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A B S T R A C T

Nanoscale strain mapping by four-dimensional scanning transmission electron microscopy (4D-STEM) relies on
determining the precise locations of Bragg-scattered electrons in a sequence of diffraction patterns, a task which
is complicated by dynamical scattering, inelastic scattering, and shot noise. These features hinder accurate
automated computational detection and position measurement of the diffracted disks, limiting the precision of
measurements of local deformation. Here, we investigate the use of patterned probes to improve the precision of
strain mapping. We imprint a “bullseye” pattern onto the probe, by using a binary mask in the probe-forming
aperture, to improve the robustness of the peak finding algorithm to intensity modulations inside the diffracted
disks. We show that this imprinting leads to substantially improved strain-mapping precision at the expense of a
slight decrease in spatial resolution. In experiments on an unstrained silicon reference sample, we observe an
improvement in strain measurement precision from 2.7% of the reciprocal lattice vectors with standard probes to
0.3% using bullseye probes for a thin sample, and an improvement from 4.7% to 0.8% for a thick sample. We
also use multislice simulations to explore how sample thickness and electron dose limit the attainable accuracy
and precision for 4D-STEM strain measurements.

1. Introduction

Strain at the nanoscale is important in understanding deformation
mechanisms of structural materials [1], as well as for engineering of
transport properties in semiconductor devices [2]. Nanostructures can
support strains of up to ≈ 10% without relaxation, providing great
opportunities to engineer properties in ways that are not available in
bulk materials [3]. A variety of techniques exist for measuring de-
formation with nanometer-scale resolution, including X-ray ptycho-
graphy [4] or coherent diffraction [5], though at present the highest
spatial resolution is achieved in the transmission electron microscope
(TEM). TEM strain measurements have been accomplished by dark-field
holography [6,7], atomic resolution imaging [8–10], and converged-
beam techniques [11–14].

In scanning transmission electron microscopy (STEM), a converged
electron probe is rastered across the sample, and some of the scattered
electrons (usually those scattered incoherently by thermal diffuse
scattering) are measured to assign a value to each pixel [15]. Modern
electron detector technology allows the full scattering pattern at each
STEM probe position to be recorded, an experiment referred to as four-
dimensional scanning transmission electron microscopy (4D-STEM)

[16]. This method, also referred to as scanning electron nanodiffraction
(SEND) or nanobeam electron diffraction (NBED), has been used in
analyses of crystal orientation [17–19], local ordering of glassy states
[20], sample thickness [21,22], and other analyses as described in a
recent review [16].

4D-STEM is used for mapping strain at the nano-scale by locating
the Bragg scattered electrons in each pattern, whose position on the
detector is related to the local lattice spacing. This approach has been
used to map strain in electronic devices [23], structural materials [24],
including in situ deformed samples [25,26], two-dimensional materials
[27], and other systems where nanoscale deformation is of interest. 4D-
STEM allows a large field of view and flexibility with regards to sample
type and orientation [28,29]. Fig. 1a shows a schematic view of the
experimental setup for 4D-STEM strain mapping—the convergence
angle is chosen so that non-overlapping convergent beam electron
diffraction (CBED) disks are obtained in each pattern.

In investigations of mechanical deformation and strain-engineered
semiconductor devices the strains of interest are generally on the order
of ≈ 1%, which is much larger than the currently achievable precision,
reported to be × −6 10 4 [30] using the standard microprobe-STEM mode
(i.e. without precession or patterned probes). This precision is not
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sufficient for several potential applications of 4D-STEM strain mapping,
such as temperature mapping by thermal expansion measurement or
mapping certain structural transformations via the lattice parameters,
where strains may be on the order of −10 4. We note that direct com-
parison between precision limits reported in the literature is difficult
because the precision limit depends on the sample properties, micro-
scope image distortions, and the electron dose [24,31,32].

The precision of the strain maps obtained by 4D-STEM is governed
by the precision with which the Bragg scattered electrons can be lo-
cated in each diffraction pattern. Non-uniform intensity of the dif-
fracted disks, which can be caused by sample bending or dynamical
diffraction in thick samples [33], makes accurate detection of the po-
sitions of the diffraction disks difficult. Reducing the convergence angle
of the electron probe shrinks the diffraction disks, hiding some of the
dynamical effects at the expense of a larger real-space probe size. For
this reason, much of the existing literature on 4D-STEM strain mapping
uses convergence angles 0.2–1 mrad. When operating at larger con-
vergence angles, the centers of mass of the diffracted disks are not
necessarily at the reciprocal lattice points, thereby requiring methods
sensitive to the locations of the edges of the disk [24,34]. Disk position
detection is often accomplished by cross- or phase-correlation of the
diffraction pattern with a template image. These methods are still not
ideal, as simulations performed by Mahr et al. [31] found that the inner
structure of the CBED disks is the limiting factor for precision of 4D-
STEM strain measurements.

