Parratt formalism of calculating the complex reflectance of multilayer systems.
The simulations were carried out at wavelengths relevant to widely used metrology techniques,
including 0.154 nm for X-ray reflectometry and 13.5 nm for EUV lithography. A large discrepancy
is observed between the two approaches in several situations: when the roughness is large with
respect to the wavelength, for interfaces with large changes in refractive index across the boundary,
as well as around reflectance peaks due to interference effects. Caution is thus required when
using either approach to model roughness in these situations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The performance of next-generation semiconductor and quantum devices increasingly relies on
intricately designed multilayer structures, with layer thicknesses of only a few nanometers in
some cases. In these situations, even small amounts of surface and interface roughness of ~0.1-1
nm become comparable to the layer thicknesses and can introduce non-negligible effects to the
device characteristics. Surface and interface roughness have been shown to affect the performance
of various systems, including metal-oxide—semiconductor field-effect transistors (MOSFETs)
[1,2], extreme ultraviolet (EUV) lithography photomasks [3,4], quantum wells [5], and magnetic
multilayer systems [6—8]. Going forward, it is expected that even more properties of future
devices will be surface- and/or interface-dominated. Therefore, for successful development of
new devices, it is crucial that the effect of surface and interface roughness is correctly accounted
for both in simulations and experimental data analysis.

X-ray and EUV reflectometry techniques (XRR, EUVR) are commonly used to probe multilayer
systems because of their high sensitivity to small length-scale features as well as their intrinsic
elemental and chemical specificity [9-17]. By measuring the X-ray or EUV reflectance of
samples as a function of angle of incidence, and then optimizing a numerical model of the sample
until the predicted reflectance curve matches the experimental data, it is possible to solve for
the depth-dependent structure parametrized by chemical composition, layer thicknesses and
surface/interface roughness. To achieve good control over the illumination used for XRR and
EUVR, super-polished optics and high-quality multilayer mirrors are crucial, and their quality
control also often relies heavily on reflectometry techniques [18-20]. Therefore, correct modeling
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of roughness is important for device metrology not only when analyzing devices by XRR and
EUVR, but also to facilitate manufacturing of high-quality optics.

The X-ray and EUV specular reflectance from transversely uniform regions of multilayer
structures is often modeled using the Parratt formalism, which uses Fresnel coefficients at each
interface in a recursive computation [21-23]. Since Fresnel coefficients are defined for ideal and
perfectly flat interfaces, the effect of roughness is usually accounted for using the Névot—Croce
factor [24,25], which corrects the Fresnel coefficient of an interface according to its roughness.
However, there also exists an alternative approach for taking roughness into account that is
also compatible with the Parratt formalism; in this approach, a rough interface is modeled
in a transversely averaged way, by representing it as a gradual change in the refractive index
using many thin layers, each of which has a constant refractive index [26]. While multiple
authors have credited this graded-interface approach (sometimes called the slide method) as
being more accurate, it has often been criticized for being too computationally intensive [10,27].
However, given the recent rapid increase in computational power, it is timely to explore a
more comprehensive comparison of the performance of the Névot—Croce factor against the
graded-interface approach. In particular, if there is any significant discrepancy between the
simulated reflectance from the two approaches, then at least one of the approaches must be
inaccurate, and some caution is required in using either of them.

In this paper, we compare the Névot—Croce factor against the graded-interface approach in
areas that have not been fully investigated before, namely for EUV wavelengths, for simulating
phase shifts upon reflection, and for characterizing multilayer systems. In the following sections,
we first explain the motivation for investigating these three particular areas. Next, we provide a
brief overview of the Névot—Croce factor and the graded-interface approach and offer guidance
on how best to implement the graded-interface approach. Then, for the remainder of the paper, we
compare simulated reflectance using the Névot—Croce factor and the graded-interface approach
for three different scenarios: a bulk substrate, a monolayer, and a multilayer system. These
comparisons are done for both X-ray and EUV wavelengths, for both the amplitude and phase
of reflectance, and for both S- and P-polarizations when appropriate. Finally, we provide
recommendations for when care is needed in choosing between the two approaches.

2. Areas of comparison

In this paper, we cover three areas where the comparison of the Névot—Croce factor against
graded-interface approach that is discussed in the literature is insufficient.

The first area is comparing the two approaches for EUV wavelengths. EUVR is a relatively new
metrology technique, which has relied on roughness modeling studies from XRR and neutron
reflectometry. For probing similar degrees of roughness, EUV reflectance is expected to be less
affected than X-ray reflectance given the longer EUV wavelengths. However, many materials are
reflective to EUV wavelengths over a larger range of incident angles — not just at the grazing
incidence angles required for XRR. Therefore, it is worth exploring how the two roughness
modeling approaches agree for the larger incidence angles (from grazing) that can be accessed at
EUYV wavelengths.

