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Understanding measurement uncertainty is crucial in experimental physics, as it enables accurate and
reliable measurements, facilitates comparison between measurements, and aids in designing experiments.
Consequently, measurement uncertainty has emerged as a critical learning goal for many introductory
physics labs. Here, we explore the impact of a recently transformed introductory physics lab at the
University of Colorado Boulder on student understanding and interpretation of measurement uncertainty.
The transformed course was explicitly designed to prioritize understanding measurement uncertainties as a
learning goal and replaced verification labs with measurements where students could not predict the
outcomes in advance. We used the physics measurement questionnaire to assess changes in student
reasoning about measurement uncertainty at the beginning and end of the semester. Using a subparadigm
coding scheme, we assessed different types of prevalent student reasoning and observed for trends in
reasoning surrounding measurement uncertainty from the beginning to end of the lab course. Clustering
algorithms were utilized to categorize student reasoning and compare these pre- and postsurvey responses.
This analysis offers valuable insights into students’ reasoning about measurement uncertainty, including the
diversity of initial reasoning clusters and the narrowing of reasoning elements into primarily more
expertlike responses after the transformed course. However, challenges were observed in transitioning
students from certain clusters, especially those that exhibited brevity in their presurvey responses. Overall,
the findings reveal the potential for targeted interventions to deepen these students’ understanding of
measurement uncertainty in experimental physics and underscore the significance of evidence-based

instructional strategies in physics labs for improving student learning outcomes.
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I. INTRODUCTION

Laboratory courses play a vital role in undergraduate
physics curricula, offering students hands-on experience
and opportunities to develop practical skills. Physics
education research has increasingly focused on identifying
effective teaching practices in introductory and advanced
lab courses, encompassing various goals and objectives
[1-7]. One prominent goal, as highlighted by the American
Association of Physics Teachers Recommendations for
the Undergraduate Physics Laboratory Curriculum, is for
students to recognize and comprehend the limitations
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and uncertainties inherent in measurements and measure-
ment devices [8].

Several institutions have undergone lab transformations
with a specific emphasis on teaching the concept of
measurement uncertainty [9-18]. For instance, Cornell
University’s introductory calculus-based physics lab series
was revamped to emphasize conceptual introductions to
measurement uncertainty, resulting in improved student
views on the importance of uncertainty in evaluating the
trustworthiness of results [9,10]. Similarly, the Scientific
Community Laboratory (SCL) at the University of
Maryland recognizes measurement uncertainty as a critical
component of teaching students how to produce, analyze,
and evaluate scientific evidence, and places it on par with
physics concepts [11,12]. Despite the shared goal of
addressing measurement uncertainty in physics labs, the
depth, breadth, style, and instructional framing can vary
significantly from one course to another [19].

The introductory physics lab course at the University
of Colorado (CU) Boulder has recently undergone a
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significant transformation with the explicit integration of a
learning goal centered on the understanding of measure-
ment uncertainties and the concept that repeated measure-
ments yield a distribution with a mean and a standard
deviation [20]. To emphasize this reasoning, the trans-
formed course has eliminated verification labs [21] (e.g.,
measuring the gravitational constant, g) and instead focused
on measurements where students could not predict the
outcomes in advance [22]. Our objective in this study is to
investigate the changes in student reasoning regarding
measurement uncertainty within the context of this trans-
formed course. For a comprehensive analysis of the impact
of the course transformation on student reasoning about
measurement uncertainty, as compared to previous itera-
tions of the course, please refer to Ref. [22].

Several assessment tools have been utilized by physics
educators and education researchers to evaluate student
comprehension of measurement uncertainty [23-27].
In this study, we employ the Physics Measurement
Questionnaire (PMQ) [25], a well-established tool developed
at the University of Cape Town, South Africa, over a decade
ago as part of a lab curriculum reform project [25]. The PMQ
consists of nine probes, featuring both multiple-choice and
open-ended responses [28]. Student responses to the open-
ended questions are analyzed using the “point” and “set”
paradigms [29]. The point paradigm reflects reasoning based
solely on individual measurements, while the set paradigm,
aligned with the learning goals of the CU Boulder lab course,
signifies an understanding that all measurements possess
uncertainties and do not represent the “true” value.
Additionally, it recognizes that repeated measurements form
a distribution with a mean and a standard deviation [29].

The PMQ was selected for this study due to its close
alignment with the learning goals of the transformed
course [30] and the absence of other research-based
assessments explicitly focusing on these goals at the time
of the study. However, one challenge in utilizing the PMQ
is that student reasoning regarding measurement uncer-
tainty is expressed through open-ended responses, neces-
sitating intensive qualitative coding. Previous work by
Wilson et al. [31] has explored the use of machine
learning and natural language processing to address this
coding challenge. While their work successfully demon-
strated the application of the point and set paradigm-level
codes, they did not delve into using machine learning to
discern more nuanced distinctions in student reasoning
(i.e., “subparadigm” reasoning).

Furthermore, the insights and challenges derived from
using the PMQ to evaluate changes in student reasoning
regarding measurement uncertainty in CU Boulder’s intro-
ductory lab course inspired the development of a new
assessment tool called SPRUCE [26,27]. The Survey of
Physics Reasoning on Uncertainty Concepts in Experiments
(SPRUCE) was recently created to measure similar, but also
expanded, concepts relating to measurement uncertainty
compared to the PMQ. Importantly, SPRUCE employs a

format that eliminates the need for qualitative coding of
responses.

Nonetheless, the qualitative coding of student responses
to the PMQ using a subparadigm coding scheme [22] yields
valuable insights into the evolution of student reasoning
about measurement uncertainty within the introductory lab
course at CU Boulder. This coding scheme allows us to
match students’ precourse and postcourse responses, clus-
ter students based on their reasoning patterns, and inves-
tigate the changes that occur as a result of their engagement
with the course. By employing this analysis scheme, we are
able to construct a student-derived model that captures
nuanced aspects of student reasoning, identifies common
trends, and tracks shifts in their thinking. Specifically, we
aim to address the following research questions:

RQ1: What nuances in student reasoning regarding
measurement uncertainty are captured by a clustering
algorithm using the subparadigm coding scheme?

RQ2: How does students’ reasoning about measurement
uncertainty change from precourse to postcourse?

To address these research questions, we employ hierar-
chical clustering analysis [32,33] using an agglomerative
(i.e., “bottom-up”) linkage criteria on the hand-coded open-
ended student survey responses from the PMQ. This
analysis uses a student-centered, bottom-up clustering
approach to capture the wide range of student reasoning
that might not neatly fit into predefined categories. Still, it
enables us to identify common elements of reasoning
within large clusters of students (RQ/) and gain insights
into common changes in student reasoning resulting from
the course (RQ2).

II. COURSE CONTEXT

CU Boulder Physics 1140: Experimental Physics 1 is a
large enrollment, introductory physics lab course designed
for engineering and physical science majors (Table I).
Typically taken during the second semester of students’
college education, it often serves as their first exposure to a
college-level physics lab. The course is not directly tied to a
full lecture course, but rather has six lectures on measure-
ment and measurement uncertainty (described later in this
section). The lab activities cover topics from mechanics,
electricity and magnetism, and optics. Students meet
weekly in two-hour lab sessions to work through a new
lab activity each week for a total of 12 activities.

This version of the course was run for the first time in
Fall 2017 [34] after being transformed to better align with
the needs of students in the departments served by the
course and emphasized the following learning goals:

1. Students’ epistemology of experimental physics
should align with expert views.

2. Students should have a positive attitude about the
course.

3. Students should have a positive attitude about
experimental physics.
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TABLE 1. Self-reported demographic data of CU Boulder
PHYS 1140 Experimental Physics I students enrolled in the
course in Spring 2018.

Gender % of students
Woman 23.6
Man 75.1
Other gender 1.3

Major % of students
Physics and eng. phys. 17.2
Other engineering 44.8
Math and other science 35.1
Other Disciplines 3.0

Race or ethnicity % of students
American Indian or Alaskan Native 0.9
Asian 14.4
Black or African American 2.2
Hispanic/Latino 8.8
Native Hawaiian or Pacific Islander 0.7
White 69.0
Other race or ethnicity 4.0

4. Students should be able to make a presentation

quality graph showing a model and data.

5. Students should demonstrate a setlike reasoning

when evaluating measurements.

As part of the transformation, a new series of lab
activities were developed with a focus on incorporating
measurement uncertainty as a central element. More details
on the course and the transformation process can be found
in Refs. [20,22,30,34-37].

One key aspect of the transformed course is that each lab
activity requires students to measure a quantity or outcome
that they do not know beforehand [22]. This approach
avoids “verification labs,” [21] where students measure
values that they could look up in textbooks or on the
internet, and instead encourages students to actively engage
in the process of measurement, prediction, comparison, and
communication of results with their peers. This approach
provides opportunities for students to consider and com-
municate both the value and the uncertainty of their
measurements, and to discuss the context of their choices
involving data collection and procedure.