Post-processing of the 4D-STEM data and sophisticated data analysis
methods have been shown to improve the precision of strain mea-
surements. Pekin et al. [24] investigated the optimal image filtering and
correlation algorithms for diffraction disk detection, as well the ro-
bustness to non-uniform diffracted disks and signal-to-noise level. They
found that the precision of disk location measurements can be degraded
by an order of magnitude due to uneven illumination of the CBED disks.
More computationally intensive disk-finding algorithms have also been
implemented [31,35].

Changes to the experimental setup provide another route to improve
precision. Precession of the incident electron beam with incoherent

summation of the diffraction patterns at each beam tilt “averages out”
dynamical contrast and illuminates higher-order diffraction disks,
which can yield a substantial improvement in strain precision to

× −2 10 4 [34]. However, this procedure requires specialized hardware
in order to precess the beam in combination with scanning, and longer
acquisition times. Mahr et al. [31] showed simulations of the precision
of 4D-STEM strain measurements for different experimental conditions,
and suggested the use of patterned probes, but found no substantial
improvement over standard circular apertures when imprinting a single
cross on the probe. “Hollow-cone” or Bessel structured probes, pro-
duced using an annular condenser aperture, are akin to precession
diffraction, but with all tilts illuminated simultaneously (and thus
added coherently). Such probes were simulated and realized experi-
mentally by Guzzinati et al. [30], yielding strain precision of × −2.5 10 ,4

rivaling precession diffraction. This approach also allows for higher
convergence angles, as the sparsity of the patterned probe reduces the
interference between the scattered beams. Diffraction patterns through
thick samples also contain a large background intensity due to inelastic
scattering, which can be effectively eliminated by zero-loss energy fil-
tering [36,37].

In this paper, we investigate the use of probes with patterning in
momentum space to improve the robustness of cross-correlation disk
detection. Using an amplitude grating in the probe-forming aperture of
the condenser system imprints known patterning on the diffraction
pattern that allows accurate position location even in the presence of
highly non-uniform illumination of the diffracted disks, as shown
schematically in Fig. 1b. Such patterned apertures are easily fabricated
by physical vapor deposition and focused ion beam (FIB) machining;
are mechanically stable; and, due to high conductivity, do not suffer
from charging artifacts. We used mutlislice simulations to optimize the
design, and estimate the improvement in accuracy and precision of disk
detection for patterned apertures relative to typical circular probes. We
also carried out 4D-STEM strain measurement experiments on un-
strained silicon samples and characterized the improvement of preci-
sion when using patterned probes.

2. Theory

2.1. Measuring disk positions

We determine the position of both scattered and unscattered Bragg
disks by measuring the relative translation between a template image
Iref(r) and a disk image I(r) using digital image correlation. This cor-
relation image Icorr(r) can be determined efficiently by taking the
Fourier transforms {}� of each image,
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where =r x y( , ) and =q q q( , )x y represent the real space and reciprocal
space coordinates respectively,⊗ is the correlation operator, * indicates
the complex conjugate, and p is the correlation power law coefficient.
The cross-correlation is given when =p 0, and phase correlation is
defined by =p 1. Values of p between 0 and 1 define a hybrid image
correlation [24]. In this work, we use cross-correlation with =p 0 for
all simulations, and both cross and hybrid ( =p 0.25) for the experi-
mental data.

To estimate the error of a measured disk position, we follow the
methods of Clement et al. [38]. We first assume an ideal, noise-free
measurement of the template probe image Iref(r) is available, from
careful measurements of the vacuum probe image. Next, we assume the

Fig. 1. (a) Schematic of experimental setup for 4D-STEM strain mapping. A
converged electron probe is rastered across the sample and a diffraction pattern
is acquired at each probe position. Thick regions of the sample have compli-
cated dynamical contrast inside the CBED disks that make accurate position
determination difficult. In (b), a grating is inserted in the condenser system of
the microscope to pattern the probe in momentum space. This pattern is im-
printed on the diffracted disks, providing sharp edges in registry with the probe
pattern that makes computational determination of their position more robust.
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measured image of a disk I(r) has a signal given by a Poisson dis-
tribution with a mean of n counts per pixel, and therefore also a var-
iance of n. The variance σx2 of a cross-correlation measurement of the
image translation error along the x direction is given by

=σ
nD

1 ,x
x

2
(3)

where Dx is the normalized “image roughness” [38] along the x direc-
tion, given by
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where Lx and Ly are the image dimensions. This expresses that the ad-
dition of more edges to the image template will lead to greater preci-
sion, as the presence of more edges will weight the higher Fourier
coefficients more heavily. In addition, upsampling a band-limited
image will increase the image dimensions Lx, Ly without increasing the
higher Fourier components and lead to decreased precision.

