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Abstract: We present an on-chip, widefield fluorescence microscope, which consists of a
diffuser placed a few millimeters away from a traditional image sensor. The diffuser replaces
the optics of a microscope, resulting in a compact and easy-to-assemble system with a practical
working distance of over 1.5mm. Furthermore, the diffuser encodes volumetric information,
enabling refocusability in post-processing and three-dimensional (3D) imaging of sparse samples
from a single acquisition. Reconstruction of images from the raw data requires a precise model of
the system, so we introduce a practical calibration scheme and a physics-based forward model to
efficiently account for the spatially-varying point spread function (PSF). To improve performance
in low-light, we propose a random microlens diffuser, which consists of many small lenslets
randomly placed on the mask surface and yields PSFs that are robust to noise. We build an
experimental prototype and demonstrate our system on both planar and 3D samples.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

On-chip microscopy is a powerful imaging modality in which a digital image sensor captures
information about the sample without using a traditional microscope objective. These lensless
microscopes can be very compact and lightweight for portable or in vivo applications, and
they typically have simpler hardware than their lensed counterparts. However, many on-chip
microscopes are limited to bright-field microscopy [1–3] rather than fluorescence imaging, a
critical modality for probing structure and function in a wide range of samples.
As summarized in Greenbaum et al. [1], on-chip fluorescence imaging is challenging for

several key reasons. First, fluorophores are incoherent with each other and with background
illumination. As a result, digital holography [2,3] and other interferometric methods cannot be
applied. Shadow-based techniques [4,5] are also not applicable because fluorescent samples do
not necessarily block light. Furthermore, fluorophores emit light uniformly in all directions;
in an on-chip system without a main lens, fluorophores therefore become dim and defocused
as they move further from the sensor. This results in degradation of both signal-to-noise ratio
(SNR) and resolution with increasing distance from the sensor. Prior on-chip microscopes for
fluorescence [6–10] mitigate this effect by using very short working distances (less than 500 µm),
limiting their applications to samples that can be placed directly on the sensor. In this work, we
demonstrate an on-chip fluorescence microscope featuring a practical working distance of over
1.5mm, suitable for imaging samples on slides or in microfluidic channels.

Our strategy for on-chip fluorescence microscopy involves placing a thin mask between the
sample and the sensor. The mask modulates incoming light, indirectly encoding information
about the sample, which can then be recovered computationally. Since the mask is placed close to
the sensor (3.8mm), it does not greatly increase the system form factor or hardware complexity
(as compared to [11]). Such designs maintain the advantages of an on-chip lensless system and
have been demonstrated successfully in both microscopy [10,11] and photography [12–18], and
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have been shown to capture higher-dimensional information, such as three-dimensional (3D) [19]
or temporal information [20], in a single acquisition.

Here, our mask is a randommicrolens diffuser [20–22] which has many small lenslets randomly
arranged in 2D. Since the lenslets have focusing power, the best performance occurs when the
object is in imaging condition with the sensor, enabling practical working distances, over 1.5mm.
In contrast, similar architectures with amplitude masks that have no focusing power [10,12] have
the best performance when the object is close to the mask, resulting in short working distances
(< 500 µm). Furthermore, unlike amplitude masks, our random microlens diffuser does not block
light, making it better suited for fluorescent samples which are typically dim. As in [19], our
system can recover 3D structures from a single acquisition; in this work, we demonstrate 8 µm
lateral resolution and 50 µm axial resolution, an order of magnitude higher than in [19].
The architecture of our system has many parallels to a 4D light field camera [23–25] or an

integral photography system [26,27], which instead uses a periodic microlens array. Similar to a
light field camera, each lenslet of our random microlens diffuser can be thought of as imaging
the object from a different perspective. However, because our proposed system uses random
rather than regular arrays of lenslets, cross-talk between the lenslets can be disambiguated
computationally. This allows for increased flexibility in the design of the micro-optics, eliminates
the need for a main objective lens, and enables a simple flat architecture that does not require
physically isolating each lenslet, as in [16,17,28]. As a result, our system is easy to assemble,
compact and portable (total size of 3.5 cm × 3.5 cm × 1 cm, limited by the board size of the
sensor), and the architecture can easily be extended to larger sensor sizes.
Our microscope requires computational recovery of the image from the raw data. Prior work

[19] demonstrated efficient computational image reconstruction by assuming the system point
spread function (PSF) is shift-invariant. Unfortunately, this assumption relies on objects being far
from the camera (compared to the sensor size). Here, we achieve 10× resolution improvement by
placing objects closer to the sensor and modeling the spatially-varying PSFs, as described in Sec.
2. Calibration of a spatially-varying system is challenging; one approach is to experimentally
measure every PSF in the field-of-view (FoV) [29,30]. However, this brute force calibration
approach would necessitate an infeasible number (over 10 million) of calibration images for 3D
imaging. Therefore, we derive a calibration scheme in which we measure about 1,000 PSFs in
a sparse grid, then intelligently interpolate between them (Sec. 3), resulting in 40,000× fewer
calibration measurements and 10,000× less memory required than a brute force approach. We
show how these calibration measurements can be efficiently combined through a local convolution
model. In Sec. 4 we introduce the random microlens diffuser and demonstrate its advantages
over other masks. Finally, in Sec. 5 we describe our experimental prototype and show results on
both planar and 3D fluorescent samples.

