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Is a complete Mueller matrix necessary in biomedical
imaging?
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The advent of imagers with integrated linear polarization
selectivity opens new opportunities for researchers inter-
ested in the polarization properties of biological tissues. In
this Letter, we explore the mathematical framework nec-
essary to obtain common parameters of interest: azimuth;
retardance; and depolarization with reduced Mueller matri-
ces that can be measured with the new instrumentation. We
show that in the case of acquisition close to the tissue nor-
mal, simple algebraic analysis of the reduced form of the
Mueller matrix yields results very close to those obtained
with more complex decomposition algorithms applied to a
complete Mueller matrix. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.471239

Polarization-based optical imaging techniques have found an
important place in biomedical diagnosis of tissue. Mueller
polarimeters implemented in reflection configuration were used
for the detection of cervical pre-cancer [1], skin cancer [2], colon
cancer staging [3], and risk of pre-term labor [4], to name a few.

The Mueller matrix (MM) formalism is a powerful framework
for a complete description of sample’s properties that alter polar-
ization of a probing beam [5]. However, it is difficult to interpret
and obtain a physical insight into all 16 coefficients of a MM.
That is why the non-linear MM data compression algorithms are
often used to obtain the more familiar quantities of retardance
(birefringence), diattenuation (dichroism), and depolarization.
Lu and Chipman [6] proved that any physically realizable MM
[7] can be represented as a product of MMs of a diattenuator
MD, a retarder MR, and a depolarizer M∆ [5]:

M =M∆MRMD. (1)

The Lu–Chipman polar decomposition (LCPD) of a MM is a
widely used algorithm for analyzing Mueller matrix images of
biological tissues. It is common to acquire polarimetric images
close to normal reflection, where MD is close to the identity
matrix I, as the Fresnel reflection coefficients are equal for
both s− and p− components of polarized light [8]. The effect
of polarizance [5] in biological tissue may become important
when imaging at grazing incidence but is negligible at the
normal [9]. Consequently, the MM of a depolarizer becomes

diagonal, M∆ = diag(1, d1, d2, d3), where d1, d2 represent linear
depolarization, d3 represents a circular one. No significant opti-
cal activity (i.e., circular birefringence [5]) was observed in a
majority of biological tissues [3,4,9]. Hence, Eq. (1) can be
written as

M =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 d1(c2 + s2 cos R) d1cs(1 − cos R) −d1s sin R
0 d2cs(1 − cos R) d2(s2 + c2 cos R) d2c sin R
0 d3s sin R −d3c sin R d3 cos R

⎤⎥⎥⎥⎥⎥⎦ ,

(2)
where R is the value of scalar linear retardance, θR the azimuth of
the optical axis of a linear retarder, c = cos(2θR), s = sin(2θR). It
was demonstrated that with a commercially available polariza-
tion camera, the 3 × 4 MM could be measured without rotating
elements or electrically driven liquid crystals (LCs) with a
compact hand-held instrument [8,10]. Qi et al. reported on an
endoscope utilizing 3 × 3 reduced MM and its decomposition
[11], the reconstruction of complete MM from 12 elements was
reported in Ref. [12]. These approaches reduce instrument com-
plexity, measurement time (a weak point for the systems with
rotating elements), and remove the thermal instability inherent
for the LC-based polarimeters. The natural question arises: can
we extract the values of scalar linear retardance, the azimuth of
the optical axis, and the depolarization properties of a biolog-
ical sample by measuring only part of its MM? Performing 12
measurements, we may obtain the first three rows of a MM and
calculate the following quantities:

θR = 0.5 arctan
(︃
−m24m32

m34m23

)︃
, (3)

R = 2 arctan
(︃

sm34m23 − cm24m32

2cs (m33m23 + m22m32)

)︃
, (4)

d1 = −m24/(s sin R) , (5)

d2 = m34/(c sin R) . (6)

