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Abstract: The temporal resolution of quantitative phase imaging with Differential Phase
Contrast (DPC) is limited by the requirement for multiple illumination-encoded measurements.
This inhibits imaging of fast-moving samples. We present a computational approach to model
and correct for non-rigid sample motion during the DPC acquisition in order to improve temporal
resolution to that of a single-shot method and enable imaging of motion dynamics at the framerate
of the sensor. Our method relies on the addition of a simultaneously-acquired color-multiplexed
reference signal to enable non-rigid registration of measurements prior to phase retrieval. We
show experimental results where we reduce motion blur from fast-moving live biological samples.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantitative phase imaging (QPI) [1–7] enables stain-free and label-free imaging of transparent
biological samples in vitro [8,9]. Unlike non-quantitative phase contrast techniques (e.g. Zernike
Phase Contrast [10], Differential Interference Contrast (DIC) [11]), QPI methods are able to
separate out the effects of phase and absorption. However, this generally comes at a cost of lost
temporal or spatial resolution due to the need for multiple measurements. Here, we implement
QPI without sacrificing speed or resolution, for the specific case of coded-illumination QPI.

Quantitative Differential Phase Contrast (DPC) [3,4,12,13] recovers the complex transmittance
function of a sample from several coded-illumination measurements and a phase retrieval
optimization. DPC achieves spatial resolution corresponding to twice the coherent diffraction
limit and is practically implemented with an LED array based coded-illumination source on
a commercial microscope (Fig. 1(a)) [3, 14]. Traditional DPC measurements consist of 4
intensity images, each captured with a half-circle illumination pattern at a different rotation angle
(Fig. 1(b)). The time-multiplexed nature of the measurements requires the implicit assumption
that the sample is not moving during the acquisition. Of course, live biological samples may be
non-stationary (defined as moving more than one pixel during the acquisition time). When only
a single measurement is required (single-shot), the exposure time of the sensor can be scaled to
guarantee approximately stationary behavior; however, for multi-shot methods, the acquisition
time is limited by the sensor readout time. While each individual measurement may have an
appropriate exposure time to guarantee the stationary assumption, motion occurring between
measurements during the multi-shot DPC acquisition will cause errors in the reconstructed
complex-field.

Interferometry-based QPI techniques such as digital holographic microscopy [5] and white light
diffraction phase microscopy [6] can be single-shot, but are limited in spatial resolution by the
coherent diffraction limit and are sensitive to system imperfections that cause speckle. Transport
of intensity equation based QPI techniques [7] can be single-shot if the chromatic aberrations
of the system are great enough [15] or with additional camera hardware [16]. DIC-based QPI
techniques [17] can be single-shot with the addition of specialized hardware. Other methods rely
on simultaneously acquiring multiple measurements via color multiplexing [18–20], polarization
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Fig. 1. Motion-resolved quantitative Differential Phase Contrast (mrDPC). (a) Coded-
illumination microscope with RGB LED array as the illumination source. (b) Traditional
four-image DPC acquisition with rotating half-circle sources. Because the polystyrene bead
is moving, the reconstructed phase suffers from motion blur artifacts. (c) Our method,
mrDPC, uses traditional DPC source patterns in the green color channel and an additional
constant navigator source pattern (half-circle) in the red channel. The motion-resolved phase
reconstructed corrects the effects of the sample’s non-rigid motion.

multiplexing [21, 22], or spatial multiplexing [23]. In the case of color multiplexing, the implicit
assumption is made that the sample has no chromatic dispersion and is colorless; and in the case
of polarization multiplexing the implicit assumption is made that the sample is not birefringent,
both of which may be difficult to guarantee when imaging biological samples. Finally, in the case
of spatial multiplexing, the space-bandwidth product of the reconstructed phase will be limited
by the division of the sensor into smaller non-overlapping segments.

