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In any material, electric charges shift in response to applied fields. For well over a century now, we have had a theoretical frame-
work –Maxwell’s equations – to describe the shifting charge and the applied fields. The task still at hand, however, is to measure,
describe, and understand how real materials behave within this framework.
The displacement fieldD is defined in terms of its relationship to the electric field E and the polarization P viaD ≡ ϵ0E + P. The

displacement field’s great theoretical advantage is that, via the first Maxwell equation ∇ ·D = ρf , it depends only on the free
charge density ρf [1]. Motion of the free charge density generates the free currents (∂ρf /∂t + ∇ · Jf = 0), which can be measured
and controlled using standard electrical transport methods. Thus information on the displacement field D is experimentally ac-
cessible in microfabricated electronic circuits, where conducting leads make connections to some material or device of interest:
electrical currents in the leads can be measured. The electric field E is also experimentally accessible in a device with leads, as
a potential V applied to the leads produces E = −∇V. However, the polarization P in some insulating material can be difficult
to determine, as it is not directly measurable. Moreover, polarization depends on materials’ properties that can be difficult to cal-
culate, even in the ideal case. And in real materials the problems are truly forbidding, as composition inhomogeneities, defects,
and other non-idealities make characterizing even the basic physical structure challenging.
For many technological applications, however, the polarization is of paramount interest. Ferroelectric materials, for instance,

exhibit remanent polarization that, properly harnessed, could form the basis for a next-generation computer memory technology
[2]. The combination of nano-PUND and STEM EBIC imaging can measure the displacement field D and the electric field E sep-
arately, which determines the polarization P.
In the positive-up, negative-down (PUND) technique, two identical voltage pulses of the same, say, positive polarity are applied

to a ferroelectric material in the polarized down state while the current is measured. The polarization switches only during the first
pulse, so subtracting the second pulse’s current from the first isolates the ferroelectric switching current. Nano-PUND improves
this technique’s dynamic range by injecting a current calibrated to cancel linear charging currents due to, for example, stray cap-
acitance [3].
However, transport techniques such as PUND alone cannot determine the switching displacement fieldD if the material under

test is not completely homogeneous. For instance, in the case of hafnium zirconium oxide (Hf0.5Zr0.5O2, HZO), our demonstra-
tion material [4], many crystalline phases of similar free energies compete with the desired ferroelectric phase. Thus the HZO
between two electrodes might not all be ferroelectric. And even if it is, it might not all switch at the same coercive field. To connect
themeasured switching current Iwith the current density J that relates toD, a technique capable of determining the cross-sectional
area of the switching domains is required.
Scanning transmission electron microscope (STEM) electron beam-induced current (EBIC) imaging can map which domains

switch, and when. In STEM EBIC imaging, the focused STEM beam is rastered over the sample while the beam-induced currents
in the sample are collected and digitized. The EBIC contrast mechanism that is often the strongest arises because the primary elec-
tron beam is energetic enough to create electron-hole pairs in the sample [5]. In regions where there is a local electric field, these
electron-hole pairs are more likely to separate and contribute to the EBIC. A STEMEBIC image is thus a map of the local E-fields.
This map can even be calibrated by applying a known E-field andmeasuring the resulting EBIC. Thus STEMEBIC imaging assists
PUND in the determination of D (by determining the switching area), and measures local E-fields itself directly. This powerful
combination thus determines the polarization P as well, providing a complete picture of the fields in a ferroelectric sample [6].
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Fig. 1. Overview of the experimental arrangement for in-situ STEM EBIC and PUND measurements. A cutaway view of a polarized TaN/HZO/TaN
capacitor showing separation of electron-hole pairs due to remanent electric fields. The PUND setup (purple) polarizes the film andmeasures the sample’s
global hysteresis loop. The “polarization” measured by PUND alone is more accurately termed the displacement, and it is calculated assuming that the
whole capacitor switches (see Fig. 2). The EBIC setup (black) maps the device’s local polarization state immediately after each PUND sequence. Positive
(hole) current appears as bright contrast and negative (electron) current appears as dark contrast in the digitized images on the right.

Fig. 2. Remanent field maps (a - d) show the local electric fields in small portion of the TaN/HZO/TaN capacitor shown in Fig. 1. These images, which are
constructed by subtracting the EBIC collected from the bottom electrode from that of the top electrode, are calibrated in E-field units by applying a known
voltage to the electrodes separately. At this peak PUND applied field strength magnitude of 2.5 MV/cm, only a portion of the capacitor switches from the
nominally-P� (a) to the nominally-P� (b) state. Polarization state difference (c) and sum (d) image highlight the switching and non-switching domains,
respectively. Transport methods such as PUND only see the switching domains (c), and cannot determine the switching area without the assistance
STEM EBIC imaging.
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