If all units are in pixels, the image roughness for a circular disk with
radius R is given by Dx≈ R. Using this expression in Eq. (3) gives a
variance of

=σ
nR
1 .x

2
(5)

Note that this expression will often have a small numerical prefactor
≈ 1 due to image details such as the maximum bandwidth and sharp-
ness of the edges. The 2D variance will be given by +σ σx y

2 2. To verify
the above analysis, we performed numerical measurements of the disk
position error for circular disks with various radii and counts per pixel.
These measurements are shown in Fig. 2a, and are in excellent agree-
ment with Eq. (5).

To lower the disk position error, we must increase the image
roughness Dx and Dy. One possibility is to add a series of concentric
rings, as in Fig. 2b. For M total concentric rings that are linearly spaced,
the image roughness is given by

=
+

σ
nR M

2
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2

(6)

Increasing the number of concentric rings to 3, 7, or 15 will decrease
the disk position error variance by factors of 1/2, 1/4, and 1/8, re-
spectively.

An alternative method of increasing the image roughness Dx and Dy

is to add linear ray features, radiating out from the center of the disk as
shown in Fig. 2c. An increasing number of rays lowers the position error
variance, by increasing the image roughness Dx. Interestingly, com-
bining concentric rings with linear rays does not further decrease the
position error, though it can, in some circumstances, reduce the total
number of counts while maintaining the same position error variance.

Finally, we note that the position error of a circular disk in terms of
the total electron dose =N πR n2 is

=σ πR
N

.x
2

(7)

Thus we see that for a constant disk radius R, the variance has the
expected scaling of 1/N. For a constant electron dose N, the variance
scales linearly with radius R. This represents the fundamental trade-off
between real space and reciprocal space error for Bragg disk position
measurements. Increasing the probe’s outer angle will generate a
smaller probe in real space and thus improve real space resolution, but
will worsen the measurement precision in reciprocal space.

In order to realize the benefits of the patterned probes on the disk
detection precision, the imprinted features inside the disks must be
sufficiently resolved by the detector. The effect of the detector resolu-
tion is shown in Fig. 3 for probes with varying number of concentric
rings and a constant dose of 1024 total counts. Note that the lines on the
plot for the theory drop the factor of 2 in Eq. (6), which arose from the

“missing” pixels cut off by the pattern, whereas here we fix the total
dose such that the intensity per pixel roughly doubles inside the illu-
minated portion of the pattern. Nyquist sampling of the patterned
probes requires one pixel per ring (as marked on the figure). We ob-
serve that at slightly below Nyquist sampling the patterned probes show
substantially worse performance as compared to even an unpatterned
probe, and as the pattern collapses into only a few pixels it shows the
same performance as an unpatterned probe. Thus while sampling of just
above one pixel per ring is sufficient, it is preferable to oversample the
pattern to avoid the catastrophic drop-off in precision at just below
Nyquist sampling.

The above analysis for ideal disk position measurement will often
underestimate the potential gains of using patterned probes because

Fig. 2. Numerical tests of image registration of an ideal STEM probe with a
noisy measurement. Position error was measured for 1000 randomly generated
probes along one dimension, for (a) circular disks with different radii, (b)
varying numbers of concentric rings, and (c) varying numbers of intersecting
rays. These measurements are compared to the theoretical precision given by
Eq. (3). Inset images show examples of noisy measurements.
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real experiments often contain a significant amount of background
signal and fine structure imparted to the disks by dynamical diffraction.
In the following sections, we will show how adding various amplitude
features to the STEM probe can reduce the disk position error for both
multislice STEM image simulations and STEM experiments.

2.2. Probe size

In STEM imaging experiments, especially at atomic resolution, it is
usually advantageous to form as small a converged probe as possible.
This is achieved when an aberration-free (flat phase) plane wave illu-
minates the probe-forming aperture, with as large a semi-convergence
angle as possible. However, in 4D-STEM strain measurements, the
minimum probe size should be the dimensions of the crystalline unit
cell being measured. Increasing the probe size can be achieved by re-
ducing the semi-convergence angle, or by adding amplitude patterns to
the probe as described in the previous section. The dependence of the
real space probe size on the number of patterned rings added to an
aberration-free STEM probe is shown in Fig. 4. In order to include the
effects of both increasing the size of the central lobe and increasing the

intensity of the probe tails, we have defined the STEM probe size as the
radius containing 80% of the total probe intensity. The inset of Fig. 4
shows the cumulative radial intensity of different patterned STEM
probes with a semiconvergence angle of 2 mrad at 300 kV. The pat-
terned probes have long tails that extend out from the center, de-
creasing the realspace resolution. Compared to the typically reported
full width at half maximum, this probe size metric will overestimate the
size of the probe, but better capture the effect of the long tails of the
structured probes.

