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Physics-based Learned Design: Optimized
Coded-Illumination for Quantitative Phase Imaging
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Abstract—Coded-illumination can enable quantitative phase
microscopy of transparent samples with minimal hardware
requirements. Intensity images are captured with different source
patterns, then a non-linear phase retrieval optimization re-
constructs the image. The non-linear nature of the processing
makes optimizing the illumination pattern designs complicated.
Traditional techniques for experimental design (e.g. condition
number optimization, spectral analysis) consider only linear
measurement formation models and linear reconstructions. Deep
neural networks (DNNs) can efficiently represent the non-linear
process and can be optimized over via training in an end-to-end
framework. However, DNNs typically require a large amount of
training examples and parameters to properly learn the phase
retrieval process, without making use of the known physical
models. Here, we aim to use both our knowledge of the physics
and the power of machine learning together. We propose a new
data-driven approach to optimizing coded-illumination patterns
for a LED array microscope for a given phase reconstruction
algorithm. Our method incorporates both the physics of the
measurement scheme and the non-linearity of the reconstruction
algorithm into the design problem. This enables efficient parame-
terization, which allows us to use only a small number of training
examples to learn designs that generalize well in the experimental
setting without retraining. We show experimental results for
both a well-characterized phase target and mouse fibroblast
cells, using coded-illumination patterns optimized for a sparsity-
based phase reconstruction algorithm. Our learned design results
using 2 measurements demonstrate similar accuracy to Fourier
Ptychography with 69 measurements.

Index Terms—Phase Imaging, Unrolled Network, Physics-
based, Experimental Design, Illumination Design.

I. INTRODUCTION

Quantitative Phase Imaging (QPI) enables stain-free and
label-free microscopy of transparent biological samples in
vitro [1], [2]. Compared with coherent methods [3], [4], QPI
techniques that use partially coherent light achieve higher
spatial resolution, more light throughput, and reduced speckle
artifacts. Phase contrast can be generated by interference [5],
[6] or defocus [7]–[9]. More recently, coded-illumination
microscopy [10]–[15] has been demonstrated as an accurate
and inexpensive QPI scheme. To realize coded-illumination,
we replace a commercial microscope’s illumination unit with
a light-emitting diode (LED) domed array (see Fig. 1) [16].
This flexible hardware platform has been used for various QPI
applications including super-resolution [10], [11], [13], multi-
contrast [12], [17], and 3D imaging [14], [15].
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Coded-illumination microscopy uses intensity measure-
ments with asymmetric source patterns [18] to retrieve
2D phase information. Quantitative Differential Phase Con-
trast [19]–[22] (qDPC) typically captures four measurements
with rotated half-circle source patterns, from which the
phase is computationally recovered using a partially coherent
model. The performance of qDPC is predominantly deter-
mined by how the phase information is encoded in (via
coded-illumination) and decoded from (via phase recovery)
the intensity measurements.

The half-circle illumination designs of qDPC were derived
analytically based on a Weak Object Approximation [20], [21],
[23], [24] which linearizes the physics in order to make the
inverse problem mathematically convenient. This linearized
model enables one to derive a phase transfer function and
analyze the spatial frequency coverage of any given source
pattern [21], [22], [25], [26]. However, the non-linearity of
the actual system makes it impossible to predict an optimal
source design without knowing the sample’s phase a priori.
In addition, these types of analysis are inherently restricted
to linear reconstruction algorithms and will not necessarily
result in improved accuracy when the phase is retrieved via
non-linear iterative methods.

Motivated by the success of deep learning [27] for image re-
construction problems [28]–[33], data-driven approaches have
been adopted for learning coded-illumination patterns. For
instance, researchers have used machine learning to maximize
the phase contrast of each coded-illumination measurement
[34], to improve accuracy on classification tasks [35], and to
reconstruct phase [36]. All of these techniques learn the input-
output relationship with a deep convolutional neural network
(CNN) using training data. It is not straightforward to include
the well-characterized system physics; hence, the CNN is
required to learn both the physical measurement formation and
the phase reconstruction process. This task requires training
of 10s to 100s of thousands of parameters and an immense
number of training examples.