The second area we explore is in simulating the phase shift upon reflection. While traditional
reflectometry schemes use intensity reflectance measurements made using incoherent X-ray light,
recent developments in coherent X-ray and EUV sources using synchrotrons, free-electron lasers
and high harmonic generation sources [28,29], together with phase-sensitive techniques such
as coherent diffractive imaging, are enabling accurate and quantitative measurements of the
phase shift upon reflection [30-33]. The phase shift is often more sensitive to topography and
material composition than the intensity reflectance [33], so it is very possible that more XRR-
and EUVR-related techniques will harness phase measurements in the future. In addition, the
phase shift is sometimes an important parameter that requires optimization in the design of EUV
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optics, or photomasks used in EUV lithography [34]. Therefore, accurately modeling the phase
shift upon reflection for X-rays and EUV light is becoming more critical for the community;
however, the current literature on this topic is quite limited [35,36]. In fact, it is known that for a
surface with a roughness distribution of 1/cosh?(z/o7) as a function of depth z and parametrized
by degree of roughness o, the approximated solution for reflectance from a rough surface using
the distorted-wave Born approximation (DWBA; equivalent to the approximation made in the
derivation of the Névot—Croce factor) differs from the exact theoretical solution by a phase
factor [35-37]. While this discrepancy has often been neglected to date due to its small size
and difficulty of measurement, it is worthwhile to revisit this discrepancy, since quantitative
phase-sensitive reflection measurements are now gaining in utility.

The third area we explore is thin-film and multilayer systems. This area is particularly
interesting in light of the ever-reducing layer thicknesses in these systems. It is now common to
have interface roughness that are comparable to the layer thickness. It has been suggested that
the graded-interface approach is more suitable than the Névot—Croce factors in this scenario [38],
and in addition it has been shown that the field strength calculated very close to the center of an
interface using the Névot—Croce factor is not correct [39]. This error may cascade and manifest
with greater magnitude if interfaces are located close to each other.

An additional topic that is also poorly covered in the literature is calculation of the transmissivity
and the associated phase shift from a system with rough surfaces [36]. However, here we limit
our discussion to reflection, since the majority of thin-film measurements are done in reflection.

3. Neévot—Croce factor

The Névot—Croce and Debye—Waller factors correct the Fresnel coefficients of an interface
according to its roughness. The former is used for approximating the effect of roughness that
has high transverse spatial frequency, where diffuse scattering is negligible. The latter is used
for roughness with low transverse spatial frequency, where diffuse scattering is located very
close to the specular reflection. The Névot—Croce factor corrects the reflection and transmission
Fresnel coefficients of an interface with a normally distributed roughness with RMS of o by the
following factors [10,24,26]:

Reflection : exp(—2k;k;.0%) a

Transmission : exp((k;, — k;,)*2/2),

where k; ; and k; , are the component of the wave vector that are perpendicular to the interface, in
the medium before and after the interface respectively, with k = 27n/1o where n is the refractive
index of the medium and A is the wavelength of the light in vacuum, and k, = k sin 6 where 8 is
the propagation angle in the medium measured from grazing. The Debye—Waller factor similarly
corrects the Fresnel coefficients by the following [10,39]:

Reflection : exp(—Zkgzaz) @

Transmission : exp(—(k; — k;.)*02/2).

The approximation used in the derivation of these factors is valid in the region ok; ; < 1 [40],
and when there is only a small difference in the refractive index of the media separated by the
interface (which is often true for X-rays and EUV wavelengths where the refractive index is
usually very close to unity) [41]. Using the first constraint, for example, for wavelength of 0.154
nm at 5° from grazing entering from a medium with refractive index of 1, we must have o~ < 0.28
nm, and for wavelength of 13.5 nm at 30° from grazing, we must have o < 4.3 nm. It should
be noted that in general, and especially for X-ray and EUV wavelengths, the refractive index
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of most materials is complex; this means that both & and 6 (calculated using Snell’s law with
complex refractive indices) and therefore k, are complex, and as a result, the Névot—Croce and
Debye—Waller factors are also correspondingly complex, and thus modify both the amplitude and
the phase of Fresnel coefficients.

To express the operating regimes of Névot—Croce and Debye—Waller factors more mathemati-
cally, consider a simple grating of period A, and an incident beam at a grazing angle of 6. The
m™-order diffraction maximum is observed at angle 6,, from grazing where the grating equation
mAd = A (cos 6, — cos 0) is satisfied, where A is the wavelength of the light. If A < /(1 — cos 9),
then the first diffraction order does not exist (i.e., there is negligible diffraction, at least on the
side of the reflected beam closest to the sample surface). Therefore, if the correlation length &
(roughly defined as the largest period in the transverse roughness profile) satisfies & < A/(1 — cos
), diffuse scattering will be small and the Névot—Croce factor may be used. Conversely, if & >
A/(1 — cos 0), then diffuse scattering is not very angularly separated from the specular reflection
and the Debye—Waller factor may be used [39]. For most systems investigated under XRR or
EUVR, the roughness has a relatively short correlation length (for example, polished Si wafers
have a correlation length of about 1 um [42], and metal-coated fused quartz have a correlation
length of 100-200 nm [43]), therefore the Névot—Croce is the more commonly used factor. Also,
as shown in Figs. 15 to 18 of the appendix, the two factors are similar for roughness less than 1
nm, and the greatest discrepancy is restricted to the region of total external reflection. Therefore,
in this paper we focus on the Névot—Croce factor.

The Névot—Croce and Debye—Waller factors have been derived using multiple approaches,
most notably using the DWBA [41,44,45]. A more general theory that bridges the two correlation
length regimes [45], as well as higher-order corrections to the Névot—Croce factor [36,46,47] have
previously been suggested, however the most basic forms in Eq. (1) and (2) are often used for their
computational simplicity. There are multiple software programs that are publicly available for the
purposes of calculating X-ray and EUV reflectance, including IMD [22], GenX [48], REFLEX
[49], JGIXA [50], MOTOFIT [51], and refnx [52], and the most commonly used method for
taking account of surface/interface roughness in these programs is the Névot—Croce factor.