All STEM probe patterns lead to the same scaling law for probe size,
where the probe size varies inversely with the semi-convergence angle.
Adding additional amplitude rings to the probe will increase the pre-
factor of these power laws. For example, Fig. 4 shows that forming a
1 nm radius probe using 1, 3, 7, and 15 rings would require semi-con-
vergence angles of 0.9, 3, 7, and 14 mrads respectively. Thus, when
using patterned STEM probes, we will generally need to use somewhat
larger semi-convergence angles to produce probes of the same size.
When estimating the probe size in an experiment, the best practice is
always to record real space images of the STEM probe in order to obtain
an accurate estimate of the probe size and thus the spatial resolution.

3. Methods

3.1. Multislice simulations

In 4D-STEM experiments, the strain mapping precision is not only
dependent on single-disk matching precision, but rather on the preci-
sion of the lattice fit to several diffracted disks in a whole (near) zone
axis pattern. To investigate the strain mapping precision taking account
of the whole pattern fitting, we performed multislice simulations on an
unstrained Si ⟨110⟩ model using a custom MATLAB code and potentials
from Kirkland’s parametrization [39], with some implementation de-
tails give in [40]. Poisson random noise was applied to the diffraction
patterns to simulate shot noise for different numbers of electrons per
diffraction pattern. We simulated a 5 nm thick model to obtain dif-
fraction patterns with largely kinematical scattering, and a 20 nm thick
model to obtain patterns with dynamical contrast in the CBED disks.
The convergence angle was chosen to be 2.7 mrad at 300 kV to provide
nearly-touching CBED disks, which maximizes the real-space resolution
while avoiding interference between the diffracted beams, and gives the
worst-case scenario for disk location; the simulations are aberration-
free, which also maximizes the local variations in the CBED disks. The
bullseye pattern is rotated by an arbitrary amount to prevent aliasing
artifacts that may arise if the bars with the simulation grid.

3.2. Numerical measurement of disk positions

The procedure for obtaining strain maps from a 4D-STEM dataset
involves (a) precisely locating the diffracted disks in each diffraction
pattern, (b) obtaining a guess of the reciprocal lattice vectors u0 and v0,
(c) using the approximate reciprocal lattice vectors to index each dif-
fracted disk, and finally (d) solving an (overdetermined) linear least
squares problem to obtain the best-fit u and v vectors for each diffrac-
tion pattern, from which we calculate the strain. All of the analysis in
this work was performed using the open-source py4DSTEM Python
module [41] available at the py4DSTEM github repository.

In each diffraction pattern we locate the diffracted disks by taking
the Fourier correlation (Eq. 2) of a convolution kernel, or template
image, with each diffraction pattern. For experimental data, the con-
volution kernel can be obtained either by imaging the probe in dif-
fraction through vacuum or by averaging the direct beam from many
diffraction patterns. For simulated data, we use the initial wavefunction
as the convolution kernel. The peaks in the correlation image between
the kernel and the diffraction pattern correspond to the locations of the
diffracted disks. The positions of the diffracted disks are further refined
by subpixel registration using the matrix-multiplication discrete Fourier

Fig. 3. Numerical tests of the impact of sampling on relative position error
variance. Concentric ring probes show the scaling expected from the theory at
greater than Nyquist sampling, but have substantial position error due to
aliasing at lower sampling. Dashed lines are the prediction of Eq. (6). Inset:
example images of under-, Nyquist, and over-sampled disk images for 3, 7, and
15 ring disks.

Fig. 4. Numerical tests of the STEM probe size using different ring patterns at
different convergence angles, for an aberration-free microscope at 300 kV.
Adding the ring pattern to the probe causes the real-space probe size to grow by
a factor determined by the number of rings. Inset: cumulative radial intensity
profiles of probe intensity for a 2 mrad convergence semiangle.

S.E. Zeltmann, et al. Ultramicroscopy 209 (2020) 112890

4

https://github.com/py4dstem/py4DSTEM


transform upsampling approach [42,43] and a final local parabolic
fitting [44]. This subpixel refinement method locally upsamples the
correlation image in a 1.5 px wide window around each correlation
peak by a given factor (16 in this work), without computing the entire
upsampled correlation image. Each identified peak is indexed based on
an initial guess of the lattice vectors, and linear least squares fitting is
used to determine the reciprocal lattice vectors in each diffraction
pattern. Each indexed peak is weighted by the correlation intensity in
the least squares fit. Strain maps are then obtained by mapping the
change in the lattice vectors. There are several thresholds and filters
applied in this procedure—while we slightly tune these parameters for
the different simulated models and experimental samples, in all cases
the normal probe and bullseye probe at each condition are processed
with identical parameters.

