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Information-rich localization microscopy through
machine learning

Taehwan Kim® 4, Seonah Moon?4 & Ke Xu® 23

Recent years have witnessed the development of single-molecule localization microscopy as
a generic tool for sampling diverse biologically relevant information at the super-resolution
level. While current approaches often rely on the target-specific alteration of the point spread
function to encode the multidimensional contents of single fluorophores, the details of the
point spread function in an unmodified microscope already contain rich information. Here we
introduce a data-driven approach in which artificial neural networks are trained to make a
direct link between an experimental point spread function image and its underlying, multi-
dimensional parameters, and compare results with alternative approaches based on max-
imum likelihood estimation. To demonstrate this concept in real systems, we decipher in
fixed cells both the colors and the axial positions of single molecules in regular localization

microscopy data.

TDepartment of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA. 2 Department of Chemistry, University of
California, Berkeley, CA 94720, USA. 3 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA. “These authors contributed equally: Taehwan Kim,
Seonah Moon. Correspondence and requests for materials should be addressed to K.X. (email: xuk@berkeley.edu)

NATURE COMMUNICATIONS | (2019)10:1996 | https://doi.org/10.1038/s41467-019-10036-z | www.nature.com/naturecommunications 1


http://orcid.org/0000-0003-1015-8752
http://orcid.org/0000-0003-1015-8752
http://orcid.org/0000-0003-1015-8752
http://orcid.org/0000-0003-1015-8752
http://orcid.org/0000-0003-1015-8752
http://orcid.org/0000-0002-2788-194X
http://orcid.org/0000-0002-2788-194X
http://orcid.org/0000-0002-2788-194X
http://orcid.org/0000-0002-2788-194X
http://orcid.org/0000-0002-2788-194X
mailto:xuk@berkeley.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

riginally developed toward the specific goal of superior

spatial resolution, single-molecule localization (super-

resolution) microscopy (SMLM), including STORM/(F)
PALM!-3 and PAINT?, has evolved in recent years into a generic
tool for sampling diverse biologically relevant information at the
nanoscale®. For example, when combined with environment-
sensitive dyes, intracellular heterogeneity in the local chemical
environment can be mapped by concurrently obtaining the spa-
tial positions and emission spectra of millions of single fluor-
escent molecules®. Consequently, the full potential of SMLM is
expected to be unleashed through the proper multidimensional
analysis of the emission wavelength?, brightness, dipole orienta-
tion”, as well as the axial (3D) position® of single molecules.

To date, to extract information beyond the in-plane location,
e.g., the emission wavelength and the axial position, of single
emitters, would often oblige the explicit encoding of such high-
dimensionality information into the diffraction pattern of single
molecules (point spread functions; PSFs) through optical aber-
rations and alterations>$, including astigmatism?, interference!©,
wavelength-dependent splitting!!, dispersion!?, and wave-front
modification!3. The resultant engineered PSF shape and intensity
then help establish best-fit models between experimental obser-
vables and fluorophore characteristics. Such approaches, each
often optimized for a single parameter of interest, inevitably
increase the PSF size and/or necessitate the splitting of fluores-
cence across different channels, and so often incur complicated
optics and compromised performances between different para-
meters. While recent work!415 has studied the PSF design for the
simultaneous estimation of color and axial position, added optics
and enlarged PSFs are still involved, and proper calibration of
such Fourier optics-heavy systems is challenging!®.

Even the simplest PSF obtained from an unmodified micro-
scope is rich in information—in addition to the axial location
embedded in the defocused PSF, which has been examined in
recent work!718, the emission wavelength of a fluorophore also
sets the scale of PSF in all three dimensions!®. Contributions from
the two sources are distinct yet subtle and would be hard to
decouple via simple models given the difficulties in fully char-
acterizing all system-specific properties. Although recent
work!820 leveraging spline models may help account for the
subtleties in realistic PSF images and thus potentially decipher
this extra information, the construction of such models usually
requires reference PSF stacks acquired under ideal condition, e.g.,
bright fluorescent beads of precisely determined 3D positions and
emission wavelength.