4. Graded-interface approach

In the graded-interface approach, a rough interface is represented as a gradual change in the
refractive index using many thin layers, each with a constant refractive index [26].

It is important to point out that there are two ways in which an interface may deviate from
a perfectly smooth interface. One is where the interface is rough but there is no mixing —
meaning the interface is affected by the morphological characteristics of the boundary. The
second is where there is interdiffusion of chemicals across the interface at the atomic or molecular
level. The graded-interface approach makes a direct physical representation of the latter type of
interfaces, and a transversely averaged representation of the first type of interfaces.

While some of the software programs available for calculation of X-ray reflectance are capable
of running the graded-interface approach (including IMD [22]), users may choose to write their
own version as the pre-existing programs may not offer all the necessary functionalities. In this
section, we cover two ways in which one might implement the graded-interface approach to
model surface/interface roughness. Though there are certainly other possible implementations,
we find that these two serve most purposes, with the choice between the two offering a tradeoff
between flexibility and computational speed.

The two implementations we will describe are illustrated in Fig. 1. As shown in Fig. 1(a), to
describe roughness at an interface, it is important to know the topographic distribution of the
surface and the corresponding profile that the gradient of the refractive index takes, defined by a
function shape and a characteristic width. As shown in Fig. 1(b), for both the Névot—Croce factor
and the graded-interface approach, the process starts from the description of the multilayer stack
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to be simulated, parametrized by layer thicknesses, refractive indices, and the roughness at each
of the interfaces. In both implementations of the graded-interface approach that we discuss, the
final model is a discretized refractive index profile as a function of depth that can then be fed into

a Parratt formalism calculator.
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Fig. 1. Modeling roughness using the Névot-Croce factor and the graded-interface approach.
(a) Roughness at an interface can be described by the distribution of the roughness and the
profile that the refractive index transition takes as a function of depth. (b) Two approaches
for taking account of roughness are discussed in this paper: the Névot—Croce factor approach
and the graded-interface approach. Both approaches start with a model of the multilayer stack
parametrized by layer thicknesses, refractive indices, and roughness. In the Névot—Croce
factor approach, the Fresnel coefficient r; ;.| ateach interface is corrected by the Névot-Croce
factor NC, which is a function of the roughness at that interface, o; ;,.;. For the graded-
interface approach, we discuss two implementations. The first implementation is to convolve
the distribution function with thinly discretized layers. The second implementation consists
of creating a series of profiles corresponding to each interface, and then taking a weighted
sum of the refractive indices. In both cases, the final model produced is a smooth profile of
refractive index as a function of depth in the sample. (c) After a discretized stack is produced
by one of the two implementations in (b), any layers with the same refractive index may be
merged to improve computation speed in the subsequent Parratt formalism calculation.

The first and relatively simple implementation, illustrated on the left-hand side of Fig. 1(b),
discretizes the stack of refractive indices into many thin layers, and then convolves the stack with
a function that describes the distribution of all interfaces. This distribution function must sum to
1, and its characteristic width must correspond to the degree of roughness at all interfaces. While
this implementation is easy to do, the obvious drawback is that it requires the model to have the
same roughness width and shape at all the interfaces.
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The second implementation, illustrated on the right-hand side of Fig. 1(b), is to use the profile
function at each of the interfaces. The derivative of a profile function is the distribution function
that was used in the first approach. For example, for an interface with a Gaussian distribution
function, its profile function takes the form of an error function. In this implementation, first, the
profile function that transitions from O to 1 is prepared for each interface, with the correct profile
shape. The functions must be centered in depth around the nominal location of the interface, and
have characteristic widths corresponding to the degree of roughness. Then, the refractive index
is calculated as the weighted sum of the refractive indices of the neighboring layers. Specifically,
if an interface between the i/ and j™ layer is described by a function f; ;(2), then the effective
refractive index n(z) at depth z is calculated by:

n(Z) = Z rng (3)
3
and
1= frk+1 k=1
Tk =3 fi—1k —fear1 1<k<end
Sek+1 k = end,

where the summation is over the refractive indices of materials that are present at that z, and the
index k runs from the index closest to the top surface. For example, if at a certain depth z, refractive
indices np, np, and n3 are present at that z, meaning two profile functions f » and f5 3 are non-unity
and non-zero as illustrated in Fig. 1(b), thenn(z) = ny [1 - fi2(2)| +m2 [f12(2) - f.3(2)| +nafo3(2).
While this implementation can be more time-consuming for a stack with a large number of
interfaces, it is very versatile; it can handle different widths and profiles of roughness at each
interface.

One advantage of using the graded-interface approach instead of the Névot—Croce factor is
that it is more flexible, as illustrated in Fig. 2. By changing the distribution or profile function
that represents the roughness, it is easy to model interfaces that do not have the typical normal
distribution — some examples are shown in Fig. 2(a). The Névot—Croce factor as described by
Eq. (1) is for normal distributions, and while there are other forms of the factor that correspond to
different distributions [53], correction factors for distributions not covered by literature need to be
newly derived. It is inadvisable to use the equation derived for normal distribution for modeling
roughness with other distributions, since it has been shown that reflectance measurements are
sensitive to the shape of the roughness distribution [10].

Another way in which the graded-interface approach is more flexible than using the Névot—Croce
factor is in how it does not have to assume a uniform refractive index above and below the interface,
as illustrated in Fig. 2(b). If there is some non-uniformity above/below the interface due to
gradual change in density or dopant concentration, it is possible to represent that depth-dependent
change as discretized layers, and to use the graded-interface approach to describe roughness
between such layers, assuming that the depth-dependent change conforms to the shape of the
interface.