3.3. Cross-validation

In measuring the strain mapping precision from the simulated data,
we make use of ground truth knowledge of the sample, i.e. that the
model was completely strain-free and there were no projection distor-
tions. For real experimental data, there are artifacts that complicate this
analysis: the sample may be bent or strained due to fabrication artifacts
or beam heating, and the microscope projection system introduces as-
tigmatism that distorts the pattern. Since strain information in 4D-
STEM is calculated from the lattice fitted to the diffracted disks in each
diffraction pattern, we can estimate the precision of the strain mea-
surement by evaluating the agreement between the fitted lattice and the
individual disk position measurements.

While the residual error from the linear least squares fit of the lattice
vectors is one such metric, because of the limited number of diffraction
patterns in a dataset and the effects of the artifacts described above, for
the experimental diffraction patterns we calculate a “cross-validation”
error. Cross-validation is often used to evaluate the quality of high-di-
mensional models [45]. In each diffraction pattern, half of the identi-
fied disks are chosen at random and a best-fit lattice is obtained from
only these disks. The expected positions of the other half of the disks in
the same pattern are computed from this lattice, and we define the error
as the root mean square (RMS) difference between these predicted
positions and the actual measured disk positions. For each diffraction
pattern, we repeat this procedure of training on a random subset and
testing against the other measurements 200 times per diffraction pat-
tern to ensure statistical relevance.

3.4. Bullseye aperture fabrication

We fabricated a set of bullseye apertures by FIB milling a gold-
coated silicon nitride TEM window. Although the theory indicates
adding linear rays to the concentric ring pattern does not improve strain
precision, we included four rays for structural support in the fabricated
apertures. An approximately 1 µm thick layer of gold was thermally
evaporated onto the flat side of a 200 nm thick silicon nitride TEM
window (Norcada, Canada) with a single 250 µm square window.
Approximately one gram of gold was evaporated at a pressure better
than × −2 10 6 torr, with the substrate kept at room temperature.

The bullseye apertures were milled into the gold-coated window
using a FEI Helios G4 UX dual beam SEM/FIB at 30 kV. The milled
aperture plate is shown in Fig. 5. We milled bullseye patterns with 2, 3,
and 4 rings and with 70, 40, 20, and 10 µm diameters. The 70, 40, and
10 µm bullseyes match the sizes of the standard circular apertures in-
stalled in our microscope, which simplifies beam alignments. In addi-
tion, we milled a set of circular apertures of 20, 10, 5, 2, and 1 µm
diameter, which can be used to produce STEM probes with very small
convergence angles or low beam current for imaging very dose-sensi-
tive materials. Since the apertures are more closely spaced than is ty-
pical, electrons pass through all of them and a third condenser beam-
forming aperture was therefore used to isolate a single probe for

nanodiffraction experiments.

3.5. Strain map acquisition

The bullseye aperture plate was installed in the second condenser
aperture holder of a FEI TitanX operated at 300 kV. A silicon ⟨110⟩
sample was prepared by wedge polishing followed by Ar ion milling.
4D-STEM datasets were acquired with a scan size of 25 × 25 pixels,
diffraction pattern image size of 512 × 512 pixels, and a probe semi-
convergence angle of approximately 3 mrad. Diffraction patterns were
acquired using a Gatan Orius 830 CCD. We obtained scanning diffrac-
tion datasets from two regions of the wedge sample: a “thin” region
with relatively even illumination of the diffracted disks, and a “thick”
region with substantial dynamical contrast.

4. Results and discussion

4.1. Multislice simulations

Multislice simulations of 5 and 20 nm thick unstrained silicon along
the ⟨110⟩ zone axis are shown in Fig. 6. The diffraction patterns in
Fig. 6a from the 5 nm model show even illumination of the CBED disks
and the (002) forbidden reflection is not excited. The diffraction pat-
terns in Fig. 6e from the 20 nm model show uneven illumination of the
disks and the (002) reflection is partially illuminated due to double
diffraction.

