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We propose an accurate and computationally efficient 3D scattering model, multi-layer Born (MLB), and use it to
recover the 3D refractive index (RI) of thick biological samples. For inverse problems recovering the complex field of
thick samples, weak scattering models (e.g., first Born) may fail or underestimate the RI, especially with a large index
contrast. Multi-slice (MS) beam propagation methods model multiple scattering to provide more realistic reconstruc-
tions; however, MS does not properly account for highly oblique scattering, nor does it model backward scattering. Our
proposed MLB model uses a first Born model at each of many slices, accurately capturing the oblique scattering effects
and estimating the backward scattering process. When used in conjunction with an inverse solver, the model provides
more accurate RI reconstructions for high-resolution phase tomography. Importantly, MLB retains a reasonable com-
putation time that is critical for practical implementation with iterative inverse algorithms. © 2020 Optical Society of

America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.383030

1. INTRODUCTION

Phase imaging methods that reconstruct the 3D refractive index
(RI) of semi-transparent objects generally rely on two key com-
ponents: a light scattering model and a phase retrieval algorithm.
Optical diffraction tomography (ODT), for example, scans the
angle of incident light and captures many 2D complex fields using
interferometry [1–4] or pupil plane modulation [5–7]. Intensity-
based 3D phase methods use through-focus or color images from
off-the-shelf microscopes [8–12]. 3D RI can be recovered via
2D phase retrieval followed by a filtered back propagation or a
3D deconvolution [10,13,14]. All of these methods use a weakly
scattering approximation (first Born or Rytov), which works well
for thin index-matched samples (e.g., single cells), but causes errors
for thick samples that incur multiple scattering.

For 3D phase imaging with optically dense samples, a
forward model that describes light propagation beyond the
single-scattering regime is needed. The multi-slice (MS) beam
propagation method accounts for multiple-scattering effects in a
computationally efficient manner, by approximating the sample
as a sequence of infinitesimally thin planar slices along the optical
axis, each modeled as a 2D transmission layer separated by a uni-
form medium. MS has been used with both interferometric and
intensity-only measurements to reconstruct multiple-scattering
samples [15–17]. However, MS has two key drawbacks: 1) quanti-
tative accuracy of MS reconstructions may decrease as the angle of
the illumination beam increases. Heuristic approaches have been
proposed to mitigate this issue [18,19], but they are either unstable

or greatly increase computation cost. 2) MS does not model back-
scattering, which contains valuable high-resolution information
from a sample’s missing cone region [20].

Scattering models have been developed to generate forward
and backward scattering fields close to the analytic solution of
the Helmholtz equation via a series of convolutions with a 3D
Green’s function. These include the recursive Born [21–23], con-
trast source inversion [24], coupled dipole [25], hybrid method
[26], and series expansion with accelerated gradient descent
on the Lippmann–Schwinger equation (SEAGLE) [27]. Even
after significant advances in improving the rate of convergence
and memory requirement of SEAGLE [28,29], it still requires
orders-of-magnitude more computation and memory than weakly
scattering or MS models, due to operations on 3D arrays, which
limits application to 2D slice reconstructions or small-volume 3D
phase tomography with iterative inverse algorithms [30,31].

Here, we introduce a new multiple-scattering model that cal-
culates both the forward and backward scattering fields accurately,
even for high-angle illumination, in a computationally efficient
manner. Our multi-layer Born (MLB) model decomposes the
3D object into a series of 3D slabs with finite thickness, then
sequentially applies the first Born scattering process to each slab.
This removes the paraxial assumption of the MS method, achieves
accurate prediction for high-angle illumination, and also enables
computation of backward scattered light from the sample. When
used with an inverse algorithm, MLB recovers quantitative RI
with lower error than and computation time similar to MS. These
properties make MLB suitable for imaging large 3D volumes with
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iterative inverse algorithms. Here, we implement MLB in a phase
tomography framework using intensity-only images acquired on a
LED array microscope [10,15,32,33].

2. MULTI-LAYER BORN SCATTERING MODEL FOR
3D PHASE TOMOGRAPHY

Generally, 3D phase tomography methods solve an inverse prob-
lem by minimizing the difference between the measurements and
the expected measurements, given an estimate of the sample’s
3D complex RI distribution. Iterative algorithms compute the
expected measurements at each iteration via a forward model that
describes how light propagates through the sample. The forward
model is critical, as its accuracy affects the reconstruction quality,
and its computational efficiency determines compute time, since
it must be invoked dozens or hundreds of times before the solution
converges. Below we describe our MLB forward model and the
inverse algorithm that we use to demonstrate it.