In this work, we present a data-driven approach in which the
relationship between a PSF image, obtained from an unmodified
commercial microscope, and the underlying multidimensional
characteristics of an emitter is directly established by a supervised
machine learning algorithm. A related approach has been recently
used in astronomy for stellar classification?!. Although SMLM
faces additional challenges associated with the vast range of axial
positions (as opposed to stars always at infinity), it benefits from
the ready access to arbitrary amounts of experimental PSFs that
may be acquired under identical conditions, which has motivated
emerging work that leveraged machine learning for single-particle
3D localization??23 and color separation?4. By training generic
learning models using such datasets, an end-to-end framework
from raw, noisy PSF images to the molecule characteristics can be
constructed.

Results

Construction of color-separating and axial-localization ANNS.
To demonstrate this concept, we developed a method for machine
learning-based 3D multi-color SMLM (Fig. 1 and Methods). With

typical experimental pixel sizes ( ~ 100 nm), the dimensionality of
the PSF images is moderate (modeled as 13 x 13 pixels), and thus
artificial neural networks (ANN) with multiple hidden layers?
were directly used as our learning model. ANN is beneficial here
as it possesses excellent representational power, with no
requirement of domain-specific knowledge on the input data to
construct nonlinear models. Moreover, as long as a sufficient
amount of input training data is provided to the ANN, noise in
the data averages out during training process given proper reg-
ularization, and ANN eventually manages to extract underlying
structures®. Consequently, it is well-suited for the limited photon
budget and heavy pixelation in SMLM. Finally, ANN training
only requires the ground truth of the parameter of interest.
Namely, it gradually establishes the relationship between the raw
input and the inference target (e.g., color or axial position) in a
flexible, end-to-end fashion while being insensitive to other
parameters (e.g., x/y position). In contrast, for approaches in
which parametric models are constructed by fitting to experi-
mentally obtained PSF images2%?, experimental images always
need to be tied to precisely determined 3D positions. Reference
PSFs are thus usually acquired using bright fluorescence beads,
which may not accurately represent the PSFs of single molecules
in SMLM experiments.

One ANN with a final Softmax layer was first trained using
cross-entropy loss to determine the emitter color of each PSF.
Once trained, the final Softmax output provided an estimate for
the conditional probability distribution of the fluorophore color,
which enabled the classification of each PSF image with known
confidence (Fig. 1a and Methods). For this color-separating ANN,
training data for different fluorophores were separately prepared
from multiple imaging sessions performed under the same
experimental conditions as the final sample, but using only one
known fluorophore at a time. The training data contained
sufficient samples for fluorophores at different axial positions
within the depth of field ( ~ = 500 nm of the focal plane), so that
the ANN was trained to recognize fluorophores for all axial
positions.

In parallel, ANNs for resolving the axial position of the emitter
were separately trained for each fluorophore using L2 loss so that
the final output was a scalar value?8 corresponding to the decoded
axial position (Fig. 1b). Training data for these axial-localization
ANN s were collected by step-scanning samples each containing
one specific fluorophore, as is typically performed for the
calibration in existing 3D SMLM methods’.

Once both trainings were completed, SMLM data from
unknown samples were localized in 2D, and the single-molecule
images were first fed into the above color-separating ANN
(Fig. 1c). The resultant, color-separated single-molecule images
were then separately fed into the above axial-localization ANNs
trained with the corresponding fluorophores (Fig. 1c). Multi-
dimensional SMLM data were thus obtained by integrating the
ANN-inferred color and axial information with the initial 2D-
localization results.

Performance of the color-separating ANN. We first examined
the performance of the color-separating ANN using simulated
yellow (600 nm wavelength) and red (700 nm wavelength) PSFs
that account for index discontinuity in the sample area!® (Sup-
plementary Fig. 1). For comparison, we also modeled the PSF
with cubic splines?, and determined color through maximum
likelihood estimation (MLE) by minimizing the likelihood error
in the MLE fitting to the PSF stacks of the two different emission
wavelengths. For both training the neural networks and the
construction of the cubic-spline model, we used a PSF reference
stack of 10000 simulated photons over + 600 nm axial (z) range in
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Fig. 1 Workflow of the machine learning-based multidimensional SMLM. a A color-separating ANN is trained using samples each singly labeled by one
known fluorophore, in which PSFs at different axial positions are well-represented. b ANNs for resolving the axial position are separately trained for each
fluorophore using PSFs of known axial positions. € For the analysis of unknown samples, single-molecule images are localized in 2D, and first fed into the
color-separating ANN described in a. The color-separated single-molecule images are then separately fed into the axial-localization ANNSs trained with the
corresponding fluorophores, as described in b. The resultant color and axial position information are then combined with the 2D localization of each