Assuming the isotropy of linear depolarization (d1 = d2 = d),
Eqs. (3)–(6) can be simplified as

θR = 0.5 arctan (−m24/m34) = AoP, (7)
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Fig. 1. (a) Two-dimensional (2D) map of calculated (θR − AoP)
values at different input values of parameters θR and d2; (b) calcu-
lated values of θR (red circles) and AoP (blue crosses) for d2 = 0.5.
Input linear retardance R=90°, d1 = 0.99.

d sin R =
√︂(︁

m2
34 + m2

24

)︁
. (8)

In such a case, using a right and left circularly polarized light
source and a polarized camera as a detector and performing only
two measurements, both quantities calculated with Eqs. (7) and
(8) can be measured with a Stokes polarimeter [13]. The first
parameter [Eq. (7)] is called the angle of polarization (AoP) and
the second [Eq. (8)], the degree of linear polarization.

To test the validity of Eqs. (3)–(8) first, we simulated the MMs
of an optical element composed of a serial assembly of a linear
retarder and diagonal depolarizer with values of the azimuth of
the optical axis varying from -90° to 90°. We have also varied the
values of scalar linear retardance R and depolarization parame-
ters d1 and d2. The impact of anisotropy of linear depolarization
(d1 ≠ d2) on calculated values of azimuth θR [Eq. (3)] and AoP
is shown in Fig. 1. The difference between the values of θR and
AoP is less then 1° for low anisotropy of linear depolarization
(d1 − d2<0.1). However, this difference reaches up to 40° for
certain values of θR when d1 − d2>0.8.

The values of scalar retardance Raniso were calculated using
Eq. (4) that accounts for the anisotropy of linear depolarization
(d1 ≠ d2) and compared with the calculated values of Riso making
use of the assumption of isotropic linear depolarization, namely,
d1 = d2 (or |m23 | = |m32 |) in Eq. (4). The errors in calculated
values of Riso for a quarter-wave plate may reach 160° at the
critical azimuth values of ±45° in the case of strong anisotropy
of linear depolarization (see Fig. 2). On the contrary, the values
of Raniso calculated with Eq. (4) consistently reproduce the retar-
dance of a quarter-wave plate when parameter d2 ranges from
0.01 to 0.99. Usually, the values of scalar linear retardance meas-
ured with complete Mueller polarimetry on thick tissue samples
in reflection do not exceed 90° [1,14]. However, the discrepancy

Fig. 2. (a) 2D map of calculated Riso − Raniso values at different
input values of θR and d2; (b) calculated values of Riso (colored
markers) and Raniso (red circles) for d2 = 0.1 − 0.9 . Input linear
retardance R =90°, d1 = 0.99.

Fig. 3. Calculated values of (a) d2(Raniso) (red circles) and d2(Riso)

(blue crosses) at d2 = 0.1 − 0.9; (b) d1(Raniso) (red circles) and
d1(Riso) (colored markers) for d2 = 0.1 − 0.9. Input linear retardance
R = 90°, d1 = 0.99.

between Raniso and Riso may still reach several degrees at some
azimuth values for media with high anisotropy of linear depolar-
ization (e.g., with presence of non-spherical scatterers). Thus,
neglecting this anisotropy may introduce significant errors and
produce artifacts in polarimetric images of tissue used for diag-
nosis. Parameter Raniso reproduces correctly the input values of
scalar retardance for -90°≤ θR ≤90° and 0.01 ≤ d2 ≤ 0.99.