In addition to the lab activities, the transformed course
includes lectures that specifically focus on measurement
uncertainty concepts [22]. Four out of the six lectures in
the course are dedicated entirely to topics such as the
importance of measurement uncertainty, estimating uncer-
tainty from single and multiple measurements, standard
deviation, and standard deviation of the mean (also called
standard error), distributions and the normal distribution,
making comparisons between measurements, and system-
atic errors in comparison to random uncertainties. These
lectures aim to provide students with a solid foundation in
understanding measurement uncertainty and its signifi-
cance in experimental physics.

II1I. METHODOLOGY

A. The physics measurement questionnaire

Each of the nine probes in the PMQ [25] assesses a
specific aspect of measurement, such as data collection,
data processing, and data comparison. The probes are
framed in the context of an experiment involving rolling a
ball down a slope and measuring the distance it travels in free-
fall. For example, one probe, for “different mean same
spread” (DMSS), asks students to compare two sets of data
and decide if the two groups had the same or different results.
This probe is aptly called DMSS because the two groups’
results gave different means, but had the same sample
minimum and maximums. However, for the purposes of
this study, only four out of the nine probes were considered
for analysis, as the others were either incompatible with the
electronic administration format, considered less useful by
the researchers who developed the PMQ, or did not appear on
both the pretest and post-test versions of the PMQ [30]. The
four probes chosen for analysis are DMSS, along with
“repeated distance” (RD), “using repeats” (UR), and “‘same
mean different spread” (SMDS) [25].

The PMQ was administered in the course at CU at both
the beginning (pre) and end (post) of the Spring 2018
semester. Participation in both the pre- and post-PMQ
survey was a normal part of the course and students
were awarded a small amount of credit for completing
the survey [30]. The PMQ was completed by students
outside of class using the Qualtics survey platform. The
pre- and post-PMQ survey responses were matched for
each student. Of the 722 students enrolled in the Spring
2018 course, 499 completed both the pretest and post-test,
and were included in the dataset analyzed here.

B. PMQ coding scheme

The PMQ was initially developed by researchers in
York, UK, for primary school students aged 9-16 [38]. It
involved categorizing students’ ideas about experimental data
into eight levels representing a progression in their under-
standing of measurement concepts [38]. Researchers at the
University of Cape Town later adapted the materials from
York for their first-year university physics classes, creating the
PMQ specifically for their context [29]. They extended the
framework from York, introducing the point and set para-
digms to analyze the open-ended responses of the PMQ [29].

Then in 2016, researchers at CU Boulder developed a
modified coding scheme using responses collected from the
pretransformed course. They initially started with the
codebook from the Cape Town as a guide. However, this
codebook did not align with many of the students’ ideas in
their responses and most students at CU Boulder did not
change paradigms (Fig. 1) making it challenging to evaluate
the PMQ at the paradigm level. Since the researchers aimed
to capture the full range of student ideas, they created an
emergent coding scheme that initially had around 100 codes
per PMQ probe. This extensive codebook was able to
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FIG. 1. Percentage of students from Spring 2018 for each probe
who, from pre- to postassessment, did not change at all (green),
changed paradigms (blue), and changed within a paradigm
(orange). Most students did not change paradigms; however,
when including changes within paradigms, in all cases, most
students did change their reasoning from pre- to postassessment.

represent the many varied ways students discussed their
reasoning around measurement uncertainty, many of which
were not predicted by previous research or the research team.
This emergent coding scheme was crucial to ensure that
student ideas were not overlooked, which could have
happened if only a priori codes were used. However, this
nuanced codebook was too large to be of practical use and
many codes were similar enough to be combined without
losing the essence of student reasoning. The research team
collectively assigned a paradigm (point, set, or neither or
undefined) to each code based on the reasoning. They then
consolidated and refined the codes, grouping them themati-
cally to create a more manageable coding scheme.

The consolidated codes were then applied and refined
using PMQ responses from Fall 2017. Interrater reliability
was assessed using the Cohen’s kappa statistic [39], with
discussions and refinements made as necessary. This
process was repeated for each of the four PMQ probes.
The resulting codebook contained 12 to 16 codes in total
per probe. The codes were given a two-character identifier,
with the first character explicitly tying the code with a
paradigm (set: S, point: P, undefined: U). Multiple codes
could be assigned to a single response. A subset of the
codebook is shown in Table II.

TABLE II.  Selected codes from the new PMQ coding scheme. Reproduced from Ref. [22]. The full codebook can be found in

Appendix.

Probe  Identifier Name Definition: “Argument is that...”

RD S2 Measure an average ...multiple measurements will allow the experimenter to calculate an average
or mean

RD S4 Reduce uncertainty of mean ...multiple measurements will be used to reduce the error/uncertainty of the
mean or average.

RD P1 Measure the true value ...the experimenter could measure the correct value in a single measurement.

RD U2 More data cancel out error ...experimenter needs to take more data to cancel or out-weigh the
effect of error.

RD U3 More data are better ...more data is better / more accurate / more precise / etc. Includes if
reasoning other than statistical reasoning apparent.

UR S1 Simply average ...Iaveraged, do the average, average is best, or it is the average, but does not
elaborate. Includes statements that simply say what the reported value is.

UR S4 Report average and spread ...experimenter should report the average and the uncertainty, range, or
spread.

UR P1 Choose single value ...experimenter should choose a single value to report (for any reason).

SMDS S2 Smaller spread is better, ...a smaller spread, uncertainty, or range is better, more accurate more

no mention of external factors precise, etc. The response does not mention external factors, outliers,

human error, etc.

SMDS P1 The means are the same ...the groups agree because the means are the same.

DMSS S3 Similar means and spreads, ...the groups agree because the means and spreads are similar.

mentions overlap Argument considers the overlap between the means and/or

spreads of the two datasets.

DMSS P3 Means close enough, ...the groups agree because the means are close enough

treats average as point
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TABLE III. Percentage of students responses with setlike,
pointlike, and undefined reasoning. Undefined responses refer
to student responses that neither fit into set- nor pointlike
reasoning.

Presurvey
Probe Set Point Undefined®
RD 42.7% 21.8% 35.5%
UR 91.0% 0.4% 8.0%
SMDS 51.5% 13.4% 26.7%
DMSS 33.5% 32.9% 33.7%
Postsurvey
Probe Set Point Undefined
RD 84.8% 1.0% 14.2%
UR 96.0% 0.0% 3.4%
SMDS 57.5% 9.2% 24.8%
DMSS 69.1% 7.4% 23.4%

*Some responses may be double or triple coded. In these cases,
undefined refers to responses that are only undefined as well as
those mixed with point- and setlike reasoning.

The final code definitions were then used to code
responses from Spring 2017 and Spring 2018. The
Spring 2018 data were used in the analysis for this study.
A further description of the coding scheme development
can be found in Refs. [22,30].

C. Clustering analysis of student responses

With a large number of student responses reflecting
setlike reasoning in both the pre- and postsurvey, particu-
larly in the UR probe (Table III), it is challenging to assert
the influence of the course on student understanding of
measurement uncertainty [30]. To better understand the
nuances of student reasoning, we look at the subparadigm
level; however, this presents a new challenge due to the
high dimensionality of the data, with 12-16 codes per
probe [22]. To address this issue, we employ a partitioning
(or clustering) approach to group students with similar pre-
or postsurvey reasoning on the PMQ probes. By analyzing
student movement within these subgroups (i.e., from their
pre- and postsurvey clusters), we can gain insights into
student learning and reasoning surrounding measurement
uncertainty while still maintaining the integrity of capturing
as many individual reasoning elements and shifts in
reasoning as possible.

We use hierarchical clustering, a popular and simple
clustering method [32], which builds a hierarchy of
groups. One advantage of hierarchical clustering is that
it can handle categorical or mixed-type data effectively,
since any valid measure of distance can be used for the
algorithm [32,33]. To calculate a dissimilarity matrix of
the student responses, we use Gower’s distance [40],

which measures the dissimilarity between two observa-
tions on a scale of 0 to 1 and does not require the
observations to be numeric [40]. We calculated Gower’s
distance by computing all the pairwise dissimilarities
between each student response for each probe in the
dataset. Each student response was transformed into a
vector, with each element of the vector corresponding to a
potential code for that probe. If a student received a code,
the element would be marked with a “Yes”; otherwise, it
would be marked with a “No.” The hierarchical clustering
analysis then uses a “linkage criterion” to determine the
distance between sets of observations based on pairwise
distances between observations. In our analysis, we use
Ward’s method [33], which is designed to minimize the
total within-cluster variance. Ward’s method is an agglom-
erative or “bottom-up” approach, where each observation
starts as a singleton cluster, and at each step merges the
clusters such that there is a minimum increase in total
within-cluster variance [33].

It is important to note that the choice of distance
measure and linkage criteria can significantly impact
the results of the clustering. Therefore, clustering should
be viewed as an exploratory tool to visualize and interpret
data, rather than considering the clusters as results in
themselves. Additionally, the decision to use an agglom-
erative linkage criteria is a purposeful methodological
choice to highlight emergent patterns from the student
reasoning rather than prescribe an a priori framework.
While this choice may risk missing a higher-level expert-
like interpretation of the data, our fine-grained coding
allows for a comprehensive examination of how students’
reasoning evolves across a broad spectrum of ideas. And
this approach may have uncovered more unexpected
trends or patterns that a “top-down” clustering might
overlook.