molecule to generate the final multidimensional SMLM data

20nm steps. For the analysis of unknown PSFs, the PSF was
either directly fed to the trained neural networks, or for MLE,
fitting was performed twice for each color with negative and
positive initial z values, respectively, so that the result with a
lower likelihood error was selected to overcome the limitation of
MLE being sensitive to initial parameters!$. At a fixed simulated
background of 10 photons/pixel, we found that at 5000 simulated
photons, both ANN and MLE achieved near-perfect color
separation (Fig. 2a, b). At 2000 simulated photons (Fig. 2c, d),
ANN slightly outperformed MLE for the yellow PSFs, especially
for z=0nm, whereas MLE performed better for the red PSFs.

For experiments, we used two types of 40-nm dia. fluorescent
beads that differed by 45 nm in emission wavelength (yellow and
orange), and images were acquired over +400nm around the
focal plane in 50 nm steps (Methods and Supplementary Fig. 2).
When the beads were at the focal plane, fitting to simple Gaussian
models yielded PSF sizes (20) that were directly proportional to
the emission wavelength, as expected, and this difference gave
adequate separation of the two colors (Fig. 2e). However, this
separation quickly fell apart when results from different axial
positions were mixed: unsurprisingly, defocusing led to substan-
tially increased PSF sizes, and so this parameter no longer offers
useable color separation (Fig. 2f).

In contrast, our color-separating ANN recognized the nuances
in the PSF patterns due to differences in color vs. differences in
axial position, and thus offered excellent color separation both in
the absence and presence ( + 400 nm range) of defocusing (Fig. 2g,
h). As mentioned, the output of this ANN gives the conditional
probabilities of each given single-molecule image being classified
as certain types of fluorophores. In the binary yellow-orange
system, the results can be simplified as the difference A
between the evaluated probabilities of being orange and being
yellow for every image (Fig. 2g, h). Even in the presence of
defocusing, simple classification based on A>0 and A <0 gave
excellent identification for beads brighter than 4000 photons

(Fig. 2h, i), with little dependence on the axial position within the
+400 nm focal range (Fig. 2j). Note in STORM experiments, an
average of >5000 photons is often obtainable for single
molecules”?°. Reducing the photon count to the range of 2000-
4000 photons led to a decrease in accuracy to 88% (Fig. 2i), but
this result was improved to 95.4%, by only keeping classifications
with |A| above the confidence threshold of 0.8, at the expense of
rejecting 25% classifications (Fig. 2i). Our ANN approach can
thus be tuned for experiments that emphasize color-separation
accuracy vs. experiments that emphasize the retention of
molecules.

Performance of the axial-localization ANN. We next char-
acterized the axial-localization ANN and compared with MLE
results based on cubic-spline PSF models. Results on simulated
PSFs of a 700 nm wavelength emitter (Fig. 3a-c) showed that
both the ANN and cubic-spline MLE results generally followed
the trend of the Cramer-Rao lower bound (CRLB), although a
somewhat deteriorated performance was found at z= —200 nm
for the particular MLE fitter we used. For experimental PSFs
acquired with bright fluorescent beads, ANN generally achieved
comparable results as cubic-spline MLE but showed a lower
performance for z=0nm (Fig. 3d-f).