Fig. 6 b and f show the locations of the u and v reciprocal lattice
vectors identified in each diffraction pattern of the simulated 4D-STEM
scans, illustrating the variation in the measured lattice vectors as the
probe scans across a totally strain-free sample. In the limit of small
strains, the uncertainty in the reciprocal lattice vectors relative to the
reciprocal lattice vector length is equal to the uncertainty in the mea-
sured strain. The center of each histogram corresponds to the lattice
vectors measured from the 5 nm model with infinite dose, which we
take as the ground truth. The u and v vectors correspond to the (11̄1)
and (1̄11) reflections (drawn in the bottom left panel of Fig. 6a) and
each have a length of ≈ 70 pixels. Both the normal and bullseye probes
converge to the same lattice vectors at high dose, though in all cases the
spread of values is substantially larger for the normal probes. These
wide variations in the lattice vectors from an unstrained sample lead to
correspondingly large fluctuations in the calculated strain values. The
asymmetric error in the histograms is likely due to the presence of the

Fig. 5. SEM micrograph of the fabricated bullseye aperture plate.
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partially-illuminated forbidden reflections, which causes the cross-
correlation peak uncertainty to be larger in one direction [24].

Fig. 6 d and h show the RMS residual error of the linear least squares
lattice vector fitting, relative to the length of the (1̄11) reciprocal lattice
vector. This error is one metric for the precision of the strain mea-
surement as it reflects the uncertainty in the fitted lattice vectors. The
error decreases with increasing electron dose and the bullseye apertures
have ≈ 3.5 times lower error at up to ≈ 105 counts. For this number of
rings, the image roughness metric (Eq. (6)) predicts a 4-fold increase in
the precision of locating a single diffraction disk, without accounting
for the presence of the incoherent background counts found in the
multislice results. As the illumination of each diffraction disk varies
across the pattern, the location precision of each diffraction disk also
varies, complicating comparison with the single-disk location precision
theory. At higher signal levels, the error stops decreasing as we ap-
proach the limits of the subpixel fitting algorithm. At 108 counts and
above, the bullseye apertures show ≈ 7 times improved precision.

When dynamical contrast causes intensity variations inside the
diffracted disks, the normal probes show substantially worse perfor-
mance. When locating the disks by cross-correlation, as in this calcu-
lation, the location assigned to each disk is biased towards the center of
mass of the disk. In the simulated diffraction patterns, many disks are
seen to be half-illuminated, which leads to substantial position errors
regardless of the number of counts. The patterned probes are less

sensitive to this type of error, as the cross-correlation intensity should
peak when the rings are in registry even if the rings are not fully illu-
minated. Thus we observe in Fig 6g and h that the precision of the
normal probe saturates by 105 counts while the bullseye probe preci-
sion improves with increasing dose until 107 counts. This robustness to
uneven disk illumination gives the bullseye probes an even larger
precision advantage compared to the kinematical case for thin speci-
mens, with the minimum error decreasing by ≈ 30 times at high
electron counts.

4.2. Experimental measurements of strain in silicon

Representative diffraction patterns from the scans are shown in the
top row of Fig. 7. In the thick scan region, the (002) forbidden reflection
is fully illuminated and there is substantial dynamical contrast inside
the CBED disks.

As we cannot guarantee that the silicon specimen is strain-free, we
cannot use the spread in the measured lattice vectors as an indicator of
the precision of the measurement, and instead report only the cross-
validation error for the experimental scans. The cross-validation (CV)
error relative to the length of the (111) reciprocal lattice vector for the
experimental scans is shown in Fig. 7c and g. When finding the disk
locations in the thin region by cross-correlation, use of the bullseye
patterned probe causes the mean CV error score to decrease to 0.3%

Fig. 6. Strain mapping precision of simulated silicon diffraction data at different samples thickness and electron dose. (a,e) Representative simulated diffraction
patterns at different electron doses per pattern. (b,f) Comparison of the u and v reciprocal lattice vectors measured at each scan position in the simulation of a strain-
free sample. The center of each histogram represents the average u, v positions obtained from the noise-free simulation data. (c,g) Cross-validation error and (d,h)
RMS fit error, relative to the reciprocal lattice vector length (equivalent to the strain error in the small strain limit). (a–d) are obtained from a 5 nm model with largely
kinematical scattering, while (e–h) are from a 20 nm model with dynamical contrast inside the CBED disks. The reciprocal lattice vectors are drawn in the bottom left
panel of (a), and have length ≈ 70 pixels.
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from 3.6%, an improvement of 12 times. In the thick region, the CV
score decreases to 0.8% from 10.3%, an improvement of ≈ 13 times.
The improvement in strain precision we observe in experiments is
larger than predicted by the image roughness theory and observed in
the multislice results. The inelastic component present in the experi-
mental data likely plays a large part in this discrepancy, as the presence
of substantial intensity between the Bragg disks reduces the contrast
between the disks and the background, compounding the center-of-
mass bias in the unpatterned probes and increasing the impact of the
patterned bars in the disks on matching precision.