Now, we describe four subtleties that need to be considered when using the graded-interface
approach. The first is the overall extent of the distribution and profile functions used to model
the interface. Some distribution functions, including the Gaussian distribution for a normally
distributed roughness, theoretically have infinite extent, so in numerical modeling it is necessary
to introduce some artificial cutoff to their range. We have found that we have good convergence
when using Gaussians that extend from —3 to 3 standard deviations (i.e., using wider Gaussians
only changed the result by a negligible amount), and we have used Gaussians truncated to this
range for the simulations in this paper. However, it is preferable that a user tests how much the
result changes for a given simulation for different extents of the used distribution function. Users
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Fig. 2. Flexibility of the graded-interface approach. (a) The graded-interface approach allows
easy modeling of arbitrary roughness distributions and profiles, for example rectangular,
cosine and sech? distribution functions corresponding to linear, sine and tanh profile functions.
(b) The graded-interface approach also allows modeling of roughness on top of other gradual,
depth-dependent changes in the refractive index.

should also be careful to make sure that the sum of the distribution function is normalized to 1
after it is truncated.

The second consideration is the thickness into which the stacks are discretized. It is clearly
preferable that a rough interface is described using many layers. As such, the discretization
layer thickness should be considerably smaller than the smallest roughness in a given sample
stack model. We have also found that the discretization thickness affects the phase shift upon
reflection much more than the intensity reflectance because the discretization thickness changes
the optical path length of incident light. Therefore, when simulating phase shift, it is preferable
to use very finely discretized layers (which comes with an increased computational cost), and
also test for the thickness at which simulation results begins to converge. As shown in Fig. 1(c),
one way to combat the increase in computation time for a very finely discretized stack is to merge
neighboring layers that share the same index so that the total number of layers, and thereby the
number of computations, is reduced. The computation time for the Parratt formalism calculation
is roughly linear in the number of interfaces.

It should be noted that, when solving for roughness in a physical sample using an iterative
optimization method (such as the genetic algorithm) to fit experimental XRR or EUVR curves
[54], itis only possible to solve for the parameters of interest with precision up to the discretization
thickness. For continuous and very fine tuning of parameters, or for efficient computation time,
the Névot—Croce factor is preferable.

The third subtlety is in calculating the phase shift upon reflection from a stack with roughness
at the top interface. In the graded-interface approach, it is necessary to prepare discretized layers
of whatever region the light approaches the sample from (usually vacuum, with refractive index
of 1) at the top of the stack. This makes a smooth transition from the exterior region to the top
material of the sample. When calculating the phase upon reflection from such a stack, however,
the phase shift will be calculated at the top surface of the stack (with refractive index very close to
that of the exterior region) and not from the nominal “top surface” at the center of the distribution
that represents the top interface. Therefore, it is necessary to correct the calculated phase shift by
subtracting the following factor ¢ from the calculated phase:

¢ = 360° [2Asin(0)/ 1], @)

where £ is the height from the top surface of the modeled stack to the middle of the roughness
distribution of the top interface, 8 is the incidence angle measured from grazing, and A is the
wavelength of the light in the external medium. Note that different factors are needed for both the
first and the last interface if calculating phase shift due to transmission.
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Lastly, when simulating roughness on a thin layer, users need to be careful not to have roughness
at neighboring interfaces with a large difference. The reason for this is illustrated in Fig. 3. As
shown in Fig. 3(a), using the graded-interface approach it is in fact possible to simulate layer
thicknesses that are thinner than the total extent of the rough interface, provided that the thin
layer conforms to the profile of the roughness it sits on. However, as shown in Fig. 3(b), if
the roughness of neighboring interfaces differs too much with respect to the intermediate layer
thickness, the lower layer will “penetrate” through the intermediate layer. If there are physical
motivations to believe that this is the correct representation of the system being modeled, then it
is possible to numerically represent such a system; however, it is not immediately compatible
with the two implementations of the graded-interface approach discussed in this paper.

(@)  Layer thickness can be thin (b) But neighboring roughness cannot change too much
compared to the interface width compared to the layer thickness

v X

Osmall

Range o

cla rge

Fig. 3. Varying roughness on either side of a single, thin layer in the graded-interface
approach. (a) It is possible to simulate layer thickness that is thinner than the range of the
rough profile, as long as it is assumed that the layer conforms to the rough surface. (b) If the
roughness of neighboring interfaces differs too much with respect to the intermediate layer
thickness, one side of the layer will “penetrate” through.

Given these subtleties that come with the graded-interface approach, it may be that users
should default to using the Névot—Croce factor, as long as the flexibility that comes with the
graded-interface approach is unnecessary. However, this is only the case to the degree that
calculations performed using the Névot—Croce factor and the graded-interface approach agree
— otherwise, greater caution and investigation may be necessary to determine which approach
should be used. The degree of agreement between the two approaches is the subject of the
remainder of this paper.

5. Numerical simulations
5.1. Interpolation of scattering factors

Before comparing the Névot—Croce factor and the graded-interface approach using numerical
simulations, it is important to consider to what accuracy we should scrutinize the two approaches.
The answer is clearly experiment-dependent; it is not useful to try to chase down discrepancy in
modeling that is many orders of magnitude smaller than the experimental error. In the following
sections of the paper, by presenting results from a set of simulations, we will describe notable
discrepancies in the results of the two approaches and highlight any aspects that users should
consider when choosing between the two. We do not attempt to draw universal conclusions that
are applicable to all XRR and EUVR experiments.