2. System overview

Our microscope consists of a thin refractive diffuser placed a few millimeters in front of a
traditional image sensor, with color filters between the diffuser and sensor to block excitation
light (Fig. 1). Emitted light from each fluorophore in the sample is refracted by the diffuser
surface to form a high-contrast pattern on the sensor. Every position in 3D creates a unique
pattern, or PSF. We model our scene as a collection of point sources with varying intensity and
no occlusions, so we can describe the imaging system with the following linear equation:

b(x′, y′) = C
∑
(x,y,z)

h(x′, y′; x, y, z) x(x, y, z) + g(x′, y′). (1)

Here, b(x′, y′) is the measurement at position (x′, y′) on the sensor, h(x′, y′; x, y, z) is the PSF
taken at position (x, y, z) in the world, x(x, y, z) is the sample intensity, C is a crop operator that
accounts for the finite sensor size, and g(x′, y′) is the background due to unattenuated excitation
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Fig. 1. Our light-weight and portable on-chip microscope consists of a random microlens
diffuser placed a few millimeters above an image sensor. Using only a sparse grid of
calibration measurements, 3D images are reconstructed with a local convolution model that
accounts for the spatially-varying point spread functions (PSFs).

light and autofluorescence from the color filters. Vectorizing the sample, measurement, and
background allows Eq. (1) to be written compactly in matrix form: b = Ax + g. To recover
the object from the sensor measurement, we jointly estimate the sample fluorescence, x, and
background, g, by solving the regularized least squares problem described in Sec. 3.3.

2.1. Forward model

Reconstructing the sample requires knowing the matrix A, or equivalently, the PSFs for every
point in 3D space. Prior work [19] assumed that the distance between the object and sensor
was large relative to the sensor size, making the PSF shift-invariant at each depth; this enabled
h(x′, y′; x, y, z) to be fully characterized by only one calibration measurement per axial location
and enabled b to be efficiently computed with convolutions. In this work, we place objects closer
to the sensor in order to achieve microscopic resolution; however, this breaks the shift-invariance
assumption and necessitates accounting for the angular dependence of the sensor.
To capture the dominant optical effects in our system, we introduce what we’ll refer to as

our “two-part model” in which we split the PSF measurements into two components: (1) A
shift-invariant pattern due to the diffuser in which we assume no spatially-varying aberrations,
and (2) an angular-dependent response at the CMOS sensor.
The first component of our two-part model is the same as the model in [19]. We define

hd(x′, y′; x, y, z) to be the aberration-free PSF from a point source at position (x, y, z) due to the
diffuser alone. Assuming paraxial optics, a lateral translation of the point source results in a
translation of the PSF in the opposite direction, and an axial translation of the point source results
in a scaling of the PSF, as described in [19,31,32]. For notational simplicity, we refer to the
on-axis PSF as hd(x′, y′; z) = hd(x′, y′; 0, 0, z). Using the paraxial approximation, we can write
any PSF as a transformation of the on-axis PSF taken at depth z∗:

hd(x′, y′; x, y, z) = hd
(
sx′ +

sd
z

x, sy′ +
sd
z

y; z∗
)
, (2)
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Fig. 2. The two-part forward model, which consists of a diffuser component (hd) and sensor
component (hsensor), informs interpolation between calibration measurements. Consider
two calibration points located on-axis at x0 and off-axis at x1. Based on the two-part model,
each PSF consists of a high frequency signal due to the diffuser (hd) multiplied by the
angular-dependent sensor response (hsensor). In the off-axis PSF, hd is translated to the
left while hsensor remains directly under the point source. To interpolate between the two
calibration measurements, first we register the component due to the diffuser. Then we
approximate the PSF at x∗ by taking a linear combination of the registered PSFs where the
weights (α) are based on the distance between the calibration location and x∗. We extend
this to 2D using bilinear interpolation.

where d is the distance between the diffuser and the sensor and s is a scaling factor defined by

s =
z (d + z∗)
z∗ (d + z)

. (3)

The second component of our two-part model is the sensor response, which was unaccounted for
in [19]. Digital image sensors exhibit angle-sensitive responses due to cosine falloff, microlenses
on the pixels, and circuitry that blocks light [33]. We assume a simplified model in which the
sensor response is summarized by f (θ) where θ is the angle between the incident light and the
normal to the sensor (see Fig. 2). This model is best for backside-illuminated sensors, in which
circuitry is beneath the photodiode and does not create spatial variation in the sensor response.
Based on the geometry of the system, the PSF due to the sensor response alone is

hsensor(x′, y′; x, y, z) = f

(
tan−1

(√
(x′ − x)2 + (y′ − y)2

d + z

))
.