Here, we introduce a new data-driven approach to opti-
mizing the source pattern design for coded-illumination phase
retrieval by directly including both the system physics and the
non-linear nature of a reconstruction algorithm in the learning
process. Our approach unrolls the iterations of a generic
non-linear reconstruction algorithm to construct an unrolled
network [37]–[43]. Similar to CNNs, our unrolled network
consists of several layers (one for each iteration); however,
in our case each layer consists of well-specified operations to
incorporate measurement formation and sparse regularization,
instead of standard operations such as generic convolutions.



2333-9403 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2019.2905434, IEEE
Transactions on Computational Imaging

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1. Learning coded-illumination designs for quantitative phase imaging: (a) The LED-array microscope captures multiple intensity measurements with
different coded-illumination source patterns. (b) The measurements are used to computationally reconstruct the sample’s complex-field using an iterative phase
recovery algorithm. (c) An optimization procedure for learning optimal coded-illumination patterns updates the illumination design.

The key benefits of our approach are:
• incorporation of the system physics and reconstruction

non-linearities in the illumination design process.
• efficient parameterization of the unrolled network.
• incorporation of practical constraints.
• reduced number of training examples required.
We deploy our data-driven approach to learn improved

coded-illumination patterns for phase reconstruction. Each
layer of the unrolled network is parameterized by only a
few variables (LED brightness values), enabling an efficient
use of training data (< 100 simulated training examples).
We compare the QPI performance of our learned designs to
previous work and demonstrate that our designs generalize
well to the experimental setting with biological samples.

II. QUANTITATIVE PHASE IMAGING

qDPC recovers a sample’s complex transmittance function
from several coded-illumination measurements. The phase re-
covery optimization algorithm aims to minimize the Euclidean
norm of the error between the measurements and the expected
measurements formed with the current phase estimate. Using
a gradient-based procedure, the phase estimate is iteratively
updated until convergence. For a partially coherent source,
the phase can be recovered with resolution up to twice the
coherent diffraction limit. In this section, we describe the mea-
surement formation process and phase recovery optimization.

A. System Modeling
A thin sample’s transmission function can be approximated

as a 2D complex function, o(r) = ejφ(r)−µ(r), characterized
by its absorption, µ(r), and phase, φ(r) = 2π

λ ∆n(r)d(r),
where r are 2D spatial coordinates, λ is the wavelength of the
illumination, d(r) is the physical thickness of the sample, and
∆n(r) is the change in refractive index from the background.
Intensity measurements, y(r), of the sample are a non-linear
function of o(r), mathematically described by,

y(r) = |p(r) ∗ (s(r)� o(r))|2, (1)

where | · |2 denotes squared absolute value, ∗ denotes con-
volution, � denotes elementwise multiplication, s(r) is the
illumination’s complex-field at the sample plane and p(r)
is the point spread function (PSF) of the microscope. The
illumination from each LED is approximated as a tilted plane
wave, s(r) = e

j
λu

T
posr, with tilt angle, upos, determined by the

physical position of the LED relative the microscope [44].
Because the measured image in Eq. 1 is non-linear with

respect to the sample’s transmission function, recovering
phase generally requires non-convex optimization. However,
biological samples in closely index-matched fluid have a
small scatter-scatter term. This means that a weak object
approximation can be made; linearizing the measurement
formation model such that phase recovery requires only a
linear deconvolution of the measurements with their respective
weak object transfer functions (WOTFs) [20]–[24]. Further,
unstained biological samples are predominantly phase objects
since they are only weakly absorbing (i.e. µ(r) is small).
With these approximations, we can express each intensity
measurement as a linear system with contributions from the
background and phase contrast. In Fourier space,