To both highlight and emphasize this, we describe our
process for interpreting the output of the clustering algo-
rithm via a dendrogram, our approach for determining the
clusters used in our analysis, and how we match the pre-
and postreasoning based on the clustering algorithm for the
RD probe as an example.

1. Interpreting dendrograms

Figure 2 depicts a dendrogram consisting of clades,
which are vertical lines connecting in a hierarchical treelike
structure. The height of each clade reflects the “distance”
between the clusters being connected. The leaves at the
bottom of the dendrogram, shown in boxes A and B,
represent individual data points, in this case, student
responses to the PMQ survey.

Zooming in on the leaves in boxes A and B in Fig. 2, we
can examine the responses of each student in the post-
survey. In Fig. 3, the largest cluster of students (33.3% of
the respondents), stemming from the first clade, all
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FIG. 2. The dendrogram from the hierarchically clustering of the RD probe of the PMQ postsurvey student responses. Figures 3 and 4

are magnified versions of boxes A (orange) and B (green).

I
S4 U3 3

FIG. 3.

us,

The dendrogram from Fig. 2 zoomed in on box A. We see a large cluster of students who responded with only S4 reasoning on

the PQM and a smaller cluster that is comprised of students who responded with U3 reseasoning only and those who responded with U3

and S4 reasoning.

responded with S4 reasoning on the RD probe in their
postsurveys. The second clade represents two distinct
groups of students: 110 students who responded with
U3 reasoning and an additional 4 students who responded
with both U3 and S4 reasoning. The utilization of cluster-
ing algorithms is particularly advantageous in this context,
as it allows us to effectively reduce the dimensionality of
the dataset while still capturing the presence of the small
population exhibiting a combination of U3 and S4 reason-
ing. These students are absorbed into a single cluster
denoted as the “U3 cluster,” which primarily exhibits U3
reasoning. Employing this approach enables meaningful

P2,s2
S2,U1
S2,U3
P2,51

S2

$2,83

S1

comparisons and analyses of reasoning patterns within and
between clusters.

Figure 4 shows a more complex clustering, combining
multiple small groups of students. The clade on the left
splits into five groups of student reasoning: 5 students with
S2 and S3 reasoning, 3 students with S2 and P2 reasoning,
1 student with S2 and U1 reasoning, 1 student with S2 and
U3 reasoning, and 13 students with S2 reasoning. Notably,
all of these students stemming from this clade demonstrated
S2-type reasoning. The clade on the right splits into seven
groups of student reasonings: 1 student with S1 and P2
reasoning, 10 students with S1 reasoning, 2 students with

S2,84

$1,84
$1,82,54

S1, S2

S$1,82,U2

FIG. 4. The dendrogram from Fig. 2 enlarged on box B. We see an example of more complex clustering where clusters are
combinations of many small groups of students with different reasoning.
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TABLE IV. RD presurvey student reasoning divided into 10
clusters.

TABLE V. RD postsurvey student reasoning divided into 10
clusters.

Number of Percentage  Cluster kept Number of Percentage  Cluster kept
Cluster label  students (n = 499)  of students  for analysis Cluster label  students (n = 499)  of students  for analysis
U3 138 27.7% Yes S4 166 33.3% Yes
S4 55 11.0% Yes U3 114 22.8% Yes
P1 49 9.8% Yes U2 42 8.4% Yes
P2 48 9.6% Yes S2 and U2 42 8.4% Yes
S2 and U2 47 9.4% Yes Other 31 6.2% Yes
Other 47 9.4% Yes S1 28 5.6% No
S2 35 7.0% Yes S2 23 4.6% Yes
U2 34 6.8% Yes S3 22 4.4% No
S1 24 4.8% No Ul 16 3.2% No
S3 22 4.4% No P2 15 3.0% Yes

S1 and S4 reasoning, 1 student with S2 and S4 reasoning,
2 students with S1 and S2 and S4 reasoning, 10 students
with S1 and S2 reasoning, and 2 students with S1 and S2
and U2 reasoning. While each unique reasoning element
on its own represents only a small portion of the class
(2.6% of the class used S2-only reasoning), together, these
two clades form a cluster representing students with
“primarily S1 and/or S2 type reasoning,” which consti-
tutes 10% of the class. To access a comprehensive list
of how each individual student code aligns with the
selected clusters for every probe, please refer to the
Supplemental Material [41].

2. Determining the clusters

In our study, we encountered the common challenge of
determining the optimal number of clusters in a dataset
when using clustering algorithms. However, there is no
definitive way to partition clusters, regardless of the
clustering algorithm used [42]. Often, researchers rely on
subjective methods, such as inspecting elbow plots or
dendrograms and determining what “looks” best. For
instance, when examining Fig. 2, one may naturally see
that the data would be best split into four clusters while
another researcher might believe that is it best split into
three. It is important to acknowledge that these methods
are inherently subjective, and it may be more advisable to
embrace the subjectivity and choose the number of clusters
based on their interpretability, utility, interest, and under-
lying theory surrounding measurement uncertainty.

In our case, for the RD probe, we started by arbitrarily
creating 10 clusters for both the pre- and postresponses,
which is over double the number that was likely necessary.
We then examined the reasoning used by each student in
these clusters and labeled them based on the dominant
reasoning elements (Tables IV and V). It is important to
note that the clusters labeled as S1 and S2 in Table V
represent the two clades shown in Fig. 4, and consist of
many reasoning elements beyond just the S1 or S2
only codes.

Next, we chose which clusters to include in our analysis
and which to combine into an “other” category based on
their ability to help us answer our research questions. For
example, when we examine general trends in student
reasoning between the pre- and postcourse surveys, we
focused on clusters that represented consistent reasoning
from a large fraction of the class (approximately > 10%),
or those that were close to 10% of the class, but had mostly
consistent reasoning amongst the students in the cluster
(e.g., the U2 cluster representing only 8.4% of students in
the presurvey and 6.8% in the postsurvey, but not combined
with students with lots of mixed reasoning elements).
Additionally, we chose to keep clusters that were “large”
in the presurvey, but small in the postsurvey (e.g., P1 and
P2 type reasoning in the RD probe) for comparison of pre
and postresponses. However, we also aim to explore the
subtleties of student reasoning around measurement uncer-
tainty captured by the clustering algorithm and subpar-
adigm coding scheme, so we also considered medium-sized
clusters (5%—10% of students) that had interesting inter-
pretability or theoretical implications (e.g., S2&U2 cluster
representing only 9.4% of students in the presurvey and
8.4% in the postsurvey, but interestingly, these two codes
were often double coded together).

After careful analysis and interpretation of the clusters,
we decided to retain seven clusters for our analysis of the
RD probe: the S4 cluster, the U3 cluster, the P1 cluster, the
P2 cluster, the S2 and U2 cluster, the U2 cluster, and an
other cluster.

3. Matching pre- and postsurvey reasoning

Once the clusters have been determined and labeled for
the probe, we use a chord diagram to visually compare the
pre- and postsurvey reasoning and observe course trends. A
chord diagram is a graphical method of displaying flows of
data within a circle. Nodes representing each of the clusters
are placed around the circumference of the circle. Arcs are
drawn into or out of each node, with the thickness of the
arcs representing the number of students who changed into
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TABLE VI.  Ten student reasonings to the RD probe on the pre-
and postsurvey and their assigned cluster.

Student Precode Precluster ~ Postcode  Postcluster
Student 1 S1 Other U2 U2
Student 2 U3 U3 U3 u3
Student 3 S2, U2 S2 and U2 U2 U2
Student 4 P1 P1 U3 U3
Student 5 P2, P3 P2 S4 S4
Student 6 S2, U2 S2 and U2 U3, S4 U3
Student 7 P2, S4 P2 U3 u3
Student 8  S1, S2, S4 Other S1, S2 Other
Student 9 P1 P1 S2, U2 S2 and U2
Student 10 P2, S2 P2 S2, U2 S22 and U2

or out of that type of reasoning. The “mounds” in the
diagram represent the number of students who remained in
that particular cluster from the pre- to postsurvey.

To illustrate, Table VI provides an example of how ten
actual student codes from the pre- and post-RD probe
correspond to cluster names and are matched. Additionally,
Table VII presents the total number of students who moved
between or stayed in each of the clusters from the pre- to
postsurvey, which serves as the raw data used to create the
chord diagrams.

IV. THE RD PROBE

The RD probe asks students whether they should
measure the distance that the ball lands a few more times,
one more time, or no more times after they had already
measured the distance once before. The students are then
prompted to, “Explain your choice” (Fig. 5).

A variety of reasoning elements emerged among students
as they explained their choices (see Appendix, Table XII).
Students using pointlike reasoning presented diverse argu-
ments, such as the potential for the experimenter to capture
the accurate value in a single measurement (P1). Some
students, recognizing the necessity to identify outliers,

TABLE VII. Matched clusters from pre to postsurvey with
student counts. Presurvey reasoning is represented vertically in
the first column, while postsurvey reasoning is represented
horizontally in the first row.