Together, our results showed that ANN achieves good color
separation and axial localization for unmodified PSFs, and its
performance is generally comparable to the state-of-the-art
parametric PSF models. However, for experimental implementa-
tion, the construction of ideal parametric PSF models relies on
ideally measured PSFs, like those obtained above from bright
beads, for which the 3D positions of each PSF can be precisely
determined. In comparison, ANN should readily extract the
underlying structures from a large number of non-ideal PSFs of
unknown positions, like single-molecule data from SMLM
experiments of cell samples.
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Fig. 2 Performance of the color-separating ANN. a-d Comparison of the color-separation performance of the ANN and cubic-spline MLE for simulated PSFs
of yellow (600 nm) and red (700 nm) point sources with 5000 a, b and 2000 ¢, d emitted photons and a background of 10 photons/pixel. e, f PSF size
(20 of 2D Gaussian fitting) distributions of experimental images of yellow and orange beads (with emission peaks at 515 and 560 nm, respectively)
emitting ~ 4000 photons, when the beads are at the focal plane e and as the focus is uniformly scanned over + 400 nm f. g, h Outputs of the color-
separating ANN for the same PSFs in e, f, presented as the distribution for the differences in the evaluated probabilities of each bead being orange vs. being
yellow. i, j Accuracy of classification (left axes) and rejection rate (right axes) in the presence of defocusing, as a function of photon count for all z-positions
i and as a function of z position for beads brighter than 4000 photons j, for confidence thresholds of O, 0.4, and 0.8

Application to SMLM of cells. To test this possibility, we
immunolabeled the microtubules and the outer membrane of
mitochondria in adherent COS-7 cells with two STORM dyes,
CF568 and Alexa Fluor 647 (AF647). Both dyes were excited
within the same STORM imaging session, and resultant single-
molecule fluorescence was collected in one single optical path
after a multi-notch filter. For training of the color-separating
ANN, COS-7 cells singly-labeled by CF568 and AF647 for
microtubules were STORM-imaged on the same setup, which
naturally contained single molecules at all possible axial positions
within the depth of field. For training of the axial-localization
ANN, dye-labeled antibodies were attached to the coverslip for
step-scanning in the axial direction (Methods).

4

Figure 4a presents the acquired STORM image colored by the
fitted Gaussian width (20) of the PSF of each molecule. Here a
brightness threshold of 3000 photons was applied, and ~ 40% of
the identified single molecules met this criterion. This rejection of
dimmer molecules may be compensated by collecting more
(currently 20,000) frames of raw STORM data. Whereas it is clear
that all the narrowest widths belonged to microtubules, which
were stained by the shorter-wavelength dye CF568, larger widths
were found at both microtubules and mitochondria (e.g., cyan
arrows in Fig. 4a). This result is similar to what we saw in the
bead data (Fig. 2f): defocusing broadens the PSF width, and so
this simple parameter can no longer be used to separate colors.
Remarkably, our color-separating ANN achieved excellent color
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Fig. 3 Comparison of the results of the axial-localization ANN with cubic-spline MLE and with the Cramer-Rao lower bound. a, b Estimated z positions vs.
the ground truth over £ 400 nm of the focal center for simulated point sources of 700 nm wavelength at a brightness of 5000 photons, using a MLE with a
cubic-spline model and b ANN estimation. The scattered data points represent estimated z positions at each true z position, and the red solid and dash
lines give the corresponding mean and standard deviation. ¢ z precision from a, b, compared with the Cramer-Rao lower bound calculated from the cubic-
spline model. d-f Corresponding results on experimental images of red fluorescent beads (typical photon count: ~15,000)

separation for the entire image independent of axial position (and
thus defocusing) (Fig. 4b-d), and consistent results were obtained
on different cells over repeated experiments (Supplementary
Fig. 3). Quantification of color classification accuracy, as
separately determined using fixed cells singly labeled by CF568
(Fig. 4j) and AF647 (Fig. 4k), indicated that at ~ 5000 photons,
excellent accuracies of 98.2% were achieved for both dyes at the
confidence threshold of 0.8. At~ 3000 photons, the accuracy for
CF568 did not vary noticeably (Fig. 4j), whereas the accuracy for
AF647 dropped to~90.4% (Fig. 4k). Lowering the confidence
thresholds led to accuracy drops by a few percentage points
(Fig. 4j, k). Previous work?® has shown that for dyes in these two
color channels, through traditional sequential imaging using
different optical filter sets, a ~ 8% crosstalk occurred from the
561-nm excited dye into the 647-nm excited dye, whereas
crosstalk in the opposite direction was ~ 1%. Our accuracies thus
appear to outperform at ~ 5000 photons, a value often obtained in
STORM experiments®2°, Moreover, in our case, all data were
collected within the same optical path in a single STORM session,
so we avoided the major difficulties in aligning images from
different filter sets.