Figure 3(a) shows the values of d2 calculated with Eq. (6)
using either Raniso or Riso values of linear retardance. The former
reconstructs correctly the input values of d2. When d1 ≈ d2>0.9
the values of d2 calculated with either Raniso or Riso values are
very close for all angles θR, while for strong anisotropy of linear
depolarization using Riso values produces erroneous results for
d2 . The values of parameter d1 calculated with Eq. (5) using
Riso values of linear retardance exceed 1 [see Fig. 3(b)], which is
non-physical, whereas using the Raniso values of linear retardance
in Eq. (5) one reproduces correctly the input value of parameter
d1 = 0.99 for all input values of parameters θR and d2. For the
sake of completeness we have applied Eqs. (3)–(6) to the MM
of the same optical phantom followed by a diattenuator MD ≠ I
with low diattenuation value of 0.1. Whereas the calculated
values of θR are not affected, the values of Raniso, d1(Raniso) and
d2(Raniso) have changed in the second decimal digit only. Thus,
by measuring the first three rows of MM and accounting for the
anisotropy of linear depolarization (if any), one can calculate
the orientation of the optical axis, scalar linear retardance, and
linear depolarization parameters of a sample.

Next, we measured in reflection configuration the complete
MM of tape affixed to a glass slide. Tape was placed sequentially
at 15° and 50° with respect to the laboratory reference frame.

All data were acquired with a commercial-grade microscope
modified to include MM capability. A typical assembly of rotat-
ing elements (quarter-wave plate) and fixed polarizers were used
[15] at the source (light emitting diode (LED) at 550 nm, Thor-
labs Inc.) and detector (PCO Inc, Germany) to generate the MM
using the strategy described in Ref. [16] and were controlled
with a custom software (MATLAB). The system was calibrated
with the eigenvalue calibration method described elsewhere
[17] achieving an average inverse condition number of 0.22 for
both polarization state generator and polarization state analyzer.
Theoretically this system can achieve a maximum of 0.26.

The values of θR and R were calculated with LCPD first. Then
we took the first three rows of recorded matrices and calculated
the values of θR, R, d1, and d2 using Eqs. (3)–(6). The boxplots
of the distribution of parameters θR and R in the corresponding
images taken at different orientation of tape are shown in Fig. 4.
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Fig. 4. Boxplots of the distributions of (a),(b) θR and (c),(d) R
values calculated with different decompositions of the MM images
of tape taken at different orientation of a sample within imaging
plane: (a),(c) 15°; (b),(d) 50°.

The median values of the azimuth distributions obtained with
LCPD and the values of azimuth calculated assuming either
isotropic [Eq. (7)] or anisotropic linear depolarization [Eq. (3)]
differ by less than 3° for both tape orientations.

The median values of distributions of R calculated with
LCPD vary within the interval 76°–82° with the change of
tape orientation. The corresponding variations of median values
of distributions of R calculated with Eq. (4) assuming either
isotropic (m23 = m32 or d1 = d2) or anisotropic (m23 ≠ m32 or d1 ≠
d2) linear depolarization span over the interval 75°–77°. A large
number of outliers is confirmed to arise by the presence of small
air bubbles between tape and glass. Whereas the difference in

Fig. 5. Boxplots of d1 and d2 values calculated with Eqs. (5) and
(6) from 3 × 4 MM images of tape taken at different orientation of
a sample within imaging plane: (a) 15°; (b) 50°.

Fig. 6. Images (1 × 1.15 mm2) of θR calculated with: (a) LCPD of complete MM; (b) Eq. (3) (3 × 4 MM); (c) Eq. (7) (Stokes polarimetry);
(d) normalized histograms of θR for all three decompositions.

calculated values of linear retardance is not negligible, it is worth
mentioning that all discussed approaches provide a practical esti-
mation of a sample retardance, because they assume the sequen-
tial order of polarimetric effects (which is not the case for hetero-
geneous samples) and perform a non-linear compression of data.

Figure 5 shows the boxplots of the distributions of parameters
d1 and d2 calculated with Eqs. (5) and (6). The median values
of both d1 and d2 vary between 0.89 and 0.91, meaning that
depolarization of tape is not high. The difference between the
median values does not exceed 0.02 at any sample orientation
indicating very weak anisotropy of linear depolarization.