For all the following simulations, we used an in-house calculator based on the Parratt formalism,
that has been tested extensively against IMD [22] for accuracy. Refractive indices of materials
for the X-ray and EUV wavelengths were obtained using the following equation [55]:

-
n=1-6-if=1- i/lz Zni(fl,i + i), o

i
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where n is the complex refractive index. In the X-ray and EUV regimes, the index is very close
to 1 and so it is often expressed using J, S < 1 (note that the sign on 5 can change depending
on the convention used on the electromagnetic waves; —if is consistent with the plane wave
representation of exp[i(wt — kr)], where w is the radian frequency, and ¢ and r are the temporal
and spatial coordinates respectively). 7, is the classical electron radius, A is the wavelength of the
light in vacuum, »; is the number of atoms of type i per unit volume, and /' ; and f>; are the real
and imaginary parts of the unitless atomic scattering factor for that atom type. Scattering factors
are tabulated in multiple databases [56,57]; in this paper we use the database from Center for
X-ray Optics (CXRO) [56]. We chose to use the CXRO database over Chantler’s database [57],
because while there is a good agreement between the CXRO’s mostly experimental database and
Chantler’s theoretical database for energies above 1 keV, there is a large discrepancy for lower
photon energies due to the ineffectiveness of the independent-particle approximation used in
Chantler’s calculation for lower photon energies.

In the CXRO tabulation, scattering factors are listed for discrete photon energies. Therefore,
to calculate the refractive index of a material for an arbitrary photon energy/wavelength, it is
necessary to interpolate the tabulated scattering factors. We have found that different interpolation
methods cause slight differences in the final calculated reflectance. Here, we show the discrepancy
in the interpolated refractive index and the complex reflectance between the modified Akima
(makima) interpolation [58,59] and the piecewise cubic Hermite interpolating polynomial (pchip)
[60,61], both available in MATLAB’s interpl function. We show this for bulk Si (shown
in Fig. 4), Cu, Al, and Au (shown in the appendix Fig. 12). For each element, we selected
two wavelengths, one that is far from a transition edge (i.e., scattering factor vs. wavelength
curve is smooth) and near an edge (i.e., scattering factor changes sharply), and in particular we
selected wavelengths that are in between the tabulated CXRO datapoints. We found that far from
transition edges, the calculated intensity reflectance can vary on orders of 1E-6% to 1E-3%
of the mean reflectance, and the phase shift upon reflection can vary on orders of (1E-7)° to
(1E—4)° depending on the incidence angle. However, when interpolating near transition edges,
the intensity reflectance varied by up to 1 to 10% of the mean, and phase shift by up to 1°. The
pchip and makima interpolations were chosen for this demonstration for their relatively good
agreement with each other, and it should be noted that other lower-order interpolation schemes
(linear, next, previous, spline) resulted in considerably larger discrepancies. Therefore, even
when assuming that the tabulated scattering factors are errorless (which is certainly not true, but
this error is often not accounted for in data analysis), simulated reflectance should be taken with
some caution, especially when calculated very close to transition edges.

5.2.  Summary of simulation parameters

Here we report on the parameters and settings used in our simulations. When using the
Névot—Croce factor, the form assuming a normal distribution of roughness given by Eq. (1) was
used. For the graded-interface approach, we used the weighted profile sum implementation and
used error functions as the profile at all interfaces. The range of the error functions was limited
so that it represents the integral of a Gaussian function that is truncated at —3 and 3 standard
deviations. The discretization thickness was set at 0.0005 nm (which is finer than is typically
needed), and before passing the stack to a Parratt formalism calculator we combined any adjacent
layers with the same refractive index for increased computational speed. The piecewise-cubic
Hermite interpolating polynomial (pchip) scheme was used to interpolate the scattering factors
for calculating the refractive index. We assumed that in each case the light was incident from
vacuum.
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Fig. 4. Discrepancy in calculated complex reflectance from bulk elements (with no surface
roughness) between using the modified Akima (makima) and piecewise-cubic Hermite
interpolating polynomial (pchip) schemes to interpolate scattering factors, which are needed
to calculate the complex refractive index. The scattering factor was interpolated at two
photon energies far from and close to a transition edge, as indicated by the dotted lines in
the scattering factors plot. At each photon energy, the order of magnitude of discrepancy
in the interpolated refractive index is given, and the discrepancy in the amplitude and the
phase shift upon reflection for S-polarization is plotted as a function of incidence angle from
grazing.

5.3. Reflectance from a rough bare substrate

Here we compare X-ray and EUV reflectance from bulk Si with a rough surface, where the RMS
roughness was scanned between 0 and 5 nm in 0.5 nm increments. This is shown in Fig. 5 for
S-polarization, and the corresponding figure for P-polarization is shown in the appendix Fig. 13.
The density of Si was set to 2.329g/cm?, with the resulting refractive index calculated using
Eq. (5) for 0.154 nm =~ 8.04 keV (typical wavelength for XRR, Cu K-a) being 1 — 7.58E—-6
— 1.72E-7i, and for 13.5 nm =~ 91.8eV (wavelength for EUV lithography) being 1 — 1.02E-3
— 1.83E-3i. The plots in Fig. 5 show only the regions with reflectance of above 1E-S8, since
lower reflectance is often not recorded with enough signal-to-noise ratio, and also because the
graded-interface approach had oscillations in the curves that are most likely due to numerical
artifacts.