Clusters Other P1 P2 S2 S2and U2 S4 U2 U3
Other 27 32 2 6 29 6 18
P1 7 1 1 4 5 14 4 13
P2 12 2 1 1 4 13 5 10
S2 6 0O 0 5 5 8 4 7
S2 and U2 7 0o 0 3 6 13 8 10
S4 5 0o 2 2 6 29 3 8
U2 3 0 1 1 3 17 2 7
U3 20 3 8 5 8 43 10 41

The students work in groups on the experiment. Their first task is to determine d when
h =400 mm. One group releases the ball down the slope at a height /7 =400 mm and, using a
metre stick, they measure @ to be 436 mm.

The following discussion then takes place between the students.

Why? We've
got the result
already. We do
not need to do
any more rolling.

I think we should
roll the ball a few
more times from
the same height
and measure d
each time.

I think we
should roll the

ball down the
\ slope just one

= — more time
5

from the

same height.
FIG. 5. The RD probe of the PMQ. Students are asked to
choose “With whom do you most closely agree?” then they are
then prompted to “Explain your choice.” Reproduced from [28].

emphasized the requirement for repeated measurements
to discern mistakes or outliers (P2). This perspective
involves the condition that the experimenter must obtain
consistent results at least twice for that number to be
deemed correct. In consideration of available time or
resources, some students highlighted that taking a single
measurement was a better course of action based on such
practical constraints (P3). Furthermore, students indicated
that practice was essential during measurements to address
errors and external factors (P4).

Students employing setlike reasoning all acknowledged
the need for multiple measurements. Certain students
advocated for this without delving into statistical terminol-
ogy, stating that utilizing all measurements collectively
would improve the accuracy and precision (S3). Others
focused solely on measuring spread (S1) or average (S2),
but did not discuss both. The most sophisticated set-based
reasoning (S4) came from students who asserted that using
multiple measurements would reduce the uncertainty sur-
rounding the mean value.

Additionally, a subset of students offered reasoning that
did not align within either a setlike or pointlike paradigm.
These students emphasized acquiring more data without
explicit statistical justification (U1), posited that additional
data would counteract errors (U2), or simply asserted the
benefits of more data (U3).

It is important to note that students occasionally inte-
grated multiple lines of reasoning in their explanations. For
instance, as will be discussed later in this section, students
frequently combined perspectives like S2 and U2, stating
that ““... multiple measurements would enable the experi-
menter to compute an average, thereby mitigating the
impact of errors.”

We begin the analysis of the RD probe by interpreting
the chord diagram shown in Fig. 6, discussing dominating
clusters of these subparadigm codes (RQ/) and trends
in student movement in reasoning from the presurvey
to the postsurvey (RQ?2). Last, we look at a particularly
interesting cluster of double-coded responses that
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FIG. 6. Chord diagram representing changes in student reason-
ing between the pre- and postsurvey on the RD probe.

represented the reasoning of almost 10% of the students in
the course (RQI).

A. Interpretation of the chord diagram

Analysis of the chord diagram shown in Fig. 6 reveals
that the two primary reasoning elements students used
were U3 and S4. Combined, S4 and U3 clusters account
for 38.7% of the student reasoning on the presurvey and
56.1% on the postsurvey. This indicates that students
shifted from a more diverse range of responses in the
presurvey to primarily S4 and U3 reasoning in the
postsurvey, suggesting changes in reasoning around
measurement uncertainty. A summary of the key

TABLE VIIL

Key takeaways from the analysis of the RD probe.

takeaways from the analysis of the RD probe is shown
in Table VIII.

One of the most prominent trends observed in student
reasoning was the movement towards S4 clusters from all
other clusters, with students who initially exhibited S4
reasoning continuing to demonstrate S4 reasoning in the
postcourse assessment [Fig. 7(a)]. Similarly, there was very
little movement away from S4 reasoning [Fig. 7(b)]. The
code S4 represents students who explained their choice by
stating that they need to “reduce the uncertainty of the mean.”
This type of reasoning aligns closely with the learning goals
of our course, as it recognizes that all measurements have
associated uncertainties and that reducing uncertainty
requires considering a set of repeated measurements.

Another interesting trend is that there were comparable
numbers of students who moved into, out of, and stayed in
the U3 cluster (Fig. 8), which is not surprising considering
that U3 represents students who responded with the belief
that “more data is better.” This reasoning does not fit into
either the set- or pointlike paradigms, as students do not
provide additional information on why they believe more
data is better. The brevity of this response could be
attributed to a lack of deeper understanding of measure-
ment uncertainty, lack of interest in filling out the PMQ
survey, or limited time to complete the survey.

Furthermore, it was observed that many students moved
“out” of the P1 and P2 clusters (Fig. 9) and into many other
reasoning clusters.

B. A notable cluster

One cluster in the RD probe (Fig. 6) showed students
double coded with S2 and U2, representing approximately

Movement towards expertlike reasoning: Students in the postsurvey were more likely to use reasoning that discussed multiple
measurements being needed to reduce the error or uncertainty of the mean or average (S4). This reasoning aligns with the course goals
and was the most expertlike reasoning demonstrated by the students because, unlike the other setlike responses, students discussed the

importance of both the mean and the uncertainty.

Comparable numbers of students responded by saying ‘“more data is better” in the pre- and postsurveys: While many students
who began in the U3 cluster, stating that “...more data is better, more accurate, more precise, etc.,” moved out of this cluster,
approximately equal number of students moved into this cluster. This speaks to the importance of the cluster analysis on individual
student matched responses rather than the cumulative analysis of the class-wide data which may have missed this movement. This
cluster is neither in the set- nor pointlike paradigms because the students do not use statistical reasoning to explain their answer and it

is particularly marked by brevity of the response.

Movement out of pointlike reasoning: Many no longer used reasoning such as “...the experimenter could measure the correct value in
a single measurement” (P1) nor “...repeated measurements are needed in order to know which measurements were mistakes or
outliers, after all measurements are taken” (P2). These pointlike reasonings were used by almost 20% of the students in the presurvey,
but less than 5% in the postsurvey. Furthermore, there was no clear differences as the movement from students who started in the P1 or
P2 clusters and these students moved into setlike, unknown, or other types of reasoning about evenly.

Students using setlike language without expertlike set reasoning: One cluster in the RD probe showed students double coded with S2
and U2, representing approximately 9% of the students in the postsurvey. Students in this cluster stated reasoning such as, “multiple
measurements will allow the experimenter to calculate an average or mean which will cancel or outweigh the effect of error.”
The double-coded S2 and U2 response indicates that, perhaps, students are using setlike language but do not exhibit expertlike set

reasoning.
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FIG. 7. Student reasoning movement (a) into and (b) out of the S4 cluster for the RD probe.
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FIG. 8. Student reasoning movement (a) into and (b) out of the U3 cluster for the RD probe.

9% of the students in the postsurvey. This finding high-
lights an interesting limitation of the point or set paradigm.
The combined S2 and U2 codes suggest that “multiple
measurements will allow the experimenter to calculate an
average or mean which will cancel or outweigh the effect of
error.” Examples of actual student responses that were
double coded include:

In order to get a more accurate result, it is
important to take multiple data points and average
them out.

Increase sample size, then average values for a
more consistent observation.

The double-coded S2 and U2 response indicates that
students are using setlike language (e.g., “multiple data
points,” ‘“sample size,” “average”) but do not exhibit
expertlike set reasoning (e.g., stating that taking an average

FIG. 9. Student reasoning movement out of the P1 and P2 “cancels out” error). One possible explanation for this
clusters for the RD probe. observation is that students might be repeating setlike terms

LR N1
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The students continue to release the ball down the slope at a height 4 =400 mm.

Their results after five releases are: SR used by the instructional team without deeply grasping
shodd e dom their meaning or not adopting a genuine setlike perspective.
% {{—4(3?—'") ford They may simply remember [43] that taking an average or
2 426 / / \ mean is important but may not fully understand or evaluate
i :;2 " [43] why it is necessary within this particular context.
E-5-)
The students then discuss what to write down for d as their final result. V. THE UR PROBE
FIG. 10. The UR probe of the PMQ. Students are asked to Figure 10 shows the UR probe, which asks students to

“Write down what you think the students should record as their ~ report a value of the ball distance after five trials were
final result for d.” Then students are prompted to “Explain your ~ taken, followed by an explanation of their choice.
choice.” Reproduced from [28]. Students explained their choices for the UR probe using
a range of reasoning elements (see Appendix, Table XIII).
Students using pointlike reasoning responded with various
ideas, such as choosing a single value to report (P1) or
using the average as a last resort (P2).

However, most students responded with setlike reason-
ing where they specified reporting the average would be the
best option. However, some did this tersely saying simply
“average” (S1), others discussed why the average was
useful (S2) or appropriate (S3). A few students talked about
how to mathematically compute the average (S5). However,
the most expertlike response came from students who
specified that the experimenter should report both the
mean and the spread (S4).