The final test was performed using the experimental back-
scattered MM images of a 50µm-thick section of mouse uterine
cervix. Collagen is the main constituent of the uterine cervix and
is arranged circumferentially around the cervical canal [18,19].
The presence of aligned collagen fibers induces tissue bire-
fringence. Figure 6 shows the images of θR for cervical tissue
calculated with LCPD and Eq. (3) assuming either anisotropy
(m23 ≠ m32) or isotropy (m23 = m32) of linear depolarization. All
azimuth maps demonstrate a compelling correlation. The his-
tograms of θR values calculated with LCPD and Eq. (3) assuming
either isotropy or anisotropy of linear depolarization are very
close. It suggests that linear depolarization by cervical tissue is
invariant under rotation of a sample in the imaging plane. The
difference in θR values calculated with LCPD and Eqs. (3) and
(7) does not exceed a few degrees, being maximal at azimuth
values close to ±90°. The maps of linear retardance R and
corresponding histograms are shown in Fig. 7. The retardance
values calculated with LCPD and Eq. (4) for either isotropic or
anisotropic linear depolarization are again very close in value;
the structural morphology of cervical tissue is reproduced accu-
rately in all images. High values of linear retardance (up to
30°), are observed at the top of each image along the arc, corre-
sponding to the zone of a densely packed collagen fibers aligned
around the cervical canal. The drop of retardance values to 5°–7°
at the left-hand zone of each image is likely related to the drop
of a collagen fibers density. The map of total depolarization cal-
culated with LCPD is shown in Fig. 8(a). The map of equivalent
metric of linear depolarization 1 − (|d1 | + |d2 |)/2 is presented in
Fig. 8(b). The histograms of the corresponding distributions of
depolarization values [Fig. 8(c)] demonstrate peak at low depo-
larization of 0.1. This is related to low number of scattering
events within a thin layer of tissue. Figure 8(c) shows a slightly
higher number of pixels with the depolarization values between
0.2 and 0.8 for the linear depolarization metrics calculated with
Eqs. (5) and (6) compared with the total depolarization from
LCPD. Hence, the contrast is higher in Fig. 8(b) compared with
Fig. 8(a), but the structural morphology of tissue is clearly distin-
guishable in both images. The distributions of both parameters
d1 and d2 are identical, meaning that linear depolarization is
isotropic for cervical tissue.
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Fig. 7. Images (1 × 1.15 mm2) of linear retardance R calculated with: (a) LCPD of complete MM; (b) Riso, Eq. (4); (c) Raniso, Eq. (4); (d)
normalized histograms of linear retardance distributions in (a)–(c).

Fig. 8. Images (1 × 1.15 mm2) of depolarization calculated with: (a) LCPD of complete MM; (b) 1 − (|d1 | + |d2 |)/2, parameters d1 and d2
are from Eqs. (3) and (4); (c) normalized histograms of the depolarization distributions in (a) and (b).

Generating the maps of linear retardance, azimuth, and depo-
larization from MM images of biological tissue has been shown
to have a diagnostic value (e.g., pre-term labor risk assessment
[4], visualization of brain tumor borders [14], etc.). The opti-
cal diagnosis of pathological changes in tissue is often based
not on the exact values of polarimetric parameters but rather on
their relative changes with respect to those for healthy tissue.
We expect that slight widening of polarimetric parameters dis-
tributions obtained with a simplified approach should not affect
significantly the contrast in polarimetric images at macro-scale.

We have tested the simplified approach on simulated data
and experimental data for optical phantom and cervical tissue
by calculating the polarimetric parameters using only part of a
MM. Our results show good agreement with the input parameters
of theoretical model and the parameter values obtained with
LCPD of the complete MM. Our findings open an avenue for
developing medical imaging with partial polarimeters (e.g., 3 ×

4 MM [8,10] or Stokes polarimeters [11,20]) that may provide a
good compromise between the simplicity, compactness, speed of
the instrument, and the accuracy of polarimetric measurements
required for medical diagnosis.
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