A. Forward Scattering Model

A thick sample can be described by its 3D scattering potential,
V (x , y , z), which is related to its RI n(x , y , z), via the following
expression:

V (x , y , z)= k2
o

(
n2

b − n2(x , y , z)
)
, (1)

where (x , y , z) are the 3D coordinates, ko =
2π
λ

, λ is the wave-
length of incident light in vacuum, and nb denotes background
RI of the surrounding media. As light propagates through the
sample, the incident field gets scattered; this scattered field inter-
feres with the incident field to form the total field. Modeling such
dynamics, including both forward and backward scattering inter-
actions, is complicated and highly nonlinear; hence, we often make
simplifying approximations.

The first Born approximation assumes weak scattering, result-
ing in a model where the scattered field is linearly related to the

scattering potential by a Green’s function, G(r )= − exp(iko nbr)
4π r ,

where r =
√

x 2 + y 2 + z2 [21]. For an incident field, Uin, the total
field, Utot, can be written as

Utot(x , y , z)≈Uin (x , y , z)+
∫∫∫

G(x − x ′, y − y ′, z− z′)

×Uin(x ′, y ′, z′)V (x ′, y ′, z′)dx ′dy ′dz′. (2)

This linear assumption holds when the magnitude of V is small
(i.e., a weakly scattering object). For the MS method, the first Born
model is equivalent to assuming that each slice of the sample inter-
acts only with the unscattered incident beam, without accounting
for any scattering that occurred before light reached each slice.
Hence, Eq. (2) does not account for multiple scattering.

Our MLB scattering model includes multiple-scattering effects
by dividing the 3D object into multiple slabs and sequentially
applying the first Born scattering process on each. Each slab has
a thin but finite thickness, 1z (see Fig. 1). Therefore, Eq. (2)
describes the field after the wave propagates through the nth layer.
This serves as the incident field of the (n + 1)th layer. By apply-
ing the first Born scattering process on each layer recursively, the
total field computed at the last layer is the multiply scattered exit
field. We let Un and Un

s denote the incident field and the scat-
tered field, respectively, within the nth layer. For mathematical
simplicity, we define the nth layer as the one that occupies the
space z ∈ [(n − 1

2 )1z, (n + 1
2 )1z]. The recursive formula can be

written as

Un+1(ρ,(n + 1)1z)=Un(ρ, (n + 1)1z)+Un
s (ρ,(n + 1)1z),

(3)

where ρ = (x , y ) is the 2D vector in real space coordinates; the
out-of-domain functions, Un and Un

s with their z> (n + 1
2 )1z,

are convenient expressions and should be understood as those at
z= (n + 1

2 )1z propagated in uniform background medium, and

Fig. 1. Our multi-layer Born (MLB) forward scattering model is validated as part of a 3D phase imaging framework. Intensity measurements with spa-
tially coherent illumination from different angles are captured on an optical microscope and fed in as inputs to our 3D phase tomography algorithm. By
solving a nonlinear optimization problem with our MLB scattering forward model, the 3D refractive index of a multiple-scattering object is recovered.
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Algorithm 1. Multi-Layer Born Forward Scattering

Input: Incident field at the first layer U 1(ρ, 1z), N layers of 3D scattering potential {V n(ρ)}Nn=1, layer thickness1z, and the refocusing distance1f .
1: for n← 1 to N do FMLB scattering
2: U n(ρ, (n + 1)1z)←F−1

{P (u, 1z)F{U n(ρ, n1z)}}
3: U n

s (ρ, (n + 1)1z)←F−1
{G̃(u, 1z)F{U n(ρ, n1z)V n(ρ)1z}}

4: U n+1(ρ, (n + 1)1z)←U n(ρ, (n + 1)1z)+U n
s (ρ, (n + 1)1z)

5: end for
6: Uimage(ρ)←F−1

{C(u)P (u, 1 f )F{U N+1(ρ, (N + 1)1z)}} Frefocus and image
Return: Total field on the image plane Uimage and incident fields at each layer {U n(ρ, n1z)}Nn=1.