Based on our successful color classification, two axial-
localization ANNSs, each trained for AF647 and CF568, were next
used to separately decode the axial positions of the molecules in
the two color channels, the results of which were recombined into
one image for presentation (Fig. 4e and Supplementary Fig. 3).
This showed the expected result that the cell edges, thinner in
height, were dominated by small z values, whereas for regions far
away for the cell edges, the cells became thicker and had increased
z values. White arrows in Fig. 4a, e further point to regions of
microtubules, labeled by the same CF568 dye, where similarly
increased PSF widths were noted, but the ANN correctly identified
one being below the focal plane whereas the other above. Vertical
cross-sectional views of the data correctly showed the hollow
structure of the mitochondrial outer membrane (Fig. 4f, g), and
distributions of the z positions for the AF647-labeled

mitochondrial outer membrane and the CF568-labeled micro-
tubule both showed standard deviations of 30-40 nm (Fig. 4h, i).
We further note that as the two color channels are successfully
separated, they may also be separately fed into other recent
methods that extract axial positions from unmodified PSFs!7-18,

Discussion

Our finding highlights the rich, multidimensional information
concealed in the details of the diffraction-limited image of a
fluorophore, which was unleashed in this work through machine
learning algorithms. Not having to modify the PSF shape or
divide single-molecule fluorescence between different optical
paths, or to image sequentially, not only simplify experimental
implementation, but more importantly, preclude the deteriora-
tion in SMLM performance due to enlarged PSFs and/or split
channels, as well as the need to align localizations from different
channels. Moreover, once trained, evaluation was straightforward
and fast ( > 3.3 x 10°> molecules/s with GPU acceleration) for both
the color-separating and the axial-localization ANNS.

One limitation of our current work is good training samples for
the z position. In the presence of index mismatch and super-
critical angle fluorescence, PSFs acquired from coverslip-attached
single molecules would be different from those labeled inside
cells. While this is a common challenge for 3D-SMLM, recent
work has shown the possibility to overcome such limits through
imaging single molecules attached to known structures such as
microspheres’, as well as fluorescent beads encapsulated in an
agarose gel!8. Incorporating such approaches would help improve
Z precision.

Finally, we note that our end-to-end framework may be further
extended to determine more parameters. As a first step, we
evaluated the performance of lateral position (x/y) estimation
using ANNs with simulated PSF images and achieved good
precision when compared to the CRLB (Supplementary Fig. 4).
The difficulty of applying such ANN analysis for lateral positions,
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Fig. 4 ANN-resolved multicolor 3D SMLM in cells based on unmodified PSFs. a STORM image of CF568-labeled microtubules and AF647-labeled
mitochondrial outer membrane in a fixed COS-7 cell, colored by the fitted Gaussian width (26) of the PSF of each molecule, for molecules brighter than
3000 photons. b Result of the color-separating ANN for the same dataset, at a confidence threshold of 0.8. ¢, d The separated AF647 ¢ and CF568

d channels for the boxed area in b. Cyan arrows in a-d point to two regions where molecules of similar PSF widths are correctly determined as different
colors by the ANN. e The merged 3D STORM image after separately determining the axial position of every single molecule based on ANNs respectively
trained for AF647 and CF568. Color here presents the axial position (z), with blue being closest to the substrate and red being the farthest away. White
arrows in a and e point to two regions of the CF568 microtubule labeling that showed similar defocusing effects but determined by ANN as being on
opposite sides of the focal plane. f, g Vertical cross-sectional views for the f solid boxed area (colored by z) and g dashed boxed area (color separated by
the ANN) in e. h Histogram of the axial (z) position along the magenta line in f (o of the fitted Gaussian: 36 nm). i Histogram of the axial (2) position of the
microtubule and the bottom membrane of the mitochondrion in g (o of the fitted Gaussian: 36 and 28 nm, respectively). j, k Classification accuracy (left
axis) and rejection rate (right axis) of the color-separating ANN as a function of photon count, for cells singly labeled by CF568 j and AF647 k, at
confidence thresholds of O, 0.4, and 0.8. Scale bars, 2 pm a-e, 200nm f, g