ŷ(u) ≈ Bδ(u) + ih(u)φ̂(u), (2)

where ·̂ denotes Fourier transform, u are 2D spatial-frequency
coordinates, B is the measurement’s background energy con-
centrated at the DC and h(u) is the phase WOTF. The phase
WOTFs are a function of the source and the pupil distributions
of the microscope [21]. For a single LED the WOTF is:

h(single)(u) = i(p̂(u) ? ŝ(u)− ŝ(u) ? p̂(u)), (3)

where ? is the correlation operator, defined as (x1 ? x2)(r) =∫
x1(r̃)x∗2(r̃− r)dr̃ for r in the domain of p̂ and ŝ.
In [21], multiple LEDs are turned on simultaneously to

increase signal-to-noise (SNR) and improve phase contrast.
Because the fields generated by each LED’s illumination are
spatially incoherent with each other, the measurement from
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multiple LEDs will simply be the weighted sum of each LED’s
individual measurement, where the weights correspond to the
LEDs’ brightness values. The phase WOTF for illumination
by multiple LEDs will also be the weighted sum of the single-
LED phase WOTFs. Mathematically,

ŷ(multi)(u) =
∑
w∈W

cwŷ
(single)(u) (4)

h(multi)(u) =
∑
w∈W

cwh
(single)
w (u), (5)

where W is the set of LEDs turned on and cw ≥ 0 are the
LEDs’ brightness values.

Following common practice [45], we discretize the 2D
spatial distributions and format them as vectors (bold lower
case) (e.g. ĥ represents the transfer function’s 2D spatial-
frequency distribution and φ represents the 2D spatial phase
distribution). The measurements1 are described in Fourier
space as ŷ = Aφ̂ with system function A = diag(ĥ).

Based on this model, we define Y ∈ RM×S as the
Fourier transform of S single LED measurements, ŷ, along
the columns. Then, C ∈ RS×K is defined as the S single-
LED weights for each of K measurements, and ck ∈ RS is
the kth column of C. The product ŷk = Yck simulates the kth

multiple-LED measurement. Similarly, we define H ∈ RN×S
as S single LED phase WOTFs, ĥ along the columns, such
that the product Ak = diag(Hck) gives the corresponding
multiple-LED phase WOTF for the kth measurement.

B. Phase Recovery

Phase recovery using the forward model in Sec. II-A can
be formulated as a regularized linear inverse problem,

φ̂
?

= R((ŷk)Kk=1,P(·)) (6)

= arg min
φ̂

1

2K

K∑
k=1

‖ŷk −Akφ̂‖22 + P(φ̂), (7)

where φ? is the recovered phase, K is the number of mea-
surements acquired, ŷk is the Fourier transform of the kth

measurement and P(·) is a user-chosen regularizer. We solve
this optimization problem efficiently using the accelerated
proximal gradient descent (APGD) algorithm by iteratively
applying an acceleration update, a gradient update and a
proximal update [46], [47]. The algorithm is detailed in Alg. 1,
where α is the gradient step size, N is the number of iterations,
s and z are intermediate variables, µ(n) is the acceleration pa-

rameter derived by the recursion, µ(n) =
1+
√

1+4µ(n−1),2

2 [47],
and proxP(·) is the proximal operator corresponding to the
user-chosen regularizer P(·) [46].

III. PHYSICS-BASED LEARNED DESIGN

Given the phase recovery algorithm in Sec. II-B, we now de-
scribe our main contribution of learning the coded-illumination
designs for a given reconstruction algorithm and training set.

1In practice, y typically refers to the so-called flattened image, where the
background energy in (2) is removed via background subtraction.

Algorithm 1 Accelerated Proximal Gradient Descent (APGD)
for Phase Recovery

1: procedure APGD((ŷk)Kk=1, N, α,P(·))

2: φ̂
(0)

= 0, φ̂
(−1)

= 0
3: for n ∈ {1...N} do
4: s(n) ← µ(n)φ̂

(n−1)
+ (1− µ(n))φ̂

(n−2)

5: z(n) ← s(n) − α
K

∑K
k=1(−AH

k )(ŷk −Aks
(n))

6: φ̂
(n)
← proxαP(z(n))

7: end for
8: return φ̂

(N)