Here, we demonstrate that non-rigid sample motion occurring between the frames of a multi-
shot DPC acquisition can be estimated and corrected. Techniques for rigid and non-rigid motion
estimation and correction have been comprehensively applied in other fields (e.g. magnetic
resonance imaging [24,25], multi-frame image enhancement [26], remote sensing [27], computer
vision [28, 29]), but not in QPI microscopy. It is not straightforward to apply these existing
methods to DPC because they make an assumption that the spatial frequency content between
any two images being registered is similar [30]. This assumption is violated when estimating the
motion between DPC measurements, since each coded-illumination measurement has a unique
spatial frequency contrast of the sample’s optical phase. Thus, estimation of motion between raw
DPC measurements will fail when using traditional registration techniques.
In order to perform motion estimation for DPC images, we introduce a new method, termed

motion-resolvedDPC (mrDPC), that uses an additional simultaneously-acquired color-multiplexed
measurement with a constant coded-illumination pattern (Fig. 1(c)). This navigator measurement
uses one color channel of the source LEDs to display a constant illumination pattern (a half-circle),
thus maintaining constant spatial frequency contrast. A color camera then separates the navigator
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Fig. 2. Motion-resolved DPC uses traditional DPC (rotating half-circle) illumination patterns
in the green color channel and a constant half-circle navigator pattern in the red color channel.
(a) Simulations of the captured DPC images (green box) and the navigator images (red box)
for a sample comprised of three polystyrene beads: one stationary, one moving up, and one
moving down. (b) Motion is estimated between each time point and the reference time point
(T = t2). Estimates are used to correct for motion in the DPC measurements, then (c) a DPC
phase reconstruction is performed, eliminating the motion artifacts.

and DPC measurements (without any assumptions regarding the dispersion or color of the
sample). Non-rigid motion can then be estimated from the navigator measurements and corrected
in the DPC measurements prior to phase retrieval. In this way, quantitative phase images can be
recovered for each time point of the captured data, resulting in temporal resolution equivalent to
single-shot methods. We demonstrate proof of principle experimental results in which blurring
due to live sample motion (Amoeba proteus and Caenorhabditis elegans) is reduced.

2. Methods

Our proposed method, mrDPC, captures each DPC measurement sequentially, while simultane-
ously capturing a color-multiplexed navigator, using an LED array microscope. We program
the green color channel of the LED array with rotating half-circle patterns (for DPC) and the
red color channel with a constant half-circle pattern (for the navigator), illustrated in Fig. 2(a).
The signal is measured on a color camera and separated via demosaiking with a precalibrated
spectral sensitivity matrix (see App. color multiplexing) into DPC measurements and navigator
measurements (Fig. 2(a)).
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To achieve motion correction between the four DPC measurements, we need to register each
image to the others. Because the different DPC illumination patterns result in different contrast,
they cannot be directly registered to each other. The navigator measurements circumvent this
problem; they can be registered to each other and the resulting motion estimates can then be
applied to the DPC measurements. Specifically, we estimate the motion between three pairs of
measurements (between t0 and t2, t1 and t2, and t3 and t2) as outlined in Sec. 2.1. The reference
time point can be any of the four measurement time points; we chose T = t2. The motion
estimates are plotted as vector fields in Fig. 2(b), where the arrows’ magnitude corresponds to
the amount of the sample’s local displacement and the arrows’ orientation corresponds to the
direction of the sample’s local displacement. The three motion estimates are applied to the raw
DPC measurements at times t0, t1, t3, respectively, to register them to the reference measurement.
The registration is performed by resampling with linear interpolation. Using the physics model in
Sec. 2.2, we then linearly deconvolve the motion-corrected DPC measurements (Eq. 7) to recover
the sample’s absorption and optical phase (Fig. 2(c)).

2.1. Motion estimation

The task of removing motion artifacts can be formulated as a blind deconvolution problem [31,32]
where the unblurred image and the blur kernel are jointly estimated; however, this does not
account for non-rigid motion. In this work, we use our navigator measurements to correct
for the sample’s non-rigid motion via image registration, enabling a wider array of biological
applications.
To model non-rigid sample motion, our proposed method estimates a deformable mapping

between pairs of images, for which there exist many algorithms [28,29,33–35]. We chose the
Symmetric Normalization (SyN) method [33,34] for its state-of-the-art performance [36] and
open-source availability [37]. The method is called symmetric because it is commutative with
respect to the ordering of the two input images and therefore does not over-fit the deformable
mapping estimate to either image. This is particularly important to us, so that we can arbitrarily
choose the reference time point without biasing our results.