Assuming that the diffuser does not bend light by a substantial amount compared to the
frequencies in f (θ), we model the total PSF, h(x′, y′; x, y, z), as the product of the sensor and
diffuser components, yielding our complete two-part model:

h(x′, y′; x, y, z) = hd
(
sx′ +

sd
z

x, sy′ +
sd
z

y; z∗
)

f

(
tan−1

(√
(x′ − x)2 + (y′ − y)2

d + z

))
. (4)

These two components can be seen in the experimental PSFs shown in Fig. 1. Note that when the
distance to the object, d + z, is much larger than the sensor size (recall that x′, y′ are constrained
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to be within the sensor size), the sensor falloff term reduces to

hsensor(x′, y′; x, y, z) = f

(
tan−1

(√
x2 + y2

d + z

))
,

which is independent of x′, y′. Therefore, when the object is far from the sensor, as in [19], the
falloff term can be implicitly grouped with the sample, and the total PSF consists only of the
shift-invariant component due to the diffuser.

The factorization in Eq. (4) suggests that all PSFs can be synthesized from the two underlying
functions hd(x′, y′; z) and f (θ). However, recall that hd(x′, y′; z) is an approximation which
assumes no spatially-varying aberrations in the diffuser. In practice, due to spatially-varying
aberrations, there is no single hd(x′, y′; z) that accurately describes the diffuser’s pattern for all
field positions. Therefore, we capture both aberrations and variations due to sensor falloff by
measuring the PSF at many locations across the FoV, described in detail in the following section.

3. Calibration and image reconstruction

3.1. Calibration with model-based interpolation

Due to both the sensor falloff term and aberrations from the diffuser, the PSF is shift-varying and
cannot be modeled as a convolution, as was done in [19]. To measure these effects, we acquire a
collection of calibration measurements throughout the volumetric FoV. In the extreme, one could
capture or simulate a calibration measurement at every possible 3D location in the volume, but
this is excessive and unnecessary due to the slowly-varying nature of both the diffuser aberrations
and the sensor falloff. Instead, we collect a sparse grid of calibration measurements and introduce
an interpolation scheme based on the two-part model in Sec. 2.1.

We denote the i-th calibration measurement taken at (xi, yi, zi) as hi(x′, y′) = h(x′, y′; xi, yi, zi).
Our goal is to interpolate between these calibration measurements to synthesize every PSF in
the volume. However, naive pixel-wise averaging of neighboring calibration measurements will
result in inaccurate blurring of the high-frequency diffuser pattern since it fails to account for the
translation and scaling effects described in Eq. (2). Therefore, instead of interpolating between
the raw measurements, we first computationally register the calibration measurements to the
on-axis PSF taken at depth z by applying the following shifts and scales:

h̃i(x′, y′; z) = hi(six′ − si∆x′i , siy′ − si∆y′i )

= hd(x′, y′; z)f
©­­«tan−1

©­­«
√
(six′ − d

z xi − xi)2 + (siy′ − d
z yi − yi)2

d + zi

ª®®¬
ª®®¬

(5)

where
si =

z(d + zi)

zi(d + z)
, ∆x′i =

d
zsi

xi, ∆y′i =
d
zsi

yi. (6)

The registered calibration measurements, denoted h̃i(x′, y′; z), have the paraxial component
of the diffuser pattern aligned (Fig. 2). After this transformation, pixel-wise interpolation
between neighboring calibration measurements preserves the high-frequency features of hd. In a
shift-invariant system, all of the registered PSFs are identical and no interpolation is necessary; in
a system with spatial variance, like ours, the variations appear as smoothly changing deviations
between the registered PSFs. Therefore, we synthetically generate intermediate PSFs by linearly
interpolating between the registered calibration measurements. We first consider the case where
all calibration PSFs are at a single depth, z, which yields si = 1 for all i. The synthetically
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generated PSF from an arbitrary point (x, y, z) is approximated from the calibration measurements:

h (x′, y′; x, y, z) ≈
∑

i
αi(x, y, z) h̃i(x′ +

d
z

x, y′ +
d
z

y; z). (7)

Here αi(x, y, z) is a weighting factor determined by the distance to the i-th calibration measurement.
We choose αi(x, y, z) to correspond to bilinear interpolation between the four nearest PSFs.