While cross-correlation performs well when the pattern background
is low, hybrid correlation has been shown to better handle the ‘plas-
monic blur’ in real samples [24]. To test if hybrid correlation can also
improve the strain precision when using patterned probes we repeated
the disk finding procedure with =p 0.25 (Eq. (2)). We observe that the
CV error decreased substantially compared to cross-correlation for the
normal probes, as shown in Fig. 7d and h. However, in both the thick
and thin Si wedge regions, the CV error of the bullseye apertures was
50–100% worse when using hybrid correlation. The image roughness
theory discussed above does not generalize easily to hybrid correlation
and does not account for additive background noise, and so cannot be
used to explain the change in precision.

Using an identical procedure, we also computed the CV error for the
multislice simulations, shown in Fig. 6c and g. Because the lattice fitting
in the CV approach uses only half the identified Bragg spots, the CV
error is always higher than the RMS least squares residual. The trend is
the same as for the RMS error in both thicknesses tested. For the 5 nm
model the CV error is 3–7 times higher for the normal probes compared
to the bullseyes, while for the 20 nm model the CV error is up to
29 times higher for the normal probe compared to the bullseye probe.

Strain maps produced from each region of the Si wedge using cross-
correlation to locate the diffraction disks are shown in Fig. 7(i)–(l), and
the standard deviation of the measured strain in each region is marked
on the maps. Strain values are referenced to the median measured
lattice in each scan region. In the thin region of the Si wedge, the
normal probe registers strains of approximately ± 1.5% across the
scanned area. Bending in the thin region of the wedge leads to mistilt of
a few milliradians across the scan region, which shifts the center of
illumination of the pattern and the centers of mass of the diffraction
disks. While sample mistilt does change the projected lattice spacing
and thus the expected diffraction disk positions very slightly (on the
order of 0.1% for the magnitude of tilting we observed), the strong
position bias towards the center of mass of the disks when using normal
probes leads to large variation in the measured strain. When using

Fig. 7. Cross-validation error determination from 4D-STEM experiments on a Si ⟨110⟩ wedge. Diffraction patterns from a thin region of the wedge with (a) the
standard circular aperture and (b) with the bullseye amplitude grating. The cross validation error, computed by fitting a lattice to half of the identified diffraction
disks and measuring the error of the remaining half, using (c) cross-correlation and (d) hybrid fitting. Diffraction patterns from a thick region of the wedge (e)
without and (f) with the bullseye aperture. Cross-validation strain error for (g) cross-correlation and (h) hybrid correlation disk detection. Strain maps from each
region of the Si wedge sample are shown in (i)–(l). The label on each strain map incates the standard deviation of that strain component over the field of view.
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bullseye probes on the same sample region, the strain is measured as
only ± 0.1%. In the thick region of the wedge the sample appears flat
across the field of view—here, the normal probes show smoothly
varying strain from top-to-bottom of the scan, likely due to variation in
sample thickness altering the fine structure inside the diffraction disks.
The bullseye probe again reveals a flat strain distribution with standard
deviation of about 0.1%.

Recently, Gizzinati et al. [30] demonstrated a Bessel beam struc-
tured probe for improved 4D-STEM strain mapping precision. By in-
serting an annulus in the second condenser aperture of an aberration
corrected microscope, they produce a hollow cone probe with a semi-
convergence angle of 6 mrad, giving spatial resolution of 1.3 nm. In the
present work (without aberration correction), we measured the full
width at half maximum of the probe to be 2.7 nm at 3 mrad. This fol-
lows the expected scaling, where using a semi-convergence angle half as
large leads to a doubling of the real-space probe size. Probes with strong
amplitude structuring will necessarily sacrifice real space resolution for
momentum resolution because of missing frequencies in the wave-
function. In the Bessel beam approach this broadening of the probe is
partially mitigated because the beam is so sparse in momentum space
that diffracted beams can overlap without substantial inter-
ference—this permits high convergence angles, leading to smaller re-
alspace probes. Our approach is practically limited to α< θB/4, where
α is the semi-convergence angle and θB is the Bragg scattering angle. By
observing the variation in strain in a flat region of the sample, they
estimated their strain precision as × −2.5 10 4. In this work, by com-
parison, we observed strain precision as good as × −2.2 10 4 – × −2.9 10 5

for different simulated models (by the RMS residual metric), and
× −8 10 3 – × −3 10 3 in experiments on an Si wedge (by the CV metric).
The patterned probe approach has parallels to Sobel (edge-enhan-

cing) filtering of the diffraction images. In using the Sobel filter, we
assume that the CBED disks should have sharp edges and uniform in-
tensity, and so once filtered the disks become rings. Naturally, dyna-
mical structure in the CBED disks will also create edges that are ex-
aggerated by the filter, and indeed Pekin et al.. found that Sobel
filtering improves precision for flat disks but causes artifacts when
dynamical structure is present [24]. By applying the patterning to the
probe before the sample, we avoid this drawback by adding many edges
that are defined by the template.