Here, we discuss the dominant clusters for the UR probe
shown in Fig. 11 (RQI). We then look at trends in student
movement in reasoning from the presurvey to the post-
survey (RQ2), particularly the transition from S3 to S4
FIG. 11. Chord diagram representing changes in student reasoning. A summary of the key takeaways from the
reasoning between the pre- and postsurvey on the UR probe. analysis of the UR probe can be found in Table IX.

TABLE IX. Key takeaways from the analysis of the UR probe.

The vast majority of students stated simply “average” or named reported value as average: The dominant cluster in both the
presurvey and the postsurvey was students who only state things like “T averaged,” “do the average,” “average is best,” or “it is the
average,” but does not elaborate along the lines as described in the other setlike codes (S1). This cluster also includes students who
reported numerical value of the average (S1). This represents the most rudimentary of the setlike reasonings, suggesting that many
students were not yet familiar with more advanced concepts of measurement uncertainty or did not feel it was necessary to report the
uncertainty. Furthermore, students in the S1 reasoning cluster tended to stay with S1 reasoning (61.6%). One possible explanation is

that the terseness of S1 responses may have made it difficult for students to provide more detailed explanations of their reasoning.

Other set-like reasoning: All of the major clusters from the UR probe were variations of set-like reasoning, indicating the utility of the
subparadigm coding scheme. The second largest cluster in the presurvey and the third largest cluster in the postsurvey were students
who discussed why the average is useful (S2), which is a more advanced type of setlike reasoning that considers the spread of the data.
However, students in this category still only discuss the mean. S4 reasoning, where students reported both the mean and the spread, is
considered the most expertlike response and was the second largest cluster in the postsurvey. This suggests that some students were
beginning to understand the importance of reporting uncertainty along with the mean.

Movement toward reporting both the mean and spread: The movement toward the S4 reasoning cluster where students explained
that “...experimenter should report the average and the uncertainty, range, or spread” showed a positive outcome for the transformed
course. We see that only 7.6% of students began in this cluster initially, yet 23.6% of student moved into this cluster in the postsurvey.
We saw that students from the S3 cluster, who said that reporting the average is best because all data matters or because the spread of
the data is small were more likely to move into the into the S4 cluster (38.6%). Whereas about 20% of students from the S1 and S2
clusters and about 24% of students from the other reasoning cluster moved into the S4 cluster. Overall, this trend suggests that the
course was effective in helping students develop a more sophisticated understanding of measurement uncertainty. However, more
work is needed to ensure that all students are able to reach this level of understanding since students who responded with simply
“average” was still the dominant cluster.
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FIG. 12. Student reasoning movement (a) into and (b) out of the S4 cluster of the UR probe.

A. Interpretation of the chord diagram

The dominant cluster in both the pre and postsurvey
was students who responded with S1 only reasoning. The
S1 code was assigned to student responses that stated
“I averaged,” “do the average,” or “average is best,” but did
not provide any further explanation (i.e., not co-coded
with S2, S3, S4, or S6, see code definitions in Appendix).
The S1 code may have been double coded with S5 (when
the method of averaging is explained as additional infor-
mation) or with S7 when students wrote that taking the
average was the “logical” or “correct” thing to do, as these
also do not provide further insight into set paradigm
reasoning. However, such double coding with S5 or S7
was rare and categorized into the “other” cluster. The
Sl-only cluster represented 45.9% of students in the
presurvey and 49.7% in the postsurvey.

The second largest cluster in the presurvey (22.2% of
students) and the third largest cluster in the postsurvey
(15.2% of students) were students who responded with S2
reasoning, describing “why the average is useful.” For
example, students may have written that reporting the
average is best because it accounts for fluctuations or
errors, or because it predicts future measurements.

S4 reasoning, where students reported both the
average and the spread, was the second largest cluster in
the postsurvey, consisting of 22.4% of the students.
However, it only represented 7.6% of the students in the
presurvey.

B. Trends in student reasoning

The analysis of the survey responses revealed interesting
trends in students’ reasoning about measurement uncer-
tainty. Together, the four set paradigm clusters shown in the
chord diagram represent a large majority of the class—
83.6% of the students in the presurvey and 89.8% in the
postsurvey. Among these clusters, the S4 reasoning cluster,
which is considered most aligned with expert reasoning and

characterized by the use of standard deviation and reporting
uncertainty, showed a positive outcome for the transformed
course, as many students moved into this cluster from the
presurvey to the postsurvey, and very few students changed
out of this type of reasoning (Fig. 12).

In contrast, many students moved out of the S3 reasoning
cluster on the postsurvey. Specifically, only 2% of students
ended up in the S3 cluster in the postsurvey, compared to
10% of students who started in the S3 reasoning cluster in
the presurvey. Moreover, among the students who started in
the S3 cluster in the presurvey, 29% moved to the S1
cluster, 18% moved to the S2 cluster, and 38% moved to the
S4 cluster in the postsurvey. These findings suggest that
starting with S3 reasoning in the presurvey is more likely to
contribute to the development of expertlike reasoning (S4)
in the postsurvey. However, the underlying reasons for this
trend require further investigation. To explore this idea, we
examine specific quotes from student responses.

C. Transition from S3 reasoning to S4 reasoning

The S3 code represents students who said that reporting
the average is best because all data matters, or because the
spread of the data is small enough. This code includes
reporting all data as well as the average, but does not
include students who wrote “it is the correct thing to do.”

The transition from S3 to S4 reasoning is demonstrated
by various student responses. For example, a student
initially classified as S3 in the presurvey expressed support
for using the mean in their response while also acknowl-
edging the potential use of the median:

I chose to use the mean of the results. We
could also use the median, which would be
434 mm in this situation, but I feel that doesn’t
accurately represent the weight of the multiple
426 mm results. One could argue that using the
median could reduce the impact of a significant
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outlier, but in these results nothing is over 3%
from the mean.

However, in the postsurvey, this student shifted to S4
type reasoning and emphasized the importance of reporting
the mean along with the standard deviation of the mean as a
measure of uncertainty:

They should report the mean, which would be
432. They should also display their uncertainty,
which they could do by reporting the standard
deviation of the mean.

Likewise, another student who transitioned from S3
reasoning in the presurvey to S4 reasoning in the post-
survey argued in the presurvey to use the mean because
there were no outliers in the data:

There are no clear outliers therefore all measure-
ments must be assumed to be equally valid. Thus
an average must be taken.

In the postsurvey, this student reiterated the use of the
mean and suggested reporting the standard deviation of the
mean to represent uncertainty:

The mean is 432, and the uncertainty is the
standard deviation of the mean.

These responses illustrate the similarly thoughtful justi-
fications provided by students in both the S3 and S4
reasoning clusters. In contrast, we see that many students
in the S1 reasoning tended to stay with S1 reasoning. Unlike
S3 or S4 reasoning, S1 reasoning provides terse responses
such as “take the average” or “average,” which lack detailed
insight into their reasoning about measurement uncertainty.
These brief responses from the S1 cluster offer limited
information regarding student reasoning about measurement
uncertainty, leaving questions about whether students are
rushing through the questionnaire without much thought or if
they have not considered reporting the standard deviation.

VI. THE SMDS PROBE

The SMDS probe, as shown in Fig. 13, was used to ask
students to compare two groups of students who had both
collected five data points with the same averages.

In response to the SMDS probe, students commonly
used both point- and setlike reasoning (see Appendix,
Table XIV). Students using pointlike reasoning presented
diverse arguments, such as the treating the mean as a single
value instead of a statistical tool and arguing that the means
were the same for the two groups (P1). Additionally, some
pointlike reasoning specified that the fact that the spreads or
individual trials are different does not matter, including
responses that focus on agreement of the averages while
providing a reason for why the sets are different (P2).

Two groups of students compare their results for d obtained by releasing the ball at 7 =400 mm.
Their results for five releases are shown below.

Group A Group B

Release d_(mm) d_(mm)
1 444 441
2 432 460
3 424 410
4 440 424
5 435 440
Average: 435 435

Our results are better.
They are all between
424 mm and 444 mm.
Yours are spread
between 410 mm

and 460 mm.

Our results are just
as good as yours.
Our average is the
same as yours.

We both got

435 mm for d.

I think the
results of
group B are
better than
the results
of group A.

RO Qe o
FIG. 13. The SMDS probe of the PMQ. Students are asked to

choose “With which group do you most closely agree?” then they
are then prompted to “Explain your choice”.

Others said that one dataset was better because that group
had fewer outliers with no mention of the spread (P3) or
that the experimenters were more careful during the experi-
ment (P4).

Students using setlike reasoning all said that the dataset
with a smaller spread was better (group A). Some did this
by simply saying that group A was better, more accurate, or
more precise (S1). Others said that group A was better
because the spread was smaller, but mentioned human error
might be a factor in this outcome (S3). The most expertlike
response came from students who indicated that smaller
spread is better, but did not mention external factors (S2).