U n
s (ρ, (n + 1)1z)=

∫ 1z
2

−
λ
2

∫∫
G(ρ − ρ ′, 1z− ζ )

×U n(ρ ′
; n1z+ ζ )V (ρ ′

; n1z+ ζ )d2ρ ′dζ .
(4)

The first term on the right-hand side of Eq. (3) is the inci-
dent field at the center of the nth layer propagated by one
slab thickness 1z. Given the 2D Fourier transform opera-
tor F{·}, the spatial frequency spectrum of the incident field
Ũn(u)=F{Un(ρ, n1z)}, and the angular spectrum propagation

kernel P (u, z)= e i2πz
√
(nb/λ)

2−‖u‖2 with the 2D spatial frequency
space coordinates vector u, we get

Un(ρ, (n + 1)1z)=F−1
{

P (u, 1z)Ũn(u)
}

. (5)

To simplify Eq. (4), we find it useful to use the 2D Fourier spec-
trum of the Green’s function [34]:

G̃(u, z)=
∫∫

G(ρ, z)e−i2π(u,ρ)d2ρ =
−ie i2π

√
(nb/λ)

2−||u||2|z|

4π
√
(nb/λ)2 − ‖u‖2

=
−iP (u, |z|)

4π0(u)
, (6)

where 0(u)=
√
(nb/λ)

2
− ‖ u‖2. The assumption made

below is that the scattering potential does not vary axi-
ally within each layer, which is generally valid when the
thickness 1z is small (i.e., V (ρ, n1z+ ζ )= V n(ρ) for
ζ ∈ [−1z/2, 1z/2]). Based on Eqs. (4)–(6) and the convolu-
tion theorem, the spatial frequency spectrum of the scattered field,
Ũn

s (u)=F{Un
s (ρ, (n + 1)1z)}, is

Ũn
s (u)=

∫ 1z
2

−
1
2

∫∫
−iP (u, |1z− ζ |)

4π0(u)
P (u′, ζ )Ũn(u′)

× Ṽ n(u− u′)d2u′dζ, (7)

where Ṽ n(u)=F{V n(ρ)} denotes the 2D spatial frequency spec-
trum of the scattering potential at the nth layer. The integration
along the ζ dimension involves only two propagation kernels:∫ 1z

2

−1z
2

P (u, |1z− ζ |)P (u′, ζ )dζ = P (u, 1z)sinc((0(u′)

− 0(u))1z)1z , (8)

where sinc(x )= sin(π x )/(π x ). Note that |1z− ζ | =1z− ζ
in the integration interval. Plugging the integration result into
Eq. (7), we obtain

Ũn
s (u)= G̃(u, 1z)

∫∫
sinc((0(u′)− 0(u))1z)Ũn(u′)

× Ṽ n(u− u′)1zd2u′. (9)

Equations (3), (5), and (9) make up the forward scattering
part of our MLB model. Equation (9) is computationally expen-
sive; however, when1z is chosen to be sufficiently small, the sinc
function is approximately one, and the integration becomes a
convolution, which can be efficiently evaluated via fast Fourier
transform (FFT).

Usually, the total field after the light passes through all the
layers is imaged by a low-pass imaging system, where the spatial
frequency bandwidth is set by the numerical aperture (NA) of
the objective lens. Hence, we digitally refocus the output field to
the image plane and apply a low-pass filter. With the ideal circu-
lar low-pass filter C(u)= circ(uλ/NA), the measured forward
scattered field can be efficiently computed using FFTs, as shown
in Algorithm 1.

Both the MS and MLB scattering models break the object into
layers and model the multiple-scattering effects as light propagates
through the sample. One major difference between the two models
is that MLB considers non-paraxial 3D scattering effects within
each layer, while MS simplifies it with a 2D transmission function.
Hence, MLB is more accurate for high-angle illumination, or for
highly scattering samples where more of the propagating light is
oblique. MLB is also capable of modeling the backward scattering
field (see derivation in Supplement 1).

B. Inverse Problem for 3D Intensity-Based Phase
Tomography

To demonstrate the use of our MLB model, we incorporate it
as the forward model of an iterative inverse problem that uses
intensity-only images to reconstruct 3D phase (RI) information.
An intuitive way to probe the 3D structure of an object is by rotat-
ing the object [35,36]; however, this generally requires additional
hardware and limits the types of objects that can be imaged [14,37].
Alternatively, we can illuminate the object at various angles [20],
as in many ODT systems that use either scanning galvanometers
or spatial light modulators (SLMs) [1,6,17,38]. For intensity-
based 3D phase tomography techniques, the requirement of
spatial and temporal coherence of the light source is less stringent,
and the illumination scanning process can be realized using an
inexpensive LED array [9,12,15,32,33]. Combining the illumi-
nation scanning scheme and the proposed MLB scattering model,
we develop a 3D intensity-based phase tomography algorithm
that applies to multiple-scattering objects. Similar to previously
proposed multiple-scattering methods [15,16,27], an iterative
algorithm is needed to recover the 3D RI of the sample because the

https://doi.org/10.6084/m9.figshare.11962194
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measurements are nonlinearly related to the scattering potential.
First, we formulate 3D intensity-based phase tomography as an
optimization problem with an objective functionL(V ):

min
V

L(V )=
NLED∑
j=1

‖ |Uimage, j (V )| −
√

Imeasure, j‖
2
+ τR(V ).