as well as for other possible parameters, including the signal and
background levels, however, resides with the difficulty in con-
structing good training sets with known ground truth. Together,
we expect the co-evolution of our data-driven end-to-end fra-
mework with ongoing efforts on PSF engineering® should lead to
new improvements, and conceivably, new types of imaging
modalities, for multidimensional SMLM.

Methods

Optical setup. STORM and bead experiments were performed on a Nikon Ti-E
inverted fluorescence microscope using an oil-immersion objective lens (Nikon CFI
Plan Apochromat A 100 x, NA 1.45) and the native 1.5x magnification on the
microscope, without any modifications to the imaging path. Lasers emitting at 644,
561, and 488 nm were introduced to the back focal plane of the objective lens via a
multi-line dichroic mirror (ZT405/488/561/640rpc-uf2, Chroma). A translation
stage shifted the laser beams toward the edge of the objective lens so that they
entered slightly below the critical angle, illuminating < 1 pm into the sample.
Emission was filtered by a multi-notch filter (ZET405/488/561/640 m, Chroma)
and recorded by an EM-CCD camera (iXon Ultra 897, Andor). Effective magni-
fication and pixel size were ~ 150x and ~ 107 nm, respectively.

Bead samples. For bead experiments for color-classification (for both the training
of the ANNSs and the analysis of unknown samples), 40 nm dia. fluorescent beads
from Invitrogen (F10720; yellow and orange FluoSpheres with emission peaks at
515 and 560 nm, respectively) were diluted in Dulbecco’s phosphate buffered saline
(DPBS), mixed, and sealed between a glass slide and a pre-cleaned #1.5 thickness

coverslip, and imaged with the above optical setup. The 488-nm and 561-nm lasers
were used to excite the two types of beads to similar levels of brightness. To record
images at different axial positions, the objective lens was scanned by the built-in
motor over a range of —400 to + 400 nm of the focal plane in 50 nm steps. To
compare the performance of the axial-localization ANN with cubic-spline MLE, 40
nm dia. fluorescent beads from Invitrogen (F8789; dark red FluoSphere with an
emission peak at 680 nm) were similarly prepared as described above, excited with
the 644-nm laser, and scanned from -400 nm to + 400 nm in 50 nm steps.

Cell samples. For STORM experiments (training of the color-separating ANN and
the ANN analysis of unknown samples), COS-7 cells were plated on #1.5 coverslips
to reach a confluency of ~ 50% in ~ 1.5 days, and fixed with 0.1% glutaraldehyde
and 3% paraformaldehyde in DPBS at room temperature. The sample was quen-
ched with 0.1% sodium borohydride in DPBS and rinsed with DBPS three times.
Primary and secondary antibodies were diluted in a blocking buffer (3% BSA +
0.1% Triton X-100 in DPBS) and labeled as described previously®. Primary anti-
bodies were mouse anti-tubulin (Abcam ab7291) for microtubules and rabbit anti-
Tom20 (Santa Cruz sc-11415) for mitochondrial outer membrane. Secondary
antibodies were AF647-labeled goat anti-mouse IgG1 (Invitrogen A21240), AF647-
labeled goat anti-rabbit IgG (Invitrogen A21245), and donkey anti-mouse IgG
(Jackson ImmunoResearch) conjugated with a CF568 succinimidyl ester (Biotium
92131). Samples for training the color-separating ANN were singly labeled for
microtubules with CF568 or AF647, whereas for the two-color unknown samples,
microtubules and the mitochondrial outer membrane were respectively labeled
with CF568 and AF647. The sample was mounted in a STORM buffer [10% (w/v)
glucose, 120 mM cysteamine, 0.8 mg/mL glucose oxidase, and 40 pg/mL catalase in
Tris-HCI (pH 7.5)] and imaged using the optical setup described above. For
consistent experimental conditions, all cell samples were imaged at comparable
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depths with the focal plane being ~ 300 nm away from the coverslip surface. The
sample was concurrently illuminated with the 561 and 644 nm lasers each at ~ 2

kW/cm?, which led to the photoswitching of CF568 and AF647 single molecules.
Fluorescence was recorded by the EM-CCD for a frame size of 256 x 256 pixels at
55 frames per second. Each movie was typically recorded for 20,000 frames.