Here, we interpret the chord diagram for the SMDS
probe shown in Fig. 14 and discuss the two dominant
clusters (RQ1) as well as the movement between them from
the presurvey to the postsurvey (RQ2). A summary of the
key takeaways is shown in Table X.

%
o,

[

\

M

FIG. 14. Chord diagram representing changes in student
reasoning between the pre and postsurvey on the SMDS probe.
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TABLE X. Key takeaways from the analysis of the SMDS probe.

Two dominant clusters: Over half of the students responded with to the SMDS probe by saying the “smaller spread is better” without
mentioning of external factors (S2) and approximately one-sixth of the class responded by saying that the “the groups agree because
the means are the same” (P1) in both the pre and postsurvey. While these two clusters represented over half the class, there were many
other diverse types of reasoning used by students (29.2% in the presurvey and 25.6% in the postsurvey) that did not merge into distinct
reasoning clusters.

Despite the stability of the number of students in the two clusters pre and post, many students changed their reasoning: While the
percentages of students in the two dominant clusters remained relatively stable from the pre to postsurvey, we observed significant
shifts in student reasoning within these clusters.

Transition from point to set reasoning: Students who began with pointlike reasoning in the P1 cluster were more likely to transition to
setlike reasoning in the S2 cluster after the course (27.8%) than vice versa (0.07%). Perhaps students began to recognize the
importance of data consistency, spread, and uncertainty in evaluating the quality of experimental results—one of the learning goals for
the course. However, 41.8% of the students remained in the P1 cluster indicating that more work is needed to ensure that all students
are able to reach this level of understanding.

Students who stated that the ‘“smaller spread is better” in the presurvey tended to also simply say that the smaller spread is
better in the postsurvey: Students who initially started in the S2 cluster, stating that group A is better because smaller spread is better,
predominately remained in the S2 cluster (70.3%). However, approximately one-third of students did move out of the S2 cluster, with

7.3% moving into P1 reasoning and 22.4% moving into other types of reasoning.

A. Interpretation of the chord diagram

Two dominant clusters, S2 and P1 reasoning clusters,
were identified in both the pre- and postsurvey responses.

Over half of the students (50.8% in the presurvey and
56.0% in the postsurvey) responded with S2-like reasoning,
stating that a “smaller spread is better” without mentioning
any external factors, outliers, or human error. For example,
one student wrote:

While they did end up with the same final answer,
group A’s data has a smaller standard deviation
and gives us more confidence that their answer is
correct.

S2 reasoning aligns closely with the learning goals for
the course.

Approximately one-sixth of the class (17.3% in
the presurvey and 16.0% in the postsurvey) responded
with Pl-like reasoning, stating that “the groups
agree because the means are the same” without mention-
ing the spread. Examples of students using P1 reasoning
include

All distances will be different so I agree with
student B becasue [sic] they both have the same
averages.

and
Both datasets are just as meaningful.

B. Trends in student reasoning

While the percentages of students in the S2 and Pl
clusters remained relatively stable from the pre to post-
survey, we observed prominent shifts in student reasoning

(see Fig. 14). This finding highlights a strength of the
clustering method employed in this study, as it allowed us
to identify specific changes in individual students’
reasoning that may not have been apparent from examin-
ing course-wide trends alone. Interestingly, we found that
only 41.8% of the students who initially belonged to the
P1 cluster remained in that cluster after the course.
Approximately 30% of students who initially used P1
reasoning transitioned to S2 reasoning, indicating a shift
towards recognizing the importance of considering
spread of the data. Additionally, another 30% of students
moved to other types of reasoning, indicating a diverse
range of perspectives that emerged throughout the
course. Within the other category, 15.2% of students
adopted P2 reasoning, indicating that they explicitly
believed the differences in spreads for individual trials
did not matter.

To illustrate the transition from P1 to S2 reasoning, we
provide two examples of student responses.

In the presurvey, the first student wrote

Results can’t be better. It is merely based on what
their tests show.

This statement suggests that the student believed the
quality of the results depended solely on the outcomes of
the tests conducted by each group. The student did not
consider the spread or consistency of the data as relevant
factors in determining the quality of the results.

In the postsurvey, the same student stated

I think their data is better because it is less spread
out and more consistent.

Here, we see a clear shift in the student’s reasoning. The
student now recognizes the importance of data consistency
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and reduced spread. They acknowledge that data with less
variability and a smaller spread is preferable, indicating an
understanding of the significance of reliable and precise
measurements.

Another student expressed in the presurvey

Ultimately, both groups of students reached the
same conclusion. The idea of “better” results is
quite subjective in this instance.

In this response, the student suggests that, within the
context of measurement uncertainty, the notion of better
results is subjective and all that matters is the data average.

However, in the postsurvey, this same student’s perspec-
tive has become more sophisticated:

The group with the smaller spread likely has the
smaller standard deviation, which tends to in-
dicate better or clearer results.

They now emphasized that the group with a smaller
spread, which suggests a smaller standard deviation, likely
possesses better or clearer results. This shift in reasoning
suggests a growing recognition of the relationship between
variability and the quality of results, reflecting a more
refined understanding of measurement uncertainty and its
impact on data interpretation.

These examples demonstrate the transition from P1
reasoning, where the focus is primarily on the test out-
comes, to S2 reasoning, which emphasizes the significance
of data consistency, spread, and uncertainty in evaluating
the quality of experimental results. It showcases how
students’ perspectives can evolve as they engage with
the course material and develop a deeper understanding
of measurement concepts.

In contrast to the students who began with P1 reasoning,
students who initially started in the S2 cluster predomi-
nately remained in the S2 cluster (70.3%). However,
approximately 30% of students did move out of the S2
cluster, with 7.3% moving into P1 reasoning and 22.4%
moving into other types of reasoning.

VII. THE DMSS PROBE

The DMSS probe, shown in Fig. 15, required students to
compare two groups of students who had collected five data
points with different averages, but with the same spread.

Various aspects of reasoning came to light as students
described their decisions to the DMSS probe (see
Appendix, Table XV). Students using pointlike reasoning
often treated the mean and spreads as single values rather
than a statistical tools saying that the means and spreads
must both match (P1), the means must match (P2), or that
the means are “close enough” (P3). Some specified that the
two groups do not agree (P4) or agree (P5) after doing a
point-by-point comparison.

Two other groups of students compare their results for @ obtained by releasing the ball

at h=400 mm.  Their results for five releases are shown below.
Group A Group B
Release d_(mm) d_(mm)
1 440 432
2 438 444
3 433 426
4 422 433
5 432 440
Average: 433 435 o, yourresult
dqes not agree
Our result agrees with ours.
with yours. /
i
FIG. 15. The DMSS probe of the PMQ. Students are asked to

choose “With which group do you most closely agree?” then they
are then prompted to “Explain your choice”.

Students employing setlike reasoning all also discussed
the means, but treated them as a statistical tool and often
talked about statistical variance or spread. For example,
some students said that the means are close enough and
talked about statistical variation in general (S1). Others said
that the two groups had similar means and spreads, but did
not mention of overlap (S2). The most sophisticated set-
based reasoning (S3) came from students who discussed
the means, spreads, and the overlap.

Additionally, a subset of students offered reasoning that
did not align within either a setlike or pointlike paradigms.
These students gave nonstatistical reasoning such as
systematics (Ul) or stated that they could not calculate
the uncertainty or the spread (U2).

We interpret the chord diagram for the DMSS probe
shown in Fig. 16 and discuss the dominant clusters (RQ1).

FIG. 16. Chord diagram representing changes in student
reasoning between the pre and postsurvey on the DMSS probe.
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TABLE XI.

Key takeaways from the analysis of the DMSS probe.

Dominant cluster where students mention the similar means and spreads and the overlap of the means and spreads: The
postsurvey results of the DMSS probe were dominated by a single cluster, representing 52.9% of the class, where students stated
“...the groups agree because the means and spreads are similar”” and their argument considers the overlap between the means and/or
spreads of the two datasets (S3). This cluster represents the most expertlike reasoning.

Movement into the most expertlike cluster: Notably, 57.3% of students who initially reasoned that means were close enough and
discussed statistical variation in general (S1) transitioned to the more expertlike S3 cluster. In contrast, only 38.5% of students who
started with pointlike reasoning stating that the “..the groups agree because the means are close enough,” in other words, treating the
mean as a point, (P3) moved to the most expertlike S3 reasoning cluster. While this is still a positive shift that suggests that increased
exposure to measurement uncertainty concepts in the course influenced students to adopt more expertlike reasoning strategies in their
postsurvey responses, more work is still needed to make this an equitable shift for all the students.

Use of statistical reasoning: Students who used overlaps and statistical reasoning to support their choices in the presurvey, instead of
generically referencing measurement error to justify their reasoning, adopted more expertlike reasoning strategies in their postsurvey

responses.

Additionally, we discuss the trends in movement in
reasoning about measurement uncertainty from the pre-
survey to the postsurvey (RQ2). A summary of the key
takeaways is shown in Table XI.