(10)

Here, NLED is the total number of LEDs used, which determines
the number of illuminations. The first term of Eq. (10) is the data
fidelity term, which gives a metric for how well the current object
estimate fits the measurements (through the Euclidean distance
between the estimated amplitudes and the square root of mea-
sured intensities Imeasure). The second term is a regularization term
that enforces prior knowledge on the 3D scattering potential. τ
is a tunable parameter that balances the strength of data fidelity
and regularization. Because the minimum of Eq. (10) cannot be
computed analytically, an iterative algorithm is required. Due to
the large-scale nature of 3D problems, we choose the proximal
gradient method for minimizing Eq. (10), which has relatively
lower memory requirements and computation complexity, as

compared to the alternative direction method of multipliers
(ADMM) or second-order Newton’s methods. To implement
the inverse algorithm, the gradient of the data fidelity term with
respect to V , {V n

grad(ρ)}
N
n=1, is required at each iteration (see

Algorithm 2), where {·}∗ stands for the complex conjugate oper-
ation, and R , Q, U †

image, and Un,† are the auxiliary variables for
gradient computation. Typically, the algorithm converges faster
if V is sequentially updated over different angles of incidence
[15,16,39], as opposed to summing the gradients computed from
all measurements and refining V . The penalty function helps regu-
larize the updated V to avoid over-fitting due to the nonlinearity
of the model. The following proximal operator is applied after the
gradient steps:

proxτR(V )= argmin
x

τR(x )+
1

2
‖ x − V‖2. (11)

In this paper, we choose total variation (TV) as the regulariza-
tion function because it has an efficient proximal operator [40].
Nesterov’s acceleration method is used at the end of every iteration
to further speed up convergence [41], and a momentum restarting

Algorithm 2. Gradient Computation

Input: Measured intensity Imeasure, predicted total field on the image plane Uimage, incident fields at each layer {U n(ρ, n1z)}Nn=1, current estimated
3D scattering potential {V n(ρ)}Nn=1, layer thickness1z, and the refocusing distance1 f .
1: R(ρ)←|Uimage(ρ)| −

√
Imeasure(ρ) Fresidual

2: U †
image(ρ)← (Uimage(ρ)/|Uimage(ρ)|)R(ρ)

3: U N+1,†(ρ, (N + 1)1z)←F−1
{C(u)P (u,−1 f )F{U †

image(ρ)}}

4: for n← N to 1 do FMLB back propagation
5: U n,†(ρ, n1z)←F−1

{P (u,−1z)F{U n+1,†(ρ, (n + 1)1z)}}
6: Qn(ρ, n1z)←F−1

{G̃∗(u, 1z)F{U n+1,†(ρ, (n + 1)1z)}}1z
7: V n

grad(ρ)←U n,∗(ρ, n1z)Qn(ρ, n1z)
8: U n,†(ρ, n1z)←U n,†(ρ, n1z)+ V n,∗(ρ)Qn(ρ, n1z)
9: end for

Return: Gradient at each layer {V n
grad(ρ)}

N
n=1.

Algorithm 3. 3D Intensity-Based Phase Tomography with MLB

Input: Measured intensities {Imeasure,j(ρ)}
NLED
j=1 , incident fields at the first layer {U 1

j (ρ, 1z)}NLED
j=1 , layer thickness1z, refocusing distance1 f , step size

α, regularization parameter τ , and max number of iteration Niter.
Initialization: 3D scattering potentials {V n

1 (ρ)}
N
n=1 = {V

n
prox,0(ρ)}

N
n=1 = 0 and t0 = 1

1: fork← 1 to Niter do
2: for j← 1 to NLED do Fsequential gradient descent

3:
(

Uimage, j (ρ), {U n
j (ρ, n1z)}Nn=1

)
← run Algorithm 1 with U 1

j (ρ, 1z) and {V n
k (ρ)}

N
n=1

4:
{

V n
grad(ρ)

}N

n=1
← run Algorithm 2 with Imeasure,j(ρ), Uimage, j (ρ) and {U n

j (ρ, n1z)}Nn=1

5
{

V n
k (ρ)