Antibody samples. For training of the dye-specific axial-localization ANNs of
AF647 and CF568 single molecules, the above AF647- and CF568-labeled sec-
ondary antibodies were separately diluted in DPBS to ~ 2 ug/mL. Pre-cleaned #1.5
coverslips were separately incubated in either solution for ~ 5 min, briefly air-dried,
rinsed with distilled water, and mounted and imaged as described above for cells.
To record single-molecule images at different axial positions, the objective lens was
scanned in the range of —700 to + 700 nm of the focal plane in 50 nm steps. Note
that two separate set of scanned images are attained, each for AF647 and CF568.
This enables independent neural network training for the two types of dyes, thus
eliminating chromatic errors in the axial direction. Possible in-plane chromatic
errors may further be corrected for through a bead calibration, but it has not been
attempted in this work.

Preprocessing of single-molecule images for ANNSs. Single-molecule fluores-
cence in raw STORM and bead data was first identified and localized in 2D using
established methods!. Here the goal was merely to obtain isolated single-molecule
images as raw inputs of the ANNs, and similar results were obtained when using
Insight3 (developed by Dr. Bo Huang at University of California, San Francisco
and Dr. Xiaowei Zhuang at Harvard University) or ThunderSTORM?3! (available at
[https://github.com/zitmen/thunderstorm]) (Supplementary Fig. 5). Single-
molecule PSF images were cropped as 13 x 13 pixels surrounding the 2D locali-
zations. Here we rejected molecules that were too close to each other (<1 pm) and
excluded abnormal single-molecule images with fitted widths (20) of > ~ 400 nm.
The cropped PSF images were zero-centered, and their L2/Euclidean norm was
normalized before being used as inputs for ANNs.

Simulation of the PSF images. Realistic PSFs that account for the index dis-
continuity in the sample area were generated using the PSF generator package from
EPFL3? ([http://bigwww.epfl.ch/algorithms/psfgenerator]) using the Gibson-Lanni
(G-L) model'?. Input parameters for the G-L model: NA = 1.45, immersion layer
index = 1.51, sample layer index = 1.33, working distance = 130 pum, particle
position = 1 pum. The emission wavelength was set to be 600 nm and 700 nm for
two-color classification, and 700 nm for z estimation. For all experiments, PSF
stack was firstly generated with 20 nm axial step size over + 600 nm range and at 5
nm lateral resolution. For the final image, this high-resolution PSF stack was down-
sampled into 100 nm pixel grid, and the total sum of the values within 24 x 24 pixel
region-of-interest is matched to the given photon count and offset by the back-
ground photons. Lastly, detector shot-noise was modeled as the Poisson process
with the rate matched to the mean photon counts within each pixel.

Cubic-spline model-based maximum-likelihood estimation and classification.
Openly available software from Zhuang group at Harvard University ([https://
github.com/ZhuangLab/storm-analysis]?’) was used to generate cubic-spline
models for the simulated and experimental PSFs, calculate Cramer-Rao lower
bounds (CRLBs)?7, and MLE for z position. As the MLE z estimation for unmo-
dified PSFs is prone to reaching local, rather than global minima'$, two rounds of
MLE fitting were performed with different initial z values ( + 300 nm/—300nm),
and the one that yielded a lower likelihood error was selected. To perform MLE-
based color classification, multiple error values, each from MLE fitting with one of
the cubic spline models constructed with PSF stacks of the two different emission
wavelengths, were returned and then compared to pick the color that finally
minimizes the likelihood error. As for each color, MLE was done twice with dif-
ferent initial z values, four total rounds of MLE were thus required. For obtaining
the PSF image stack for the spline models, while the ground truth of the 3D
positions of the simulated PSFs are known by definition, for experiments on
fluorescent beads (~ 15,000 photons), the in-plane positions were estimated
through Gaussian least-squares fitting, and axial positions were from z scanning.