The SyN algorithm solves an optimization problem (Eq. 1) to estimate the deformable mapping
between two images, I0(r) and I1(r), such that a similarity metric, S(I0, I1), is maximized and
the deformable mapping is spatially smooth. The deformable mapping, g(r, t), is a function of
space and time, where r denotes 2D spatial coordinates and t ∈ [0, 1] denotes a dimensionless
time coordinate. At time t = 0, g(r, 0) maps I0(r) to itself, while at time t = 1, g(r, 1) maps
I0(r) to I1(r). The SyN method achieves symmetry by jointly estimating a forward deformable
mapping g0(r, t) between I0 and I1 and a backwards deformable mapping, g1(r, t), between I1
and I0. Mathematically, the algorithm can be written as:

max
g0(r,t),g1(r,t)

S(I0(g0(r, 0.5)), I1(g1(r, 0.5)) − R(v0(r, t)) − R(v1(r, t)) (1)

subject to,
∂gi(r, t)
∂t

= vi(gi(r, t), t) for each i ∈ {0, 1} (2)

gi(r, t) = r for each i ∈ {0, 1}, (3)

where our similarity metric is the normalized cross-correlation, defined as S(Ia, Ib) = 〈Ia,Ib 〉
〈Ia 〉 〈Ib 〉 .

Themappings’ spatial smoothness is achieved by penalizing the termR(v(r, t)) =
∫ 0.5
t=0 ‖Lv(r, t)‖

2dt
for each map. Here, L = ∇2 + I is the linear differential operator, where ∇ is the first-order
difference, I is the identity operator and v(r, t) is the velocity field corresponding to g(r, t).
This correspondence is enforced with the Lagrangian-Euler constraint [38] in Eq. 2. The SyN
optimization is solved via gradient descent [33, 34] and implemented in Dipy [37].
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2.2. Phase retrieval

After using the navigator measurements to estimate the motion, we correct for motion in the DPC
measurements, which can then be used as input to a phase retrieval algorithm. Generally, the
relationship between an object’s 2D complex transmittance function and measured intensity is
non-linear, so recovery of phase requires non-linear optimization and an iterative solver. For
in vitro biological samples, the "scatter-scatter" term is small and so we can make a weak
object approximation, thus enabling phase recovery by simple linear deconvolution with weak
object transfer functions (WOTFs) [3, 4, 7, 39]. This linearization decouples the contributions of
absorption and phase and allows us to express intensity in terms of linear contributions from:
background, absorption and phase contrast. In the Fourier domain,

ỹ(u) = Bδ(u) + Hµ(u)µ̃(u) + Hφ(u)φ̃(u), (4)

where y is the intensity measurement and B is the DC term. Here, ·̃ denotes Fourier transform
and u are 2D spatial frequency coordinates. Hµ(u) is the WOTF for the sample’s absorption and
Hφ(u) is the WOTF for the sample’s phase. These terms are derived in [3],

Hµ(u) = S(u)? P(u) + P(u)? S(u) (5)
Hφ(u) = i(S(u)? P(u) − P(u)? S(u)), (6)

where P(u) is the complex pupil function, S(u) is the illumination source distribution, and
? denotes cross-correlation. In traditional DPC, the illumination sources are four rotating
half-circles with radius N Aobj oriented right, bottom, left, and top (see Fig. 1(b)).
We recover the quantitative phase and absorption by linearly deconvolving the four motion-

corrected measurements, ỹ(j) (enumerated based on their coded-illumination patterns: top (0),
right (1), bottom (2), left (3)), with their respective to their WOTFs.

min
µ̃,φ̃

3∑
j=0
‖ ỹ(j) − H(j)µ µ̃ − H(j)φ φ̃‖22 + λµ ‖ µ̃‖

2
2 + λφ ‖φ̃‖

2
2 . (7)

Here, λµ and λφ are regularization parameters, which are set to trade off data consistency and
penalties for the low-frequencies in φ and the high-frequencies in µ. The necessity of the
regularization comes from the phase WOTF’s low-sensitivity to low-frequencies and absorption
WOTF’s low-sensitivity to high-frequencies. The optimization in Eq. 7 can be reformulated as a
least-squares problem,


∑3

j=0 H̄(j)µ H(j)µ + λµ I
∑3

j=0 H̄(j)µ H(j)φ∑3
j=0 H̄(j)φ H(j)µ

∑3
j=0 H̄(j)φ H(j)φ + λφ I



µ̃

φ̃

 =

∑3

j=0 H̄(j)µ ỹ(j)∑3
j=0 H̄(j)φ ỹ(j)