}N

n=1
←{V n

k (ρ)}
N
n=1 − α{V

n
grad(ρ)}

N
n=1

6: end for
7: ifL({V n

k (ρ)}
N
n=1) >L({V n

k−1(ρ)}
N
n=1) then Fmomentum restart

8: {V n
k+1(ρ)}

N
n=1←{V

n
prox,k−1}

N
n=1

9: tk← 1
10: Start k + 1 iteration
11: end if
12: {V n

prox,k}
N
n=1← proxτR({V n

k (ρ)}
N
n=1) Fregularization

13: tk←
1
2 (1+

√
1+ 4t2

k−1) FNesterov’s acceleration

14: {V n
k+1(ρ)}

N
n=1←{V

n
prox,k(ρ)}

N
n=1 +

tk−1−1
tk

({V n
prox,k(ρ)}

N
n=1 − {V

n
prox,k−1(ρ)}

N
n=1)

15: end for
Return: Reconstructed 3D scattering potential {V n

Niter+1(ρ)}
N
n=1.
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mechanism [42] promotes stability. Detailed implementation of
our proposed 3D intensity-based phase tomography with MLB
is summarized in Algorithm 3. Once the 3D complex scattering
potential is recovered, the real-valued RI can also be retrieved from
Eq. (1), as shown in our simulations and experiments (Section 3
and Section 4). Based on Algorithms 1–3, our 3D phase imaging
framework using MLB is summarized in Fig. 1.

Note that our inverse problem and forward scattering model
can be interchanged with others. For complex-field measurements
from holographic phase tomography (instead of intensity-only
datasets), we can incorporate our MLB model by simply chang-
ing the data fidelity term in Eq. (10). Our inverse Algorithm 3 is
also compatible with other scattering models by using a differ-
ent forward model and deriving its gradient (Algorithms 1,2).
In both simulations and experiments, step size α is set within a
range from 0.5–5, and τ is chosen to be around 10−2 for the first
Born, Rytov, and MLB models. In contrast, these two param-
eters are two to three orders of magnitude smaller when MS is
applied, due to the large local Lipschitz constant of the objec-
tive function when using MS, in which RI is solved instead of
the scattering potential. For each model, α is manually tuned
to achieve the best rate of convergence, and τ is adjusted to
mitigate most of the noise artifacts without degrading physical
structures.

3. SIMULATIONS

A. Comparison of Forward Models

To analyze the accuracy of our MLB forward model and compare
with other scattering models used in 3D phase imaging (first
Born, Rytov, and MS) independent of the inverse solver, we first
simulate the amplitude measurements of a 3D cell phantom with
different methods. Since we do not have ground truth for the
measurements, we compare against those generated by SEAGLE
[27], which should be the most accurate method, but requires very
long computation times. Here, since we are using only SEAGLE to
compare forward model accuracy, we need not run it for the entire
large-volume 3D reconstruction.

The RI contrast of the 150-layer cell phantom ensures multiple
scattering: it has a 15× 15× 7.5 µm3 ellipsoid body, which con-
tains cytoplasm (RI n = 1.35), a nucleus (n = 1.33), two nucleoli
(n = 1.36), several small organelles (n = 1.39), and a thin plasma
membrane (n = 1.37) enclosing the body. The cell is surrounded
by medium of n = 1.33, within a volume of 450× 450× 150
voxels with 0.05 µm resolution. Assuming an illumination
wavelength of 532 nm and objective NAobj = 0.8, we calculate
the amplitude images using forward and backward scattered
light under on-axis (NAillu = 0.00) and off-axis (NAillu = 0.75)
illumination.

Processing was done on a NVIDIA TITAN X GPU installed on
a desktop computer (Intel i7-5960X CPU). The forward model
computation time for one illumination angle with first Born,
Rytov, MS, and MLB were 0.22, 0.22, 0.25, and 0.32 s, respec-
tively. The memory requirement for SEAGLE was too large to
run on the GPU, and the computation took∼15 min for a single
illumination angle on our CPU.

Ground truth (SEAGLE) in-focus amplitudes at two different
illumination angles are shown in the top row of Fig. 2(a), and
the error maps (difference from ground truth) for each forward
model are in the bottom four rows. Since the weakly scattering

approximation does not hold, both first Born and Rytov methods
produce large error. In contrast, MS and MLB scattering models
account for multiple scattering within the object, greatly increasing
accuracy. For off-axis illumination, however, the MS model incurs
error due to the paraxial approximation. We show both forward
and backward scattering predictions of the amplitude (the MS
model does not predict back scatter). Overall, the MLB is the most
accurate among the computationally efficient models.