Design and implementation of neural networks. An ANN architecture com-
prising multiple hidden layers was implemented using the Tensorflow framework
on a computer with 32GB RAM, Intel i7-7800X CPU, and Nvidia GTX-1080Ti
GPU. The same architecture was used for both the color-separating and axial-
localization ANNs (4 total layers of 4096-4096-2048-1024 neurons, respectively;
Supplementary Fig. 6). Each hidden layer was fully connected, and rectified linear
units were used as their activation function. For color discrimination, Softmax
function and cross-entropy were used for loss calculation, the weights in the net-
work were not directly included for regularization, and a dropout layer was inserted
before the final layer to prevent over-fitting. For axial/lateral localization, the
output of the final layer was set to be a scalar value, and L2 norm was used to
calculate the learning loss for each batch. In this case, L2 norm of the weights in
each layer was added to the loss function for regularization, and dropout was not
used. Network hyper-parameters such as the number of neurons in each layer
(given above), the dropout ratio (0.5 for the color-separating ANN), and the

regularization factor (0.01 for the axial-localization ANNs) were adjusted for
optimized performance. The codes for our ANN implementation are available
online ([https://github.com/ann-storm/ann-storm]).

Neural network training. Since the network is subject to handling input images with
various noise levels, it was essential to maintain a consistent noise level within the
training dataset regardless of the classification class or axial location. Therefore,
experimental PSF images with comparable photon counts of 4500-5500 were used
throughout the training process, and molecules with photon counts higher than this
range were used for the validation during the training process to check the general-
ization of the trained network. The weights initialized by the Xavier method>? are
trained using the Adam optimization algorithm. An initial learning rate of 1074 and
1073, and a batch size of 64 and 32 were used for the color-separating and the axial-
localization ANNS, respectively. The learning rate was set to decrease by ~ 5x after
every 1,000 iterations. The sizes of the training sets were ~ 10,000 and ~ 6,000 per
fluorophore type for the color-separating and the axial-localization ANNSs, respec-
tively. The networks converged within ~ 10 epochs (training time: 231.9 s for the
color-separating ANN, and 488.5s for the axial-localization ANNS).

Neural network inference. At the inference stage, input single-molecule PSF images
were first plugged into the color-separating ANN. This ANN provides a conditional
probability distribution corresponding to the input image. Specifically, when the size
of each input image is N by N pixels, and there are M different molecule color classes,
the final output from the Softmax layer for the ith input image is:

P(y;lx;), x; € RV*N, y, € {Dyel, -, DyeM}. (1)

From this distribution, the ANN makes the decision in a maximum a posteriori
(MAP) manner:3* through training, ANN provides the posterior distribution, and the
molecule color class with the highest probability is chosen. This, in turn, implies that
we can use this distribution to quantify the classification confidence. For example, in a
simple binary classification problem, the confidence for the color assignment of the
ith input image can be evaluated as:

|A;| = |[P(Dye 1|x;) — P(Dye2|x;)|. )

By setting a finite confidence threshold § to reject molecules with low classification
confidences (|4, < 8), improved classification accuracy may be obtained (Figs. 2i, j and
4j, k). This parameter may thus be adjusted by the user to balance the classification
accuracy and rejection rate. Once the color of the molecule is determined, the single-
molecule image is plugged into the axial-localization ANN trained for that particular
color to evaluate the axial position. With GPU acceleration, both inference steps
(passing the forward path of the neural networks) were extremely fast: only ~ 300 ms
was used to infer 100,000 molecules for both the color-separating and the axial-
localization ANNS.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability

STORM experiment training and evaluation data set are also available online on the code
repository. Other data are available from the corresponding author upon reasonable
request.

Code Availability

The codes for color separation and axial localization ANNs are available online ([https://
github.com/ann-storm/ann-storm], https://doi.org/10.5281/zenodo.2619228).
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