It is also possible to synthesize new PSFs at different depths using an analogous procedure. To
generate PSFs at a new depth z∗, nearby calibration measurements are first scaled based on Eq.
(5) to generate h̃i(x′, y′; z∗). Then, the synthetic PSF at z∗ is calculated from a linear combination
of these scaled calibration measurements, where the weight is once again based on the synthetic
PSF’s proximity to the calibration points.
Although Eq. (6) requires the precise locations of the calibration measurements, we can

circumvent this requirement by directly determining (∆x′i ,∆y′i ) from the measurements themselves.
We find that cross-correlation between neighboring calibration measurements is maximized
when the diffuser component of the PSF is aligned. Therefore, we choose a central PSF to
act as the on-axis PSF, then calculate (∆x′i ,∆y′i ) by determining the translation that maximizes
the cross-correlation with this central PSF. We find this approach more robust than physically
measuring the translation.

3.2. Local convolution model

By applying Eq. (7) we can generate the complete set of calibration measurements needed for
the system matrix A. However, its large size makes A computationally inefficient to generate and
store . Luckily, the linear structure of Eq. (7) allows us to form what we call the local convolution
model which models the raw data without explicitly generating every PSF. When we plug Eq. (7)
into Eq. (1), the convolutional structure becomes apparent:

b(x′, y′) = C
∑
(z,i)

∑
(x,y)

αi(x, y, z) x(x, y, z) h̃i(x′ +
d
z

x, y′ +
d
z

y; z)

= C
∑
(z,i)

[
αi

(
−

z
d

x′,−
z
d

y′, z
)

x
(
−

z
d

x′,−
z
d

y′, z
)]
∗ h̃i (x′, y′; z) .

(8)

Here ∗ denotes a 2D convolution in the sensor coordinates; note that the sensor coordinates,
(x′, y′), and world coordinates, (x, y), are related by the system magnification, d/z. In Eq. (8) we
assume that we have calibration measurements at every depth of interest since we can generate
PSFs at new depths using the procedure outlined in the previous section.
With this model we can efficiently interpolate between the calibration measurements as we

compute the forward model. We refer to this as the local convolution model because we can
think of αi(x, y, z) as choosing a region around the i-th calibration measurement where the
measurement is valid, then performing a convolution in this region. If the support of the object is
known, computational efficiency can be further improved by using the subset of the calibration
measurements corresponding to the 3D object support.
Any interpolation scheme that can be written in the form of Eq. (7) is compatible with the

local convolution model, which has the distinct advantage of only requiring that the calibration
measurements themselves be stored in memory. Although other interpolation schemes could be
used in place of Eq. (7), they would require pre-computing and storing every possible PSF in
the volume, using on the order of 10,000× more memory. Computing PSFs on-the-fly is too
computationally expensive for practical use in an iterative optimization process.
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3.3. Inverse problem with background estimation

To recover the object from the raw data, we formulate a regularized inverse problem using the
local convolution model described in Eq. (8). Since many fluorescent samples have a sparse
structure, we use an `1 loss on the object for regularization. In addition, there is frequently
autofluorescence and unattenuated excitation light hitting the sensor, which does not match our
model and corrupts the reconstruction. Therefore we jointly estimate a low-frequency background
component along with the object by solving the following minimization problem:

x̂, ĝ = argmin
x,g

1
2
‖b − (Ax + g)‖22 + τ‖x‖1

s.t. g ≥ 0, x ≥ 0,Dg = 0 outside low frequency support.
(9)

Here g is the estimated background that cannot be well-explained by the forward model, D is the
2D discrete cosine transform (DCT) operator, and τ is a tuning parameter. Without constraints
on g, a trivial solution to Eq. (9) is x = 0 and g = b. To prevent this, we constrain g such that
its DCT coefficients are zero outside some low-frequency support, typically the 5 × 5 lowest
frequency components. We jointly solve for x and g using the fast iterative shrinkage-thresholding
algorithm (FISTA) [34]. We find that it helps convergence to initialize the estimated background
with a low-pass filtered version of the raw data.

Solving for a 3D sample from a single 2D measurement is an under-determined problem,
and compressed sensing theory [35–37] can provide guidance regarding what samples will be
accurately reconstructed. Without regularization, there are infinite possible 3D distributions
that match the raw data. Therefore, the `1 regularization term and non-negativity constraints are
critical to guide the optimization. As a result, we expect the highest-quality results when the
sample matches the underlying assumptions, mainly that the sample is natively sparse. For dense
samples, the object could be transformed into a different basis, as described in [36].