A. Interpretation of chord diagram

The postsurvey results of the DMSS probe were domi-
nated by a single cluster, representing 52.9% of the class,
which exhibited S3 reasoning. Students with S3 reasoning
argued that the groups agree because the means and spreads
are similar, considering the overlap between the means and
spreads of the two datasets. The second largest postsurvey
cluster, comprising only 13.6% of the class, consisted of
students with P3 reasoning. These students argued that the
“means are close enough” and treated the average as a
single point.

These results contrasted with the clusters found in the
presurvey, where only 19.2% of the class fell into the S3
cluster and 20.8% were in the P3 cluster. Additionally,
15.0% of students exhibited S1 reasoning in the presur-
vey, while 12.0% exhibited P2 reasoning. P2 reasoning
represents students who argued that the groups do not
agree because the “means are not the same” without
mentioning spread. S1 reasoning is similar to P3
reasoning in that students argued that the groups agree
because the averages are close enough. However, Sl
reasoning also incorporated a discussion of statistical
variation in general. For example, a student with P3
reasoning wrote

The results are close enough to agree with each
other.

In contrast, a student with S1 reasoning wrote:

There is probably some form of uncertainty in
the measurements causing them to be more or less
the same.

B. Trends in student reasoning

When examining the movement from the presurvey
clusters to the postsurvey clusters (Fig. 16), a significant
trend emerges, with students from all other reasoning
clusters shifting towards S3 reasoning. This is an encour-
aging finding, as S3 reasoning is more closely aligned with
expertlike views.

Notably, 57.3% of students who initially belonged to the
S1 cluster transitioned to the S3 cluster [Fig. 17(b)]. In
contrast, among students who started in the P3 cluster, only
38.5% moved to the S3 cluster, while 30.8% remained in the
P3 cluster (Fig. 17). Although the logic of students in the P3
and S1 clusters is similar, with both clusters positing that the
averages are close enough, it seems that the consideration of
statistical variation, in general, led students to adopt S3-type
reasoning. It is possible that students who adhered to the
simplicity of P3 reasoning lack interest in completing the
survey or had limited time to provide further explanation of
their choices. On the other hand, students who took the time
to discuss the statistical variation in the presurvey were,
perhaps, more invested in the PMQ, but did not yet possess
the content knowledge pertaining to measurement uncer-
tainty to respond with S3-type reasoning.

For instance, one student responded with S1 reasoning in
the presurvey:

Since the two group’s values are close this
deviance could have occurred from error.

And the same student used S4 reasoning in the postsurvey:

There is a fair amount of overlap between the two
groups, based upon their averages and standard
deviations, so I think that the groups data agree.

Clearly, this student was engaged with both the pre- and
postsurvey. However, in the postsurvey, they employed
more expertlike language to describe the pattern they had
identified in the presurvey.
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S3

7

FIG. 17.

Another student who moved from the S1 to S3 cluster
expressed a similar shift in their survey responses. In the
presurvey, they stated

There is some inconsistency but there could have
been small measurement errors making them
different.

And in the postsurvey, they said

The upper bounds overlap with the lower bounds
of the two measurements so the data seams [sic]
to agree.

Both of these students used overlaps and statistical
reasoning to support their choices, instead of generically
referencing measurement error to justify their reasoning.
This suggests that increased exposure to measurement
uncertainty concepts in the course influenced students to
adopt more expertlike reasoning strategies in their post-
survey responses.

VIII. DISCUSSION

The analysis of the probes provides valuable insights into
students’ reasoning about measurement uncertainty and
highlights areas for further discussion and exploration.
Below, we highlight some takeaways from the analysis of
all four probes.

A. Development of expertlike reasoning

The analysis of the pre- and postsurvey responses
revealed trends in the development of expertlike reasoning
about measurement uncertainty. Across the four probes,
there was evidence of students transitioning from less
sophisticated reasoning clusters to more expertlike ones.

In the RD probe, students from many clusters demon-
strated a movement towards S4 reasoning, which reflects
a deeper understanding of measurement uncertainty

>

(b)

Student reasoning movement (a) into and (b) out of the S1 and P3 clusters of the DMSS probe.

and the need to reduce uncertainty through repeated
measurements.

Similarly, in the UR probe, students showed shifts from
other setlike reasoning to S4 reasoning, which recognized
the importance of reducing uncertainty through repeated
measurements and considering the spread of data. This
was particularly true for students who began in the S3
cluster, where they discussed in detail why the average is
appropriate.

In the SMDS probe, students moved towards S2 reason-
ing, which considered both the mean and spread of data
when comparing datasets. While students moved into this
reasoning from many other types a reasoning, there was a
large group that moved from P1, where they only consid-
ered the average, into S2 reasoning.

Lastly, in the DMSS probe, students demonstrated
a transition from S1 and P3 reasoning to S3 reasoning,
indicating an increased recognition of the importance
of statistical variation and spread when comparing
datasets.

Additionally, the presurvey results of all four probes
showed a diverse range of reasoning clusters, indicating
that students enter the course with varying levels of
understanding and perspectives on measurement uncer-
tainty. This suggests that students entered the class with
with varying levels of prior knowledge about measurement
uncertainty. However, in the postsurvey, there was a notable
convergence of reasoning elements towards more expert-
like clusters. This suggests that the transformed course had
a unifying effect on students’ reasoning about measurement
uncertainty.

The consistent patterns of transition from less advanced
reasoning clusters to more advanced ones across the
different probes provide strong evidence for the develop-
ment of expertlike reasoning about measurement uncer-
tainty. The findings echo prior work [22] and indicate that
the course had a significant impact on students’ under-
standing of measurement uncertainty.
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B. Challenges in transitioning to expertlike reasoning

One of the goals of the clustering analysis was to
determine whether students who started with a particular
type of reasoning all tended to move (or not move) together
into another type of reasoning. This understanding could
help create targeted interventions specifically tailored to
students within certain clusters. While there were many
positive shifts towards expertlike reasoning from some
clusters, such as the transition from S3 to S4 in the UR
probe or from S1 to S3 in the DMSS probe, challenges were
observed in transitioning students from other clusters. This
highlights the complexity and difficulty associated with
developing a deep and nuanced understanding of meas-
urement uncertainty.

One of the challenges observed was with students who
responded with brevity to the open-ended questions in the
PMQ, particularly those exhibiting U3 reasoning in the RD
probe, stating “more data is better” without further explan-
ation, or S1 reasoning in the UR probe, simply saying
average. These students provided limited depth and insight in
these responses, indicating a potential lack in understanding
or engagement with concepts of measurement uncertainty.

These challenges in transitioning students from certain
clusters may be attributed to a variety of factors. For
example, students’ prior knowledge and experiences may
have influenced their initial reasoning patterns. Students
who exhibit limited understanding or engagement with the
concept of measurement uncertainty may have lacked prior
exposure to the topic or may have encountered miscon-
ceptions that hindered their progression towards expert-like
reasoning. Or, perhaps, students who responded with
brevity may not be as comfortable with metacognitive
practices of explaining their reasoning.

This finding underscores the opportunity to develop
targeted interventions specifically tailored to students
within these clusters. To support their learning and growth
in reasoning about measurement uncertainty, interventions
can take various forms. For example, for students who
responded with brief responses on the PMQ, one may
provide these students with increased opportunities to
practice reflecting on their reasoning, encouraging them
to critically analyze and evaluate their understanding of
measurement uncertainty.

Furthermore, designing differentiated tasks that cater to
the diverse reasoning observed within the class can be an
effective strategy. By providing students with tasks that
align with their current level of understanding and chal-
lenge them to progress further, we can foster the develop-
ment of expertlike reasoning. These tasks can be carefully
crafted to address the unique needs and difficulties asso-
ciated with each cluster, promoting engagement, deep
thinking, and application of statistical principles.

Moreover, scaffolded peer discussions can play a valu-
able role in enhancing students’ understanding of meas-
urement uncertainty. Students could be grouped to have a

diversity of incoming reasoning responses. By engaging in
collaborative conversations, students can actively explore
and analyze uncertainty, interpret measurement data, and
make informed judgments based on statistical principles.
Peer discussions provide an opportunity for students to
share their perspectives, challenge each other’s reasoning,
and collectively construct knowledge. Scaffolding these
discussions, through prompts, guiding questions, or facili-
tation techniques, can support students in developing more
sophisticated and nuanced understanding of measurement
uncertainty.

C. Benefits of clustering analysis

Analyzing clusters of reasoning, rather than relying solely
on class-wide trends, offers valuable benefits in understand-
ing and addressing students’ learning needs more effectively.
For example, while previous class-wide analysis of the
SMDS probe indicated little change in students’ reasoning
about measurement uncertainty [22], a closer examination
through clustering analysis revealed a more nuanced picture.
In fact, when individual student matched transitions were
considered, it was found that over 50% of the class had
actually changed their reasoning (Fig. 1). This highlights the
importance of utilizing clustering analysis to interpret com-
plex, high-dimensional data in a meaningful way.