Compared to other TEM strain mapping techniques, 4D-STEM has
generally been reported to have lower precision and lower resolution
than other TEM strain mapping techniques, such as atomic resolution
imaging and darkfield holography. In particular, 4D-STEM strain
mapping is not not possible at atomic resolution as phase interference
between scattered beams complicates measurement of the Bragg scat-
tering. However, 4D-STEM offers the greatest flexibility with regards to
sample type and orientation, allowing analyses of partially or com-
pletely amorphous samples, polycrystals, highly defective materials,
and low-symmetry oriented crystals. Simultaneous measurement of
other signals is also possible from 4D-STEM data, such as differential
phase contrast (DPC) for electric field mapping. With patterned probes,
the precision of 4D-STEM strain measurements can rival that of other
techniques, though still with the trade-off between resolution and
flexibility. Detailed comparisons of the various TEM strain mapping
techniques are available in the literature [7,46].

Early studies on 4D-STEM strain mapping were limited in acquisi-
tion speed by CCD detectors, so most of these works used well-exposed
diffraction patterns with high electron doses (qualitatively, these pat-
terns match those in our simulations where we find precision saturates
and becomes dose-insensitive). With the latest generation of fast de-
tectors operated at full speed, the dose per pattern is limited by the
brightness and coherence of the source, limiting the attainable preci-
sion. A potential drawback of the patterned probe approach is the re-
duction in probe intensity. Our bullseye grating reduces the beam in-
tensity by roughly half, leading to either a twofold increase in exposure
time for the same dose (with accompanying increase in sample drift

during a measurement) or the use of less coherent illumination to in-
crease the probe current (which will degrade the probe size and quality
of the diffraction patterns). However, as the bullseye probes tested here
give a roughly fourfold improvement in precision at equal dose while
the precision scales as the square root of the dose, higher precision can
be realized without compensating for the lost current. For thin samples,
where the scaling laws (Eqs. (6) and (5)) hold, using the bullseye
aperture with identical microscope settings would give roughly

≈4/ 2 2.8 times improvement, while for thick samples the improve-
ment can be larger.

Using the bullseye patterned probes also requires more pixels per
CBED spot in order to resolve the fine pattern features with high fide-
lity. In some cases, particularly for thick samples and CCD detectors,
this requirement necessitates “spreading out” the diffracted beam in-
tensity over more pixels, lowering the signal-to-noise ratio. Conversely,
when using direct electron detectors with limited dynamic range, the
ability to operate at a higher convergence angle and distribute intensity
over more pixels can be advantageous.

5. Conclusion

We have demonstrated how electron probes with patterning in
momentum space can improve the precision of the CBED disk detection
procedure used for calculating strain from scanning diffraction data.
This approach greatly improves the precision of strain measurements
from thicker samples by reducing the systematic errors that arise when
locating the Bragg disks in diffraction patterns through thick samples,
and potentially enabling more reliable temperature and subtle de-
formation measurements. In strain maps from a nominally unstrained
silicon sample we observe that the anomalous strain measurements
caused by dynamical effects are reduced from = ±ϵ 1.5% to about
± 0.1%. The specific findings can be summarized as follows:

• Imprinting structure on the STEM probe in momentum space adds
known, constant contrast to CBED disks which improves the preci-
sion of cross-correlation of a known template to the experimental
data. For an evenly illuminated CBED disk the position measure-
ment precision increases by a factor determined by the “roughness”
of the pattern, independent of dose. For the “bullseye” pattern we
used, a 4-fold improvement is expected.

• In multislice simulations of a thin sample with largely kinematic
scattering, the strain mapping precision improved by a factor of
≈ 4 times at all doses, in agreement with theory. At high doses, the
precision reaches a plateau, limited by the subpixel fitting. In si-
mulations of thick samples, where dynamical scattering causes un-
even illumination of the CBED disks, the precision improvement is
even greater, up to a factor of 29 times.

• In experiments on an unstrained Si sample, we observe an im-
provement in precision of about 12 times for both thick and thin
regions of the wedge sample. Due to the inelastic background
scattering, the hybrid correlation algorithm performs better than
cross-correlation when using a normal circular probe. Using the
bullseye patterned probe, the cross-correlation algorithm performs
best. Strain maps produced from thick and thin regions of the silicon
sample show substantially flatter strain across the same sample re-
gions.
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