3.4. Determining spacing between calibration measurements

The local convolution model relies on experimentally measuring the PSF at discrete calibration
points, then interpolating to synthesize the remaining PSFs. Here we apply Nyquist sampling
theory to determine the appropriate spacing between calibration measurements.
First, we consider lateral sampling using the two-part model presented in Sec. 2.1, and we

assume that all calibration PSFs are captured at the same axial location, zi = z for all i. Registering
the calibration measurements based on Eq. (6) aligns the diffuser component of the PSF, but
not the sensor falloff component. The second term in Eq. (5) describes the spatial variance
of the falloff function after registration. This is the function that we are interpolating, so we
must Nyquist sample this term to enable robust interpolation of PSFs. Since we assumed the
sensor component is rotationally symmetric and all pixels have the same falloff response (a good
assumption for backside-illuminated sensors), we reduce our analysis to the 1D case and only
consider a single representative pixel at x′ = 0. This yields the registered falloff function f̃ (x):

f̃ (x) = f
(
tan−1

(
x
z

))
. (10)

If f̃ (x) is sampled at the Nyquist frequency, we can robustly interpolate between samples at
different positions. To determine the lateral sampling requirements, we experimentally measure
f (θ), shown in Fig. 3(a). Figure 3(b) shows the magnitude of the Fourier transform of f̃ (x) with
its maximum frequency declared to be the frequency at which the magnitude falls to 0.1% of
maximum. This corresponds to a Nyquist sampling period of about 400 µm.
To test this, we simulate raw data using the experimentally measured f (θ), then deconvolve

using the local convolution model. We simulate calibration measurements at varying spacings
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Fig. 3. The number of calibration measurements needed for our local convolution model
is determined by the angular falloff of the sensor. (a) Experimentally measured angular
falloff, f (θ), fit to a Gaussian curve with σ = 13◦. (b) Fourier transform after f (θ) is
transformed based on Eq. (10), which is used to determine the maximum frequency, and
thus the Nyquist sampling, in order to determine the necessary calibration sampling. (c) To
test this, we simulate PSF measurements and (d) raw data using the Gaussian approximation
of f (θ). (e) We then reconstruct the sample using the local convolution model with varying
spacing between the calibration measurements. When calibration images satisfy the Nyquist
sampling (0.4mm apart), the model performs well, but when samples are spaced further
apart, the reconstruction degrades.

and find that when the calibration measurements are at the Nyquist sampling rate or closer
together, we get good reconstruction quality. However, as the measurements move further apart,
substantial artifacts appear. Finally, if a single calibration measurement is used, without any
model-based interpolation as in [19], the reconstruction fails, demonstrating the necessity of the
local convolution model in the microscopy regime.
Next, we consider axial sampling. Axial changes in the PSF are primarily due to defocus,

and therefore cannot be explained with the two-part model of Sec. 2.1. However, by assuming
the diffuser has a microlens structure with lenslets of focal length f , we can determine the axial
sampling based on the depth-of-field. If the radius of the circle of confusion, p(d−f )

2f

���1 − f d
z(d−f )

���,
changes by no more than the diffraction-limited spot size, λ

NA , between neighboring samples,
then we have fully sampled the axial defocus function. This yields the condition

pd
2

(
1
z1
−

1
z2

)
≤

λ

NA
≈

2dλ
p

1
z1
−

1
z2
≤

4λ
p2

,
(11)

where z1, z2 are the axial locations of neighboring calibration images, p is the microlens diameter,
and λ is the wavelength of light.
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4. Random microlens diffuser

The local convolution model and the calibration scheme described above apply to a wide variety
of diffuser designs; the only restrictions are that the spatially-varying aberrations in the PSF
change smoothly as a function of position, and that no two points in the volumetric FoV generate
identical PSFs. In contrast with prior works [10,14] that require specific mask designs for image
reconstruction, we have the freedom to design the diffuser to improve other aspects of the system,
in particular, resolution, working distance, and noise sensitivity. Specifically, we propose using a
random microlens diffuser, as in [20–22], which consists of small lenslets randomly arranged in
2D. To illustrate the advantages of the random microlens diffuser, we compare with a traditional
microscope objective and two types of flat transparent masks: a smooth diffuser [19,38] and a
regular microlens array. Figures 4 and 5 show simulations of a small patch of the FoV for PSFs
from each type of mask. Raw data for each PSF was simulated based on the model in Sec. 2.1.
In Fig. 4, the same quantity of Gaussian noise was added to each simulated measurement, and in

Fig. 4. Simulation comparing PSFs for depth-resolved imaging. A microscope objective
has good noise performance but fails to capture 3D information. A smooth diffuser’s PSF
has significant background light causing noise amplification, as does the periodicity of the
regular microlens array. Our random microlens diffuser has a non-periodic PSF with high
contrast, resulting in good noise performance and 3D reconstructions. All simulations have
the same quantity of Gaussian noise added to the raw data.
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Fig. 5. Simulation comparing PSF robustness to shot noise at a single depth. A microscope
objective has the best noise performance for 2D imaging, but it does not extend to depth-
resolved imaging nor to miniaturized systems. Of the PSFs with 3D capabilities, the random
microlens diffuser is most robust to shot noise.