The first row of Fig. 5 shows the intensity reflectance and the phase shift upon reflection
calculated using the Névot—Croce factor. The second row shows how the curves calculated using
the Névot—Croce factor deviate from those simulated for a perfect interface. Intensity reflectance
is shown as a ratio |R/Ry|, where R = |r|? is the intensity reflectance calculated from a rough
surface, and Ry = |ro|? is the intensity reflectance calculated from a perfectly smooth surface, and
r and ry are the corresponding complex field reflectance. Phase is shown as angle(#/rg). The
third row is the difference in |R/Ry| and angle(r/ry) calculated using the Névot—Croce factor
and the graded-interface approach. If values of the curves in the third row are large, then the
Névot—Croce and the graded-interface approach differ significantly in their prediction of how
roughness affects complex reflectance.

In general, the difference between the reflectance calculated by the Névot—Croce and graded-
interface approach is more significant for X-ray wavelengths, which is expected since the probed
roughness is large compared to the wavelength. Even for X-rays, the discrepancy in intensity
reflectance is relatively small, especially for low roughness. However, the discrepancy in phase is
quite significant; even for a modest RMS roughness of 1 nm, the discrepancy reaches 5°. This is
the aforementioned discrepancy in phase between the Névot—Croce factor and the graded-interface
approach. Hamilton and Pynn argue that the discrepancy does not reflect actual physics but is a
shortcoming of the approximation made in deriving the Névot—Croce factor [35]; however, this
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Fig. 5. Difference in calculated reflectance from bulk Si with varying surface roughness.
Shown for X-ray wavelength of 0.154nm (blue curves, first two columns) and EUV
wavelength of 13.5nm (red curves, last two columns). The darker colors correspond
to smaller roughness, where the roughness was scanned between 0 and 5nm in 0.5 nm
increments. For each wavelength, the left column shows the intensity reflectance R, while
the right column shows the phase upon reflection. Top row: calculated complex reflectance
using the Névot—Croce factor. Middle row: deviation from perfectly smooth surface,
calculated using the Névot—Croce factor; intensity reflectance is shown as a ratio |R/Ry|,
where R = |r|? is the intensity reflectance calculated from a rough surface, and Ry = |rg|?
is the intensity reflectance calculated from a perfectly smooth surface, and r and r( are
the corresponding complex field reflectance. Phase is shown as angle(r/ry). Bottom row:
|R/R| and angle(r/ry) from Névot—Croce factor (NC) minus those of the graded-interface

approach (GI). For all plots, only the parts of the plot with intensity reflectance above 1E—8
are shown.

point should be further investigated if one wishes to use the Névot—Croce factor for accurate
prediction of the phase shift of reflected X-rays.

Unsurprisingly, the discrepancy is smaller for EUV wavelengths, even for near-normal incidence
angles. Below an RMS roughness of 1.5 nm, the discrepancy is below 0.007 in |R/Rg| and 0.04°
in angle(r/rp). The numbers are similar for P-polarization as well, although the discrepancy
increases around the Brewster angle. It should also be noted that at a wavelength of 10.8
nm, where refractive index of Si deviates relatively far from unity, the discrepancy for 1.5 nm
roughness did increase to around 0.01 in |R/Rg| and 0.2° in in angle(r/rg). This is most likely
because the Névot—Croce factor is derived under the assumption that there is only a small
difference in the refractive index of the media separated by the interface.

5.4. Reflectance from a monolayer

Next, we compare X-ray and EUV reflectance from a monolayer where both the vacuum—monolayer
and the monolayer—substrate interfaces have roughness.

We compare X-ray and EUV reflectance from a monolayer of SiO; on a bulk Si substrate. We
assume that the surface roughness at both the vacuum-SiO; interface and the SiO,—Si interface
has RMS roughness of 1 nm, and we vary the thickness of the SiO, monolayer between 10—1 nm
in increments of 1 nm. This is shown in Fig. 6 for S-polarization, and the corresponding figure
for P-polarization is shown in the appendix Fig. 14. The density of Si and the resulting refractive
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index are as quoted in Sec. 5.3, and the density of SiO, was set to 2.196g/cm> (assuming
amorphous), with resulting refractive index of 1 — 7.11E—6 — 9.18E—8i for the X-ray wavelength,
and 1-2.20E-2 — 1.08E-2i for the EUV wavelength.
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Fig. 6. Difference in calculated reflectance from a SiO, monolayer on Si substrate with
varying monolayer thickness shown for X-ray wavelength of 0.154 nm (blue curves, first two
columns) and EUV wavelength of 13.5 nm (red curves, last two columns). The darker colors
correspond to larger thickness, where the thickness was scanned between 10 and 1 nm in
1 nm increments. The roughness at both interfaces was set to 1 nm. The gray dotted vertical
lines in the X-ray plots correspond to the threshold of total external reflection (TER), while
the red dotted vertical lines in the EUV plots correspond to the destructive interference angle
for the monolayer thickness of 10 nm.

Notably, the discrepancy between the Névot—Croce factor and the graded-interface approach
peaks at around the angle where the intensity reflectance drops due to destructive interference
from the monolayer. For the X-ray wavelength, there are numerous interference fringes at many
angles past the total external reflection angle for all the tested layer thicknesses, and so the
discrepancy between the Névot—Croce factor and the graded-interface approach as a function of
incidence angle does not differ too much between the different monolayer thicknesses. However,
for the EUV wavelength, oscillations in intensity reflectance are observable for larger monolayer
thicknesses, and the discrepancy clearly peaks at these positions. The same behavior is observed
for P-polarization as well, at both the destructive interference angles and the Brewster’s angle.