 , (8)

to yield a closed form solution for the motion-resolved absorption, µ̃∗, and motion-resolved
quantitative phase images, φ̃∗ (·̄ denotes the conjugate operator):


µ̃∗

φ̃∗

 =

∑3

j=0 H̄(j)µ H(j)µ + λµ I
∑3

j=0 H̄(j)µ H(j)φ∑3
j=0 H̄(j)φ H(j)µ

∑3
j=0 H̄(j)φ H(j)φ + λφ I


−1 

∑3
j=0 H̄(j)µ ỹ(j)∑3
j=0 H̄(j)φ ỹ(j)

 . (9)
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Fig. 3. Experimental Validation. Recovered quantitative phase images of live Amoeba
proteus reconstructed (a) without motion (ground truth), (b) corrupted by sample motion as
outlined in Sec. 3, and (c) motion resolved with mrDPC (Sec. 2). Insets highlight blurring
of water vacuoles (bright spots) due to sample motion and its correction with mrDPC.

3. Experimental results

To acquire coded-illumination measurements experimentally, we use a commercial Nikon TE300
microscope with a custom quasi-dome [14] illumination system (581 RGB LEDs, λR = 625nm,
λG = 532nm, λB = 450nm). A qImaging Optimos sCMOS color camera (1080 × 1920, 4.54µm
pixel pitch) acquires 16 bit images with an exposure time of 25ms (∼ 30 fps).
Validating our method’s motion correction ability is challenging because of the difficulty in

obtaining ground truth phase for comparison. To address this, we start by capturing full framerate
videos (50×, NA=0.55) of a slow-moving sample Amoeba proteus (Carolina Biological Supply)
and assume the traditional DPC reconstruction to be ground truth, since we expect negligible
motion between frames. We then decimate the dataset in time by a factor of 8× to emulate faster
motion, reconstruct with our method and traditional DPC, and compare results to the ground
truth DPC result. As can be seen in Fig. 3(a), the bright water vacuoles and well-defined wall
edges in the amoeba’s nucleus and contractile vacuole (gold arrows in Fig. 3) appear blurred in
the time-decimated traditional DPC reconstruction, but not in our method’s reconstruction.

We next demonstrate our method with an even faster sample, live C. elegans (12.5×, NA=0.25),
which generates significant non-rigid motion between the raw measurements (Fig. 4(a)). From
these measurements, we reconstruct and compare traditional DPC with our mrDPC method
(Fig. 4(b)). Insets highlight mrDPC’s correction of distortion around the head region (pink insets
in Fig. 4(c)) and blurring of internal features (blue insets in Fig. 4(c)).
By capturing a continuous video at the full framerate of the sensor, we can reveal biological

motion dynamics of the C. Elegans. Reconstructions are performed on a sliding window of
measurements such that each window has a full set of four DPC measurements and each window
is offset by one measurement. The motion-resolved absorption and quantitative phase video
reconstructions are compared with traditional DPC in Supplementary Material Visualization 1.

Finally, we compare our method to color-multiplexed DPC [18] (colorDPC), which is a single
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Fig. 4. Experimental results for motion-resolved DPC with fast-moving live C. elegans.
(a) Raw uncorrected DPC intensity images. Insets highlight significant non-rigid sample
motion of the head (pink) and body (blue) during the four-image acquisition. (b) Quantitative
absorption and phase reconstructions without (left) and with (right) motion correction. (c)
Insets highlight spatial distortion and blurring artifacts due to head (pink) and body (blue)
motion. Gold arrows indicate correction of head motion in the phase reconstructions. Red
arrows indicate correction of internal body feature motion in the absorption reconstructions.

shot QPI method (Fig. 5). ColorDPC is able to encode the information required for reconstruction
into a single measurement using color multiplexing of the RGB LEDs and a color camera,
under the assumption that the sample is non-dispersive (an assumption which is not required for
mrDPC). Since colorDPC is a single-shot method, it will not suffer inter-frame motion blur, but
uses fewer measurements than mrDPC and traditional DPC for each reconstruction and thus will
have lower reconstruction SNR. In addition, the three color-encoded measurements for colorDPC
will have different bandwidths, each defined by their respective encoding wavelength. As a result,
the final reconstruction has orientation-varying high-frequency contrast, while traditional DPC
and mrDPC do not (highlighted in Fig. 5).
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Fig. 5. ColorDPC avoids motion blur by using a single image capture, but suffers loss
of quality. Experimental comparison of phase reconstructions (12.5×, NA=0.25) for a
stationary phase target (max 0.8 radians) using (a) traditional DPC, (b) motion-resolved DPC
and (c) colorDPC. (d) Radial cross sections of the insets highlight the improved resolution
and contrast achieved with traditional DPC (green) and navDPC (purple) over colorDPC
(blue).