Fig. 5, Poisson noise (shot noise) was simulated for varying number of collected photons. Each
mask spreads photons differently over the sensor, so the number of photons per pixel at the sensor,
and thus the shot noise performance, depends on the PSF. In both simulations, the noisy raw data
was processed using the method described in Sec. 3.3. Background estimation was omitted and
we assumed that the FoV was small enough that one calibration PSF per depth was sufficient.

Traditional microscope objectives are carefully optimized to capture high-quality images at the
focal plane. They have good noise performance even at low photon counts for a 2D scene (Fig. 5,
top row). However, recovering depth information from a single image is a poorly posed problem;
as objects become defocused they lose high-frequency detail which may not be recovered, even
with deconvolution (Fig. 4, top row).

Off-the-shelf diffusers [39] are convenient, inexpensive, and can easily be extended to larger
sensor sizes. Lensless imagers made with these diffusers have a caustic pattern PSF (Fig. 4,
second row). Due to the pseudorandom diffuser surface, any translation or scaling of the PSF
should result in a substantially different pattern (i.e. the caustics should have a low inner product).
However, the large amount of background light between the caustics causes an increased inner
product which results in higher noise amplification during deconvolution (Figs. 4 and 5, second
row). Other masks with low contrast patterns (e.g. amplitude masks, far field speckle) will suffer
from similar noise amplification.

In comparison, a microlens array, which is widely used in light field microscopy, is designed to
concentrate all incoming light into diffraction-limited spots beneath each lenslet, resulting in very
little background light and a high-contrast pattern. However, if the PSF from a regularly-spaced
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microlens array is translated by exactly one period, the shifted PSF is a duplicate of the on-axis
PSF, resulting in an increased inner product and higher noise amplification (Figs. 4 and 5, third
row). Notice that the reconstruction shows periodic ghosting due to the regularity of the microlens
array, and these artifacts are present even in low noise scenarios.

In our system, we use a random microlens diffuser which combines the best properties of the
phase masks described above. Like the regular microlens array, our microlens diffuser has a
high contrast PSF with low background, and, like the smooth diffuser, our PSF is pseudorandom
without periodic ambiguity. The result is reduced noise sensitivity compared to the other
flat masks (Figs. 4 and 5, third row). Although a traditional microscope objective has better
noise performance at a single plane, our system is better suited for miniaturization and enables
reconstruction of 3D information from a single acquisition.
In addition, our microlens-based design is well-suited for resolution enhancement since the

focal spot of each lenslet contains high spatial frequencies in all directions. Furthermore, it is
easier to design diffraction-limited lenses when the diameter is small [40], allowing each lenslet
to have nearly diffraction-limited performance with only a single spherical surface. Finally, since
the microlenses focus light, the best performance is obtained when the object is in imaging
condition with the sensor, so the lenslet focal length and distance to the sensor can be used to set
a practical working distance, over 1.5mm in our prototype.

5. Experimental results

We built a prototype system using a backside-illuminated monochrome CMOS sensor (UI-3862LE
with Sony IMX290 chip) and two color filters (Kodak Wratten #12 and Chroma ET525/50m)
designed for green fluorescent probes (λ = 520 nm). As described in [9], the combination of an
absorption and an interference-based color filter is well-suited for removing excitation light at the
high angles of incidence potentially present in our system, and any unfiltered light is removed
with our computational background estimation (Sec. 3.3). We fabricated our random microlens
diffuser with a droplet-based technique, similar to [41,42], since these methods are known for
good surface quality. Drops of optical epoxy (Norland 63) were cured on a hydrophobic surface,
then transferred onto a glass coverslip to form the diffuser, generating lenslets with approximately
p = 250 µm diameter. The diffuser was index-matched with polydimethylsiloxane (PDMS) to
increase the microlens focal length to about 1.5mm, and it was placed d = 3.8 mm away from the
sensor. Based on these physical parameters and the sampling requirements outlined in Sec. 3.4,
we require lateral samples every 400 µm and axial samples with 1/z1 − 1/z2 ≤ 33 m−1. Rather
than sampling dioptrically, we choose to calibrate every 100 µm axially, which satisfies the axial
sampling condition for objects z = 1.7 mm or further from the diffuser. Calibration images are
captured with a 15 µm fluorescent bead, and the lowest frequency 10 × 10 DCT coefficients
were set to zero for all calibration images before further processing to remove background light.
Negative values after background subtraction were set to zero. For each calibration point, four
measurements were taken and averaged to reduce noise. All images were downsampled by 2× in
each direction such that the equivalent pixel size is 5.8 µm.
To characterize the resolution of our system, we solve Eq. (9) on images of two points at