To visualize this behavior more clearly, we plot the discrepancy between the two methods
in intensity reflectance and phase shift upon reflection as a function of both wavelength and
incidence angle, for roughness of 0.1 nm at both interfaces, and fixed monolayer thickness
of 5 nm. In this simulation, the refractive indices of SiO, and Si were kept constant at the
value corresponding to wavelength of 12 nm to observe the phenomena without the influence of
changing refractive index as a function of wavelength. This is shown in Fig. 7. As can be seen, the
discrepancy in intensity reflectance peaks in two places, before and after the minima of intensity
reflectance (shown as an overlaid contour lines), corresponding to destructive interference. The
discrepancy in phase shift upon reflection peaks right at the minima of intensity reflectance.

5.5. Reflectance from multilayer mirrors

It was observed in the previous section that the discrepancy between the Névot—Croce factor and
the graded-interface approach is high around minima of intensity reflectance. This poses the
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Fig. 7. Absolute difference in reflectance calculated using the Névot—Croce factor (NC) and
the graded-interface approach (GI), shown as a function of incidence angle and wavelength
for S-polarization, for a SiO, monolayer on Si. Difference in the intensity reflectance is
shown as a difference in the ratio |R/Rg|, where R = |r|? is the intensity reflectance calculated
from a rough surface, and Ry = |rol? is the intensity reflectance calculated from a perfectly
smooth surface, and r and r( are the corresponding complex field reflectance. Phase is
shown as difference in angle(r/rg). The overlaid contour lines correspond to the intensity
reflectance calculated using the Névot—Croce factor.

question of how the discrepancy behaves from multilayer optics that consist of many thin layers
and utilize constructive/destructive interference to obtain a desired reflectance curve.

We compare X-ray and EUV complex reflectance from multilayer mirrors designed for the two
respective wavelengths. For X-ray wavelength of 0.154 nm, we simulate a W/C multilayer mirror
[62], consisting of 20 pairs of W/C layers, with W thickness of 1 nm and C thickness of 3.3 nm,
on a Si substrate. The refractive index of Si is the same as in Sec. 5.3, and the density of W
and C are set to 16.0 and 2.0 g/cm? with resulting refractive indices 1-3.85E—5-3.22E—6i and
1-6.42E—-6-1.02E—8i respectively.

For an EUV wavelength of 13.5 nm, we model a Mo/Si multilayer mirror with 30 pairs, with
Mo thickness of 3.38 nm and Si thickness of 6.27 nm, on a SiO, substrate. The refractive index
of Si and SiO; are as listed in Sec. 5.3—4, and the density of Mo is set to 10.28 g/cm3 with
resulting refractive index of 1-7.67E—2-6.48E—3i. The roughness at all interfaces in both the
X-ray and EUV multilayer mirrors was set to 0.3 nm.

Figure 8 shows the simulated reflectance from the multilayer mirrors and the discrepancy
between the two approaches for S-polarization. Notably, the discrepancy at the reflectance
peak (marked with a green circle) is relatively low, especially considering that there are many
interfaces in the stack. At the reflectance peak, for X-ray the discrepancy in |R/Ry| is 0.002 and
for angle(r/rp) it is 0.09°. For EUV, they are 0.0003 and 0.3° respectively.

However, away from the reflectance peak and in the Kiessig fringes, the discrepancy between
the two methods fluctuates significantly. From the insets of Fig. 8, it can be seen that the
discrepancy in intensity reflectance peaks in opposite directions on two sides of the intensity
minima (as was also seen in Fig. 6 and 7), and the discrepancy in phase peaks both at the intensity
maxima and the minima. One plausible explanation for this is that the Névot—Croce factor does
deviate from known theoretical solutions as well as the graded-interface approach in simulating
phase shift upon reflection. While this is not important for intensity measurements from bulk
materials, it does manifest in both the simulated intensity and phase shift upon reflection from
layered materials because the phase upon reflection from each interface will couple into the
overall reflectance through interference. To our knowledge this point has not been discussed in
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Fig. 8. Difference in the calculated reflectance from multilayer mirrors, for an X-ray
wavelength of 0.154 nm (blue curve, first two columns) and an EUV wavelength of 13.5 nm
(red curve, last two columns). The angle of maximum reflectance is circled in green in each
of the plots. Insets show a zoom-in around the angle of maximum reflectance, where the
range in incidence angle is 0.25 deg for the X-ray insets and 5 deg for the EUV insets.

previous literature, but it should be a consideration when using the Névot—Croce factor in XRR
or EUVR to solve for interface quality, since these techniques rely heavily on interference fringes
in the data analysis.

We also look at angle and wavelength selectivity of multilayer mirrors, which are parameters
of interest especially when these mirrors are being used for wavelength selection. Figure 9 shows
the difference in the maximum reflectance, the angle at which it happens, and FWHM range in
the incidence angle and the wavelength. We see that the discrepancies are very small.