There is a trade-off between the model accuracy and the maxi-
mum phase within each layer when using MLB, since the first Born
approximation for each slab becomes less accurate as the phase
contrast in each slice becomes larger. Figure 2(b) illustrates this
trade-off by plotting the evolution of mean squared error (MSE)
versus the maximum phase change in each layer. By binning the
neighboring layers and adapting a larger 1z along the z axis, we
effectively increase the maximum phase in each layer. The MSE of
the first Born results is not displayed because its value is an order of
magnitude larger than the others. In the forward scattering case,
the MSE of the MLB results grows linearly with the phase in each
layer, while the MSEs of Rytov and MS remain fairly flat. The
MLB model provides the most accurate predictions for off-axis
illumination when the phase within each layer is smaller than
0.04π for the cell phantom. For backward scattering, MSEs are
smaller due to weaker backward scattered light, but the error
quickly increases as the phase change in each layer grows. Similarly,
the MLB provides significant accuracy improvement when thinner
slices are used, since the weakly scattering assumption is valid
within each layer.

B. Comparison of 3D RI Reconstructions

To understand how the accuracy of the forward scattering model
used in Algorithm 3 affects 3D RI reconstructions, we compare
the results from the four different models described in Section 3.A.
SEAGLE was again used to simulate the measurements, where
104 amplitude images were generated with illuminations
(NAillu ≈ 0.75) from an annular region on the source plane. The
rest of the imaging parameters (NA, pixel size, wavelength) remain
the same as listed in Section 3.A. Measurements contain high
spatial frequency content and rich phase contrast when the object
is illuminated by oblique light with NAillu close to NAobj [43], as
seen in the first row of Fig. 3. Hence, the high-resolution 3D RI
information of the sample is well encoded in the measurements.

We compare the ground truth RI of the cell phantom with the
results computed using different forward models and our inverse
solver. Accuracy is quantified by the MSE of each reconstruction,
which are: first Born 0.0159, Rytov 0.0076, MS 0.0088, and MLB
0.0054. Since the first Born method overestimates the amplitude
values on the image plane [(see Fig. 2(a)], the RI retrieved using
it is underestimated. The Rytov model results in a more accurate
reconstruction due to a less strict approximation, but suffers from
incorrect background RI and less uniform RI inside the object.
In contrast, MS and MLB recover RIs with more uniform back-
ground, which are similar to the ground truth. However, the 3D
phantom recovered using MS introduces undesired contrast on
the x − y cross section (elongation indicated by yellow arrows in
the MS panel of Fig. 3), and demonstrates consistently higher RI
values in the internal cytoplasm, compared to that of the ground
truth. This is why the MSE with MS is slightly higher than with
the Rytov model, though MS provides better visual appearance.
Despite suffering from the missing cone problem and sacrificing
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Fig. 2. Comparison of forward model accuracy for a 3D cell phantom using the first Born, Rytov, multi-slice (MS), and MLB scattering models.
(a) Ground truth (SEAGLE simulations) of the forward and backward scattered amplitude with on-axis and off-axis illumination, along with the error maps
for all other forward models. (b) Accuracy of each model as the maximum phase within each layer increases.

the axial resolution for low spatial frequencies, our algorithm with
MLB recovers the most quantitative 3D RI because of the high
accuracy of the scattering model.

Total reconstruction times using our algorithm with 100 iter-
ations were 0.67 (first Born), 1.19 (Rytov), 1.50 (MS), and 1.67
(MLB) hours. The differences are caused mainly by the various

computation efficiencies of each scattering model. The compu-
tation time grows linearly with the product of number of layers,
number of iterations, and number of measurements, but barely
changes as the number of pixels in each layer increases. This is
because the most computationally expensive operation in each
layer, the FFT, is efficiently parallelized on a GPU.

Fig. 3. Simulations comparing the 3D RI reconstructions using the first Born, Rytov, MS, and MLB forward scattering models with our inverse solver
(Algorithm 3). (Top) Simulated measurements for five angles of incidence. (Bottom) x − y and x − z cross sections of the 3D refractive index distributions
along with their mean squared error (MSE).
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4. EXPERIMENTS

Experiments in Sections 4.A and 4.B use an LED array microscope
to realize our proposed 3D intensity-based phase tomography. A
planar 32× 32 programmable LED array is mounted on a Nikon
TE300 inverted microscope, which generates 514 nm light from
different angles of incidence [15]. Since the LEDs are far away
from the sample relative to the field of view (FoV) (68 mm for the
40× 0.65NA objective, and 46 mm for the 60× objective), the
incident light from each LED can be treated as a plane wave propa-
gating at an angle determined by the LED position. All images
from the LED array microscope are captured by a monochrome
sCMOS camera (PCO.edge 5.5, 6.5 µm pixel size) at the front
port of the microscope, where an additional 2× magnification
is provided. To demonstrate high-NA imaging capability of the
proposed method, an oil-immersion microscope is used (see system
design details in Section 4.C). For each illumination with both the
LED array microscope and high-NA oil-immersion microscope,
we record two intensity images, with and without the sample. By
dividing the former by the latter, the normalized intensity, Imeasure,
serves as the input to the inverse problem in Algorithm 3.