varying separation distances, each generated by summing images of a single fluorescent bead.
For axial characterization, images are of a 15 µm bead, moved in 10 µm increments; for lateral
characterization, we use a 5 µm bead, moved in 2 µm increments. We define the resolution to be
the minimum spacing at which there is at least a 20% dip in intensity between neighboring points
in the reconstruction. Figure 6(a) summarizes our results, demonstrating 8 µm lateral resolution
and under 50 µm axial resolution. We further test our system with a fluorescent USAF resolution
target, z = 2.56 mm from the diffuser, shown in Fig. 6(b). We can clearly resolve group 6, element
1 with 7.8 µm bars, which matches our two-point resolution experiments and demonstrates an
order of magnitude improvement over our previous work [19]. Brute-force calibration at every
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Fig. 6. Experimental resolution characterization. (a) Resolution is measured by
determining the minimum separation distance at which two fluorescent beads are
resolvable. The experimental resolution can be predicted by calculating inner products
of a PSF with shifts and scales of itself; points are considered resolvable when the
inner product is below 0.8. The predicted resolution is calculated at 12 di�erent lateral
locations in the FoV. The range of values is depicted by the filled area in the plot, and the
solid line is the mean. (b) USAF resolution target shows group 6, element 1 containing
7.8 µm bars (boxed) is clearly resolvable, which matches the two-point resolution.

indicates that neighboring measurements are su�ciently di�erent to be distinguished. For the
noise levels in our system, we find that a normalized inner product of 0.8 is a good predictor of
the resolution, plotted by the solid line in Fig. 6a (average over 12 field positions). This process
can be used for system design by simulating PSFs (for example, using Fresnel propagation) then
using this inner product metric to predict the final resolution.

Due to fabrication errors and the non-uniform distribution of lenslets, there will be variation
between the focal spots under each microlens, which can result in resolution that depends on
the object’s lateral location. However, since each PSF includes focal spots from many lensets
(about 15 in our prototype), the e�ect of individual variations is averaged. To quantify this in our
system, for each depth we calculate the predicted resolution at 12 locations in the FoV and plot
the range of predicted values in Fig. 6a. We find that the variation in resolving power is low for
lateral resolution and modest for axial resolution. We believe resolution variation can be reduced
substantially by fabricating the di�user with more precise methods (e.g. injection moulding).

Since our method is single-shot, the frame rate is only limited by the sensor. To demonstrate, we
capture a 10 fps video of 15 µm fluorescent beads flowing through a microfluidic channel, shown
in Fig. 7a. Beads were reconstructed at a single depth plane, z = 2.42 mm, and the full video
is available in Visualization 1. We also test our system on a live 6-day-old NeuroD:GCaMP6f
larval zebrafish [43] captured at 10 fps and reconstructed at a single depth plane, z = 2.19 mm.
Fig. 7b shows the change in fluorescence (compared to a 20th percentile baseline). Our results
qualitatively match the expected neural activity of a larval zebrafish. However, determining
whether the reconstructed fluorescence signal is a linear function of the true fluorescence is
still an open problem. Compressed sensing theory [37] proves that if the matrix A fulfills the
restricted isometry property and the sample is su�ciently sparse, then the signal can be recovered
with perfect accuracy. Our design matrix A is pseudorandom which is expected to fulfill the
restricted isometry property with high probability, but the conditions are notoriously hard to

Fig. 6. Experimental resolution characterization. (a) Resolution is measured by determining
the minimum separation distance at which two fluorescent beads are resolvable. The
experimental resolution can be predicted by calculating inner products of a PSF with shifts
and scales of itself; points are considered resolvable when the inner product is below 0.8.
The predicted resolution is calculated at 12 different lateral locations in the FoV. The range
of values is depicted by the filled area in the plot, and the solid line is the mean. (b)
USAF resolution target shows group 6, element 1 containing 7.8 µm bars (boxed) is clearly
resolvable, which matches the two-point resolution.

resolvable location in the volume would require Nyquist sampling the two-point resolution,
necessitating samples every 4 µm laterally and every 25 µm axially. This is 100 × 100 × 4 =
40,000 times more calibration measurements than with our sparse calibration scheme and local
convolution model, demonstrating the large savings achieved with our model.