Max. Angle of max. reflectance FWHM range in FWHM range in
reflectance [deg from grazing] incidence angle [deg] wavelength [nm]
NEvGE- 0.5879 1.0636 0.0611 0.00880
Croce
Graded 0.5888 1.0636 0.0612 0.00881
Interface
Difference 0.0009 <0.0001 0.0001 0.00001

Max.

reflectance

[deg from grazing]

Angle of max. reflectance

FWHM range in
incidence angle [deg]

FWHM range in
wavelength [nm]

Nevo- 0.7532 46.50 4.99 0.964
Croce
Graded 0.7530 46 51 5.00 0.964
Interface
Difference |  0.0002 0.01 0.01 <0.001

Fig. 9. Discrepancies in the angle of maximum reflectance, and angle and wavelength
selectivity for X-ray (top) and EUV (bottom) multilayer mirror. The discrepancies are small.

Finally, we test whether the discrepancy between the Névot—Croce factor and the graded-
interface approach grows for increasing number of multilayer pairs. Figure 10 shows how the
discrepancy between the two approaches changes for increasing number of multilayer pairs, using
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the previously mentioned multilayer mirror designs. The incidence angle was set to that of the
maximum-intensity reflectance (1.0636° for X-ray and 46.5° for EUV). While the discrepancy in
phase shift upon reflection generally grows as a function of number of multilayer pairs (and then
plateaus), that is not the case for the intensity reflectance.
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Fig. 10. Difference in calculated reflectance from multilayer mirrors, as a function of
number of multilayer pairs. See main text for the multilayer mirror designs. Shown for X-ray
wavelength of 0.154 nm (blue curve, first two columns) and EUV wavelength of 13.5 nm
(red curve, last two columns). The incidence angle was set to that of the maximum-intensity
reflectance.

6. Conclusion

The Névot—Croce factor and the graded-interface approach are two approaches for modeling
surface and interface roughness in a transversely uniform system when simulating X-ray and EUV
reflectance. The Névot—Croce factor is simple to implement and is computationally fast. The
graded-interface approach is more flexible and can trivially accommodate different roughness
profiles and other depth-dependent features.

When choosing between the two methods, it is important to verify that the two methods produce
similar results. We have found that, while the discrepancy between the two methods is small for
most cases, it can be large in several notable cases: when the roughness is large with respect
to the wavelength (especially in simulating the phase shift upon reflection), when refractive
index changes significantly across the interface, at angles corresponding to high constructive and
destructive interference (the extrema of Kiessig fringes), at Brewster’s angle for P-polarization,
and away from the designed bandwidth of multilayer mirrors. While the first two cases are widely
known, we emphasize an important subtlety in that the two approaches deviate from each other in
simulating the phase upon reflection, and that the error is coupled into intensity reflectance when
there are multiple interfaces in the system being modeled. To our knowledge, this is the first time
the latter point has been discussed. Additionally, the last point on multilayer mirrors is important
for characterizing multilayer mirrors using XRR or EUVR, where one may measure outside of
the design bandwidth to determine mirror characteristics. These conclusions are summarized in
Fig. 11.



Research Article Vol. 4, No. 5/15 May 2021/ OSA Continuum 1512

OSACONTINUUM :

Névot—Croce

Flexible — can accommodate
different profiles, other depth-
dependent features

Results sensitive to modeling approach...

* For larger o with respect to A, especially in phase shift upon reflection
* When refractive index changes significantly across the interface
* Around interference peaks and troughs
* At Brewster’s angle for P-polarization

Simple to implement
Computationally fast

Fig. 11. Summary of differences between the Névot—Croce factor and the graded-interface
approach, and where the discrepancy between the two approaches is large.

Appendix
Discrepancy Discrepancy in Discrepancy in
Photon energy [eV] in refractive reflectivity phase shift
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Fig. 12. Extension of Fig. 4, discrepancy in calculated complex reflectance and from bulk
elements (with no surface roughness) between using the modified Akima (makima) and
piecewise cubic Hermite interpolating polynomial (pchip) schemes to interpolate scattering
factors, shown for more elements.
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Fig. 13. P-polarization version of Fig. 5 (reflectance from a bare Si substrate for varying

roughness).
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Fig. 14. P-polarization version of Fig. 6 (reflectance from SiO, monolayer on Si substrate

for varying monolayer thickness). The y-axis of the bottom row plots for the EUV wavelength
has been zoomed-in for visibility.
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Fig. 15. Difference in the results of the Névot—Croce (NC) and the Debye—Waller (DW)
factor for calculating reflectance off of bulk Si (same setup as Fig. 5 and Fig. 13). The first
and the second rows are shown for the Névot—Croce factor, and the third row shows the
difference between the Névot—Croce and the Debye—Waller factor. The plots are shown for
S-polarization, and the roughness was scanned between 0 and 5 nm in 0.5 nm increments.
Note that in this case, the Debye—Waller factor is purely real, so the difference between the
Névot—Croce and the Debye—Waller in phase is purely the phase in the Névot—Croce factor.
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Fig. 16. P-polarization version of Fig. 15 (difference in the Névot—Croce and the De-
bye—Waller factor for calculating reflectance off of bulk Si).
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Fig. 17. Difference in the results of the Névot—Croce (NC) and the Debye—Waller (DW)
factor for calculating reflectance off of 3 nm of SiO, monolayer on Si (similar setup as Fig. 6
and Fig. 14). The first and the second rows are shown for the Névot—Croce factor, and the
third row shows the difference between the Névot—Croce and the Debye—Waller factor. The
plots are shown for S-polarization, and the roughness was scanned between 0 and 5 nm in
0.5 nm increments.
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Fig. 18. P-polarization version of Fig. 17 (difference in the Névot—Croce and the De-
bye—Waller factor for calculating reflectance off of SiO, monolayer on Si).
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