A. 3D Imaging of Polystyrene Beads

In order to quantify accuracy for different scattering mod-
els in experimental conditions, we start by imaging a known
sample—a 5 µm polystyrene bead (Sigma-Aldrich, n = 1.6010
at λ= 514 nm ) immersed in two different index-matching
oils (Cargille), resulting in RI contrasts of 1n = 0.0113 and
1n = 0.0452. We used a 40× 0.65 NA objective lens (Nikon
CFI Plan Achromat), with its front focal plane aligned at the center
of the bead. One hundred images with angles of incidence rang-
ing from approximately 23◦ to 44◦ were captured at 6.66 frames
per second (fps). Reconstructions using each of the four forward

models (all with a positivity constraint and TV regularization in
the proximal step) are shown in Fig. 4.

For the low index contrast case [Fig. 4(b)], the sample can be
considered weakly scattering, and so all of the models are valid;
hence, the single-scattering and multiple-scattering models yield
similar results. We note that low SNR and partial coherence effects
occur when using an LED array for intensity-based imaging of a
weakly scattering sample. These effects are model mismatches that
contribute to quantitative inaccuracies, as shown when comparing
the quantitative RI profiles of the tomographic reconstruction
models to the ideal RI profile.

In the case of high index contrast, the resulting multiple scat-
tering causes RI accuracy to vary significantly depending on the
tomographic reconstruction framework [Fig. 4(c)]. The first Born
approximation fails by underestimating the RI value and missing
content in the center of the bead. The Rytov model mitigates
the RI underestimation, but results in a corrupted shape axially.
Reconstructions with MS and MLB both account for multiple
scattering, but the reconstructed bead using MS has an elongated
shape and slightly less quantitative contrast, similar to our sim-
ulation. The recovered polystyrene bead using MLB has higher
quantitative accuracy and more isotropic resolution. This demon-
strates that MLB is the best forward model for imaging objects of
high RI contrast and multiple scattering.

B. 3D Imaging of Weakly Scattering Sample

Next, we look at a weakly scattering biological sample, a fixed
3T3 cell. We capture 100 intensity measurements at 2 fps using a
60× 0.80 NA objective lens (Nikon CFI Achromat), with illu-
mination angles ranging from 49◦ to 51◦. Since the illumination
NA is close to the objective NA, we simultaneously encode high-
frequency and low-frequency phase contrast of the 3D sample
in the measurements. This is critical for high-resolution phase

Fig. 4. Experimental results for a single polystyrene bead in low and high index contrast media. (a) Examples of the measured normalized transmitted
amplitude. (b), (c) Orthogonal slices of 3D refractive index reconstructions of low/high contrast polystyrene beads from different scattering models. 1D
cross sections along the black dotted lines are plotted on the right. The weakly scattering approximation is no longer valid when the refractive index contrast
is large, so the multiple-scattering models (MS and MLB) perform better.
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tomography. The images at the camera plane are over-sampled due
to the additional magnification provided by the tube lens, so we
down-sample the raw data by a factor of 2× in each dimension.

Figure 5(a) shows orthonormal cross sections of the recov-
ered 3D RI (after halo-correction [44]). The reconstruction
volume contains 612× 612× 120 voxels with voxel size
0.108× 0.108× 0.540 µm3. In this case, neither the positiv-
ity constraint nor TV regularization were used. We can observe
the components within the cell, such as the nucleus, indicated
by arrows. The physical thickness of the cell is ∼17 µm. We also
render the 3T3 cell with false colors labeling different RIs for
visualization in a 3D volume [see Fig. 5(b) and Visualization 1].