4. Discussion

Our proposed method, mrDPC, can correct artifacts due to sample motion that is fast enough to
cause motion blur across the four captured DPC images, but does not cause motion blur within
each measurement. In the case of Amoeba proteus, the sample motion is slow enough over the
duration of the multi-shot DPC acquisition that it can be assumed stationary and no motion
correction is necessary. In the case of C. elegans, the stationarity assumption is violated, but each
individual captured image is unblurred, so mrDPC helps to resolve the motion between frames.
Most generally, the sample is non-stationary in each single measurement and motion-induced blur
is present. To address this, strobed illumination could be used to effectively shorten the capture
time of each measurement to ensure stationarity. This strategy is analogous to our time-decimated
validation in Sec. 3 (measurements acquired with delays between them).

Design of the navigator pattern also affects performance. We make the assumption that
the structural motion between the navigator measurements is the same motion that occurs
between DPC measurements. This should hold true, since the navigator measurement is acquired
simultaneously with its corresponding DPC measurement and its illumination is similar to the
DPC illumination pattern in terms of bandwidth. This ensures that the highest resolution features’
motion in the DPC measurements will be captured in the navigator measurements. Further,
the navigator measurement must have sufficient SNR and gradient information [40] to perform
motion estimation. While SNR isn’t rigorously measured here, the power and number of LEDs in
the navigator pattern is equal to that of the DPC pattern so that when spectrally unmixed neither
contribute much additional noise to each others’ measurements.
The work of Phillips et al. [18] discusses that only three half-circle coded-illumination

measurements are required to perform the quantitative DPC reconstruction. We could incorporate
this by only performing our method on three rather than four measurements; however, performance
might degrade similar to in Fig. 5c. Our method is not limited to a fixed number of measurements;
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if more measurements give improved reconstruction results (e.g. increased SNR), we can
incorporate them simply by registering additional measurements to the reference.
One limitation of the present method is that of using the weak object approximation, which

only applies to samples with relatively weak phase and absorption. Since the motion correction is
independent of the phase retrieval method, nonlinear methods can be used when the weak object
approximation is violated. In that case, the linear reconstruction can serve as a good initialization
to a non-linear phase retrieval optimization [4].

5. Conclusion

We present a computational method, motion-resolved DPC, that achieves similar reconstruction
quality to that of traditional DPC’s quantitative phase images, but corrects for the blurring caused
by sample motion during the four-image acquisition. Validation of our method’s navigator-based
non-rigid motion estimation and correction of live Amoeba proteus sample motion is performed.
Furthermore, we motion resolve even faster live C. elegans and reveal motion dynamics at the
frame rate of the camera with video reconstruction.

Appendix: color multiplexing

Color sensors with a traditional Bayer filter [41] spatially multiplex color filters to capture
spatial-spectral information. However, these color filters are not perfectly selective to a single
spectra, but rather are sensitive to overlapping distributions of spectra. This cross-talk makes it
necessary to calibrate the pixels’ sensitivity relative to the spectrum of the illumination source,
so that the desired spectral response can be demixed from the acquired measurements.
For our method, we estimate the spectral sensitivity of our sensor’s red and green pixels

to our illumination source’s red (625nm) and green (532nm) LEDs. This is accomplished by
spatially averaging each of the color channels’ intensity response to red-only and green-only
illumination [18]. The results form the entries in a matrix, C, that can be used by applying its
pseudo inverse, C†, to unmix future color multiplexed measurements.


Inav

Idpc

 = C†


Ir

Ig1

Ig2


(10)

Here, we use the green pixels (Ig1, Ig2) and green LEDs to encode the DPC signal, Idpc , and
we use the red pixels (Ir ) and red LEDs to encode the navigator signal, Inav .
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