By employing clustering analysis, we gain insights into
the progression of student learning. This understanding
allows us to delve deeper into the diversity of student
reasoning and identify specific groups that may require
targeted interventions. Unlike classwide trends that may
mask individual variations, clustering analysis uncovers
distinct clusters of reasoning patterns, enabling us to tailor
instructional strategies and support to meet the specific
needs of each group.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, our study uses the PMQ and subparadigm
coding scheme to investigate changes in students’ reason-
ing about measurement uncertainty before and after an
introductory physics lab course. Our findings revealed the
complexity of student reasoning in this area, both in terms
of the subtleties in understanding reflected in student
responses (RQI) and the changes in reasoning from pre
to postsurvey (RQ?2).

The use of clustering algorithms as an exploratory tool
allowed us to identify distinct clusters of students based on
their pre- and postsurvey responses, and revealed signifi-
cant changes in reasoning clusters after the course trans-
formation. We were able to successfully differentiate
subparadigm level responses in order to analyze class-wide
trends and quantify the effect of the lab on student align-
ment within the setlike paradigm.

The analysis of the probes provides valuable insights
into students’ reasoning about measurement uncertainty,
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highlighting both the positive shifts and persistent chal-
lenges. The findings underscore the importance of targeted
instructional interventions and comprehensive education
about measurement uncertainty for physics students.
Continued research and refinement of instructional strate-
gies can contribute to improving students’ scientific thinking
and reasoning skills in the context of experimental mea-
surements. By fostering a more expertlike understanding of
measurement uncertainty, students can develop a stronger
foundation for engaging with scientific inquiry and making
informed decisions based on experimental data.

In conclusion, our study contributes to the understanding
of measurement uncertainty reasoning in physics education
and highlights the importance of developing undergraduate
laboratories with explicit learning goals in this area. We
also provide insights into tools and methodologies, such as
the PMQ and hierarchical clustering algorithms, that can be
used to evaluate the effectiveness of lab courses for

promoting student learning. Further research in this area,
including the use of computational solutions for qualitative
coding and the use of new assessment tools, will continue
to advance our understanding of how to effectively teach
and assess measurement uncertainty in physics education.
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APPENDIX: SUBPARADIGM CODING SCHEME

Full codebooks of sub-paradigm coding scheme. The
development of the codebooks is described in Ref. [30].

TABLE XII. Codes for the RD probe, reprinted from Ref. [22].
Probe Number Paradigm Name Definition: “Argument is that...”
RD P1 P Measure the true value ...the experimenter could measure the correct value in a single
measurement.
RD P2 P Identify the outliers after ...repeated measurements are needed in order to know which
all measurements measurements were mistakes or outliers, after all measurements are
taken. This code includes the idea that the experimenter must get the
same result at least twice for it to be correct.
RD P3 P Available time or resources ...a course of action is better due to considerations about how much time
or resources it would require
RD P4 P Need to practice as you go ...practice is needed to account for errors or outside factors as
measurements are being made
RD P5 P Misc. point Pointlike argument that doesn’t fit the other pointlike codes
RD S1 S Measure a spread ...multiple measurements will allow the experimenter to calculate or
estimate a spread, variation, or uncertainty
RD S2 S Measure an average ...multiple measurements will allow the experimenter to calculate an
average/mean
RD S3 S Use all the data together ...multiple measurements will all be used together to improve accuracy,
precision, or goodness. Doesn’t talk about average or spread
specifically.
RD S4 S Reduce uncertainty ...multiple measurements will be used to reduce the error or uncertainty
of mean of the mean or average.
RD S5 S Misc. set Setlike argument that doesn’t fit the other setlike codes
RD Ul Just take more data ...experimenter needs to take more data. No statistical reasoning
apparent.
RD U2 U More data cancels ...experimenter needs to take more data to cancel or outweigh the effect of
out error €ITOor.
RD U3 U More data is better ...more data is better, more accurate, more precise, etc. Includes if
reasoning other than statistical reasoning is apparent.
RD U4 U Misc. Argument that doesn’t fit into any of the other codes.
RD uUs U Unintelligible Unintelligible, blank, or logically incoherent
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TABLE XIII.

Codes for the UR probe, reprinted from Ref. [22].

Probe Number Paradigm

Name

Definition: “Argument is that...”

UR

UR

UR

UR

UR

UR

UR

UR

UR

UR

UR
UR

P1
P2
P3
S1
S2

S3

S4

S5

S6

S7

Ul
U2

P

P
P
S

Choose single value

Average as last resort

Misc. point

Simply “average,” or names
reported value as average

Why average is useful

Why average is appropriate
in this case

Report average
and spread

How to compute

Discard outliers,
then average

Misc. set

Misc.
Unintelligible

...experimenter should choose a single value to report (for any reason).
...experimenter should report the average because no better option exists.
Pointlike argument that doesn’t fit the other pointlike codes.

99 ¢,

States things like “T averaged,” “do the average,” “average is best,” or “it is
the average,” but does not elaborate along the lines of the other codes.
Includes statements that simply say what the reported value is.

...reporting the average is best, because (in general) it accounts for
fluctuations or errors, or because it predicts future measurements.

...reporting the average is best because all of this data matters, or because
the spread of this data is small enough. Includes reporting all
data as well as the average. Does not include “it is the correct thing to
do” (see S7).

...experimenter should report the average and the uncertainty, range,
or spread.

Response explains how to compute the average. May be double coded
when a separate explanation appears.

...experimenter should discard outliers or extreme data points, and then
compute an average from the data that remains.

Setlike argument that doesn’t fit the other setlike codes. Rule based
reasons are coded here (e.g., “logical thing to do” or “the correct
thing to do”).

Argument that doesn’t fit into any of the other codes.

Unintelligible, blank, or logically incoherent

TABLE XIV. Codes for the SMDS probe, reprinted from Ref. [22].

Probe  Number Paradigm Name Definition: “Argument is that...”

SMDS P1 P The means are the same  ...the groups agree because the means are the same.

SMDS P2 P Spreads don’t matter ...the fact that the spreads or individual trials are different does not matter,
including responses that focus on agreement of the averages while
providing a reason for why the sets are different.

SMDS P3 P A has fewer outliers ...A is better because that group has fewer outliers, or A’s individual
measurements are more precise. Contains no reasoning about spread.

SDMS P4 P Differences in carefulness ...differences in the spread are due to differences in how carefully the
measurements were performed.

SMDS P5 P Chose B, no explanation  Student chose “B” but left the explanation blank.

SMDS P6 P Misc. point Pointlike argument that doesn’t fit the other pointlike codes.

SMDS S1 S A is better ...group A is better, more accurate, more precise, etc. No further
explanation.

SMDS S2 S Smaller spread is better, ...a smaller spread, uncertainty, or range is better, more accurate, more
no mention of precise, etc. The response does not mention external factors, outliers,
external factors human error, etc.

SMDS S3 S Smaller spread is better, ...a smaller spread, uncertainty, or range is better, more accurate, more
due to external factors precise, etc. The response mentions external factors, outliers, human

error, etc.

SMDS S4 S Chose A, no explanation  Student chose “A” but left the explanation blank.

SMDS S5 S Misc. set Setlike argument that doesn’t fit the other setlike codes.

SMDS Ul U Misc. Argument that doesn’t fit into any of the other codes.

SMDS U2 U Unintelligible Unintelligible, blank, orlogically incoherent
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TABLE XV. Codes for the DMSS probe, reprinted from Ref. [22].

Probe = Number Paradigm Name Definition: “Argument is that...”

DMSS P1 P Means and spreads must ...the groups do not agree because in order to agree, the means and the
both match spreads must both match.

DMSS P2 P Means must match ...the groups do not agree because the means are not the same (no

mention of spread).

DMSS P3 P Means close enough, ...the groups agree because the means are close enough.
treats average as point

DMSS P4 P Compare point-by-point, ...the groups do not agree. Data are compared point by point.
don’t agree

DMSS P5 P Compare point-by-point, ...the groups agree. Data are compared point by point.
do agree

DMSS P6 P Chose B, blank explanation Student chose “B” but left the explanation blank.

DMSS P7 P Misc. point Pointlike argument that doesn’t fit the other pointlike codes.

DMSS S1 S Means are close enough, ...the groups agree because the averages are close enough. Argument
talks about statistical contains no reference to spreads, but does discuss statistical
variation in general variation in general.

DMSS S2 S Similar means and spreads, ...the groups agree because the means and spreads are similar.
no mention of overlap Argument does not consider the overlap between the means and/or

spreads of the two datasets.

DMSS S3 S Similar means and spreads, ...the groups agree because the means and spreads are similar.
mentions overlap Argument considers the overlap between the means and/or spreads

of the two datasets.

DMSS S4 S Chose A, blank explanation Student chose “A” but left the explanation blank.

DMSS S5 S Misc. set Setlike argument that doesn’t fit the other setlike codes.

DMSS Ul U Not about statistics ...only nonstatistical things, such as systematics, are mentioned.

DMSS U2 U Cannot calculate ...the student states that they could not calculate the uncertainty or the
uncertainty or spread spread, or that such values were not provided, with no further

reasoning.

DMSS U3 U Misc. Argument that doesn’t fit into any of the other codes.

DMSS U4 U Unintelligible Unintelligible, blank, or logically incoherent
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