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The power of optical spectroscopy and microscopy for minimally
invasive characterization of materials is well established across many
disciplines. However, in general, its spatial resolution is inherently lim-
ited by the diffraction of light. To circumvent this limitation, it was
proposed already a century ago to make use of the evanescent charac-
ter of the near-field of light.1 Following the conceptual realizations by
Ash and Nicholls,2 Pohl et al.3 demonstrated �25nm spatial resolu-
tion in the visible using tapered optical fiber tips manipulated by
atomic force microscopy. Here, the evanescent wave penetrating a sub-
wavelength aperture is brought in close proximity to a sample to har-
vest the spatially highly confined near-field interaction. The derived
techniques termed near-field scanning optical microscopy (NSOM) or
scanning near-field optical microscopy (SNOM) and associated theo-
ries established the principles of sub-diffraction spatial resolution opti-
cal imaging.

While NSOM or SNOM provides for a promising approach to
optical nano-imaging, the limitations soon became apparent. Relying
on a tapered optical fiber with a sub-diffraction sized aperture, wave-
guide cutoff, low throughput, dispersion, and transparency limit prac-
tical sensitivity to visible spectroscopy in linear optics and
photoluminescence imaging. The extension into the infrared, or imple-
mentation of Raman, nonlinear, and coherent spectroscopies, proved
very difficult.

It was soon recognized that instead of aperture confinement with
an optical fiber, near-field localization of light with just a metallic scan-
ning probe tip is also possible.4,5 This alternative approach equally pro-
vides for near-field imaging, yet with several superior attributes of
improved sensitivity, higher spatial resolution, and broader wavelength
range. This led to the terminology of apertureless or scattering SNOM
(a-SNOM or s-SNOM)—with s-SNOM now the more widely adopted

term with tip-induced scattering of the near-field into detectable
far-field radiation reflecting the contrast mechanism.

Significantly, s-SNOM readily allowed, e.g., for the extension into
the mid-infrared6 by combining modulation techniques and spectro-
scopic imaging7 using interferometric detection with full phase and
amplitude information (nano-FTIR and nano-ellipsometry).8 In paral-
lel development, the local field-enhancement of the metallic tip pro-
vided the much-needed boost in sensitivity to allow for tip-enhanced
Raman scattering (TERS)9,10 and opened the development into the
nonlinear-optical regime11 with nanometer spatial resolution. Related,
yet not near-field techniques, photo-induced force microscopy (PiFM)
or photo-thermal AFM (IR-AFM)12 relies on the exquisitely sensitive
AFM opto-mechanical sensing of a thermal sample expansion and pro-
vides for IR absorption spectroscopy with nanometer spatial resolution.

Initially, field-enhancement as in TERS and scattering as in
s-SNOM were thought to be rather independent contrast mechanisms
of the different modalities of near-field nano-imaging. Later, it was
recognized that the localized plasmon and optical antenna coupled
light–matter interactions in the tip–sample junction are the common
underlying mechanism.13,14 This led to a generalization based on a uni-
fied description of the role of the tip as a nano-antenna or -cavity13,15,16

mediating the coupled tip–sample induced near-field polarization.
Applicable in principle to any optical process, this then led to a prolif-
eration of the field of nano-probe imaging over the past two decades.
Implementing a series of new spectroscopic methods, rapidly maturing
from proof-of-concept to analytical, material, and quantum science
applications, solved outstanding problems by spatial, spectral, and tem-
poral nano-imaging.

Beyond achieving merely super-resolution imaging across the
full electromagnetic spectrum from the UV to MHz,17 and with in
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principle and optical modality, optical nano-probe imaging is not
merely an extension of far-field microscopy to higher spatial resolu-
tion. Key attributes are improved sensitivity and contrast based on the
enhancement of light–matter interaction in the near-field (Purcell
effect) and extension of selection rules compared to far-field spectros-
copy.18 With the near-field providing momentum states at IR frequen-
cies comparable to far-field x-ray radiation, this opened plasmon,
exciton, and phonon polariton nano-imaging and -control19,20 other-
wise not possible by far-field excitation.21,22 Further, previously inac-
cessible fundamental phenomena, from the elusive thermal near-field,
which surrounds every object at finite temperature,23 to radiative heat-
transfer in the near-field on atomic scales,24 can now be probed.

Combining ultrafast and nonlinear optics and spectroscopy with
nano-probe imaging has become one of the recent frontiers in the field.
Simultaneous nanometer spatial and femtosecond temporal resolution
is achieved from probing few-fs coherent dynamics on the nanoscale,25

to pump-probe nano-imaging with far from equilibrium excitation26,27

turning ultrafast movies of coupled quantum dynamics in materials.
Similarly, the long-envisioned dream of atomic resolution imaging,
with ultrafast THz-STM28,29 and with intramolecular Raman,30

became reality, yet the understanding of the contrast mechanism is still
in its infancy.

The field of nano-optical imaging science is still rapidly expand-
ing with both new techniques and new application areas. One growth
area is the extension from room temperature imaging under ambient
conditions to vacuum and cryogenic temperatures down to a few kel-
vin to image a wide range of quantum phenomena in, e.g., 2D materi-
als31 and complex oxides.32 Likewise, extension to variable pressure, in
liquid, and in situ conditions permits nanoscale probing of chemical
and biological processes.

A particularly interesting development is that the field initially was
much concerned about the perturbation and convolution of the tip in
the imaging process—issues which have since been resolved through the
selectivity of the detection process, understanding the role of the tip in
the light–matter interaction, and well-founded modeling, with the goal
of the tip to only minimally perturb the material response to be studied.
This concept, however, has recently experienced an interesting develop-
ment in the opposite direction. Here, by purposefully perturbing the
material response with the tip itself, new spectroscopic insights can be
gained through active control of the tip–sample response. For example,
in inducing tip-induced strain, strong laser field perturbation or modifi-
cation of local electromagnetic density of states and Purcell enhance-
ment competing processes in complex materials can be accessed.33,34

Most notably, the extreme case of tip-enhanced strong coupling
(TESC), where the tip nano-localized optical field forms a nano-cavity
with the sample,35 results in the formation of quantum hybrid light mat-
ter states that allow for quantum-enhanced imaging, quantum sensing,
and with single quantum state control even at room temperature.

Other exciting new directions are the expansion toward multi-
modal imaging in combination with electron and x-ray techniques.
Further, to overcome long image acquisition times inherent to raster-
scanning probe microscopy in general, the implementation of new
computational imaging with prior knowledge, machine learning, and
compressed sensing algorithms are being explored. New laser light
sources with more controlled light fields, from super-continuum to
synchrotron sources, new detectors, and detection schemes with
extended spectral sensitivity are having great impact.

This editorial provides an overview of state-of-the-art contribu-
tions to optical nano-imaging and -spectroscopy. The field of IR nano-
polaritonics is represented and continues to attract much attention
with advances in surface phonon polariton (SPhP)36,37 and hyperbolic
phonon polariton (HPhP) nano-imaging.38,39 In the extension to low-
temperature IR, s-SNOM has been achieved using Akiyama probes.40

Innovation in detection schemes with benefits for ultrafast s-SNOM
imaging has been demonstrated.41 Beyond near-field imaging, surface
plasmon interferometry in photoemission electron microscopy has
been advanced,42 nonlinear-optical super-resolution achieved in the
infrared,43 and with single quantum dot spectroscopy, the sensitivity in
PiFM improved.44 This collection of works shows the many facets of
the field as it continues to diversify with new methods and new
applications.
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