Besides providing quantitative density of the sample, having
3D phase information also gives better contrast when comparing
a slice of the 3D reconstruction to a conventional 2D phase con-
trast image. Figure 5(c) shows several regions of interest (ROIs)
and depths for three different imaging modalities: 2D phase con-
trast from assymetric half-circle illumination, quantitative phase
using differential phase contrast (DPC) with four measurements
[43,45], and a slice of our recovered 3D RI. While all theoreti-
cally have similar depths of field (∼0.64 µm), which helps reveal
different structures at each plane (e.g., vesicles indicated by the

arrows), their contrasts vary dramatically. Out-of-focus informa-
tion is integrated with in-focus cell content in the 2D phase image,
making it hard to distinguish one from the other. Although the
phase contrast images highlight the in-focus components of the
cell, it is not possible to interpret the actual structure from only
phase contrast images. In contrast, 3D RI reconstruction naturally
displays quantitative optical density at each depth and builds up
high contrast contours that separate distinct organelles.

C. 3D Imaging of Multiple-Scattering Sample

MLB describes the multiple-scattering process based on scalar wave
theory in the object space without any assumptions on the imaging
system. Hence, it naturally applies to many different microscope
setups in addition to the LED array microscope. Moreover, unlike
the MS or beam propagation method, MLB considers non-paraxial
wave interaction.

To demonstrate, we conduct intensity-based phase tomography
on a custom-built high-NA optical microscope [17]. A fiber-
coupled LED (λ= 530 nm center wavelength) is combined with
a 2D scanning mirror to achieve programmable angle-scanning
illumination. Two high-NA oil-immersion objective lenses (effec-
tive NA= 1.45) serve as the condenser and the imaging lenses,

Fig. 5. 3D refractive index reconstruction of a 3T3 cell using the MLB scattering model. (a) Orthonormal views of the recovered 3T3 cell. (b) 3D render-
ing. (c) Zoomed-in comparison among differential phase contrast (DPC), quantitative phase, and a slice of 3D refractive index of the 3T3 cell at two differ-
ent depths within green and blue boxes in (a). The 3D slices provide both good depth sectioning and quantitative information with high contrast.

https://doi.org/10.6084/m9.figshare.10284278
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Fig. 6. 3D refractive index reconstructions of an entire adult hermaphrodite C. elegans worm from the dataset in Ref. [17], using our MLB model. The
insets show zoomed-in comparison between orthonormal cross-sections using the first Born, multi-slice (MS), and MLB methods, for the white box region
that includes the mouth and pharynx of the C. elegans. Visualization 2 is a video showing different regions across the whole worm.

which enables sub-wavelength resolution. A fixed C. elegans sample
is sandwiched between two coverslips and intensity images are
acquired for each illumination angle. We collect 120 images with
the illumination angles scanned on a spiral trajectory. A compu-
tational self-calibration algorithm is used to accurately measure
the illumination angles [46]. Algorithm 3 is applied to recon-
struct quantitative RI within a volume of 1200× 1200× 100
voxels, with voxel size 0.12× 0.12× 0.35 µm3. The full length
of the C. elegans (∼1 mm ) does not fit in a single FoV, so 12 phase
tomography datasets at different regions are captured and digitally
combined to visualize the entire worm.

Large differences among RI results using the first Born, MS, and
MLB models can be observed in Fig. 6. As expected, the RI contrast
of the body of the C. elegans is large and the sample is thick, so the
weakly scattering approximation (first Born) fails to capture most
of the low-frequency content. The RI values recovered using MS
are slightly higher than RIs in the MLB case. This agrees well with
our simulation results. In addition, the halo artifacts pointed out by
the arrows in Fig. 6 are mitigated by changing the scattering model
from MS to MLB. All of the above suggest that MLB works well
with high-NA imaging systems and multiple-scattering samples.
Additionally, the computation and memory costs of MLB are
similar to MS, which is an efficient method to evaluate 3D scatter-
ing. Hence, we are able to achieve 2 giga-voxels 3D RI retrieval of
the whole C. elegans, shown at the bottom of Fig. 6, on a desktop
computer with GPUs.

5. CONCLUSION

We have introduced the MLB scattering model, an efficient and
accurate forward model for 3D phase (RI) microscopy. MLB
demonstrates superior accuracy for multiple-scattering objects,
as compared to widely used single-scattering methods (first Born,
Rytov) and the multiple-scattering MS method. Its moderate
computation complexity and highly parallelizable operations, as
compared to other multiple-scattering models (e.g., SEAGLE,
FDTD), are important for making large-scale inverse problems

feasible, since they require evaluation of the forward model at each
of many iterations, which becomes computationally expensive
for large datasets. Our MLB model does not rely on the parax-
ial approximation, so is suitable for high-NA imaging, and also
predicts backscattered light, improving accuracy. Together, these
advances open up 3D phase microscopy to an entirely new range of
biological samples that are thicker and more highly scattering than
what was previously possible.
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