In addition, we show that we can predict the two-point resolution from the PSF measurements,
without running a full reconstruction. To do this, we shift (for lateral resolution) or scale (for axial
resolution) a central PSF and calculate the inner product with the original. A low inner product
indicates that neighboring measurements are sufficiently different to be distinguished. For the
noise levels in our system, we find that a normalized inner product of 0.8 is a good predictor of
the resolution, plotted by the solid line in Fig. 6(a) (average over 12 field positions). This process
can be used for system design by simulating PSFs (for example, using Fresnel propagation) then
using this inner product metric to predict the final resolution.
Due to fabrication errors and the non-uniform distribution of lenslets, there will be variation

between the focal spots under each microlens, which can result in resolution that depends on
the object’s lateral location. However, since each PSF includes focal spots from many lensets
(about 15 in our prototype), the effect of individual variations is averaged. To quantify this in our
system, for each depth we calculate the predicted resolution at 12 locations in the FoV and plot
the range of predicted values in Fig. 6(a). We find that the variation in resolving power is low for
lateral resolution and modest for axial resolution. We believe resolution variation can be reduced
substantially by fabricating the diffuser with more precise methods (e.g. injection moulding).

Since our method is single-shot, the frame rate is only limited by the sensor. To demonstrate, we
capture a 10 fps video of 15 µm fluorescent beads flowing through a microfluidic channel, shown
in Fig. 7(a). Beads were reconstructed at a single depth plane, z = 2.42 mm, and the full video
is available in Visualization 1. We also test our system on a live 6-day-old NeuroD:GCaMP6f
larval zebrafish [43] captured at 10 fps and reconstructed at a single depth plane, z = 2.19 mm.

https://doi.org/10.6084/m9.figshare.10257296
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Fig. 7. Experimental videos captured with our diffuser microscope at 10 fps. (a) Fluorescent
beads flowing in a microfluidic channel. Channel outlines are superimposed for visualization
purposes, and the full video is in Visualization 1. (b) NeuroD:GCaMP6f larval zebrafish, 6
days old. Change in fluorescence (∆f ) compared to a 20th percentile baseline is shown in
red and indicates neural activity.

Figure 7(b) shows the change in fluorescence (compared to a 20th percentile baseline). Our results
qualitatively match the expected neural activity of a larval zebrafish. However, determining
whether the reconstructed fluorescence signal is a linear function of the true fluorescence is
still an open problem. Compressed sensing theory [37] proves that if the matrix A fulfills the
restricted isometry property and the sample is sufficiently sparse, then the signal can be recovered
with perfect accuracy. Our design matrix A is pseudorandom which is expected to fulfill the
restricted isometry property with high probability, but the conditions are notoriously hard to
verify, and a more rigorous proof of linearity in general cases is the subject of future work.

To highlight the 3D capacity of our system, we created sample containing layers of 15 µm
fluorescent beads separated by coverslips. The sample was reconstructed at the three depth
planes containing beads, shown in Fig. 8. A focal stack from a traditional fluorescent microscope
is shown to validate the bead locations. Note that, unlike with a traditional microscope, our
prototype reconstructs the complete 3D distribution of beads from a single acquisition of raw
data. Finally, since our system requires that the object be sparse for accurate reconstruction, we
test on non-sparse samples to demonstrate that our system still captures the edges and sharp
regions of dense samples. We image a fixed brine shrimp sample (Carolina Biological) stained
with eosin and reconstructed at 10 depth planes spaced 100 µm apart, processed from a single
acquisition of raw data (Fig. 9). In the dense regions of the head of the brine shrimp, we find
some inconsistencies between the traditional microscope focal stack and the diffuser microscope
reconstruction. In regions where the sample is sparse, especially the shrimp’s antennae, our
reconstruction matches the 3D locations captured in the traditional microscope focal stack.

https://doi.org/10.6084/m9.figshare.10257296
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Fig. 8. 3D reconstruction of 15 µm fluorescent beads, axially separated by coverslips.
The focal stack from a traditional fluorescence microscope (5×, 0.15 NA) is shown for
comparison, with close-ups on the right. Our diffuser microscope reconstructs all depth
planes from a single acquisition (bottom right) and removes out-of-focus light.

Fig. 9. 3D reconstruction of fixed brine shrimp tagged with eosin, shown at three different
axial planes. The focal stack from a traditional fluorescence microscope (10×, 0.45 NA) is
shown for comparison. Our diffuser microscope reconstructs 3D from a single acquisition
and recovers the thin antenna structures at the correct depths.

6. Conclusion

We introduced a novel on-chip microscope which uses a random microlens diffuser to indirectly
encode information about the scene which is then recovered by solving an optimization problem.
The microscope has small form factor, is easy to assemble, and can capture 3D light distributions
in a single acquisition. Brute force calibration would be impractical, so we propose a local
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convolution model which requires 40,000× fewer calibration measurements and provides an
efficient computational framework. Our device is single-shot, capturing 3D videos at the frame
rate of the sensor. We anticipate that our system could be useful for field work requiring portable
microscopes, in vivo monitoring of fluorescent signals, and 3D tracking of biological organisms.
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