9: end procedure

A. Unrolled Physics-based Network

Traditionally, DNNs contain many layers of weighted linear
mixtures and non-linear activation functions [27]. Here, we
consider specific linear functions which capture the system
physics of measurement formation and specific non-linear
activation functions which promote sparsity [37], [38]. Starting
from Alg. 1, we treat each iteration as a layer such that
when unrolled they form a network of N layers, denoted R
(Fig. 2). Each layer of R contains a module for each of the
iterative algorithm’s updates (i.e. an acceleration module, a
gradient module (incorporates system physics), and a proximal
module (incorporates sparsity)). The regularization and step
size parameters specified for Alg. 1 are fixed. The network’s
inputs comprise (ŷk)Kk=1 and the network’s output is φ̂

(N)
.

The design parameters of the network, which will be learned,
govern the relative brightness of the LEDs and are incorpo-
rated in the measurement formation and the system WOTFs.

B. Learning Objective

Our learning objective is to minimize the phase reconstruc-
tion error of the training data over the space of possible LED
configurations, subject to constraints that enforce physical
feasibility and eliminate degenerate and trivial solutions:

C? = arg min
C
F(C) (8)

s.t. ck ≥ 0 (non-negativity) (9)
‖ck‖1 = 1 (scale) (10)
mk � ck = 0 (geometric) (11)
∀k ∈ {1 . . .K},

where,

F(C) =
1

L

L∑
l=1

Fl(C) (12)

=
1

2L

L∑
l=1

‖R((Ylck)Kk=1)− φ̂
′
l‖22. (13)

Here, (Yl,φ
′
l)
L
l=1 are L training pairs for which Yl is a

matrix of the Fourier transform of single-LED measurements
for the lth sample with optical phase, φ′l. � is the elementwise
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Fig. 2. Unrolled physics-based network: Feed-forward schematic for the unrolled accelerated proximal gradient descent (APGD) network for N iterations
(dark blue box). The network takes intensity measurements, yk , parameterized by the coded-illumination design, ck , as input and outputs the reconstructed
phase, φ?. Finally, the output is compared with the ground truth phase, φ′, using a user-chosen loss function, Fl (pink box). The inset into a single (nth)
iteration (light blue box) shows each iteration’s three steps: acceleration update, gradient update, and proximal update.

product operator, mk is a geometric constraint mask for the
kth measurement, and 0 is the null vector.

The non-negativity constraint (Eq. 9) prevents non-physical
solutions by enforcing the brightness of each LED to be greater
than or equal to zero. This is enforced by projecting the
parameters onto the set of non-negative real numbers. The
scale constraint (Eq. 10) enforces that each coded-illumination
design must have weights with sum equal to 1, in order to elim-
inate arbitrary scalings of the same design. This is enforced by
scaling the parameters for each measurement such that their
sum is one. The geometric constraint (Eq. 11) enforces that the
coded-illumination designs do not use conjugate-symmetric
LED pairs to illuminate the sample within the same measure-
ment, since these would also result in degenerate solutions
(e.g. two symmetric LEDs produce opposite phase contrast
measurements that would cancel each other out). To prevent
this, we force the source patterns for each measurement to
reside within only one of the major semi-circle sets (e.g. top,
bottom, left, right). This constraint is enforced by setting the
LED brightnesses outside the allowed semi-circle to zero.

We solve Eq. 8 iteratively via accelerated projected gradient
descent (Alg. 2). At each iteration, the coded-illumination
design for each measurement is updated with the analytical
gradient, projected onto the constraints (denoted by B(·))
and updated again with a contribution from the previous
iteration (weighted by β(t)). B(·) enforces the constraints in
the following order: non-negativity, geometric, and scale.

Algorithm 2 Physics-based Learned Design Algorithm
1: procedure PBLD((Yl,φ

′
l)
L
l=0,C, γ, T )

2: for t ∈ {0...T} do . Gradient descent loop
3: for l ∈ {1...L} do . Training data loop
4: rl ← R((Ylck)Kk=1)− φ̂

′
l

5: Gl ← BackPropagation(rl)
6: end for
7: C(t+1) ← B(C(t) − γ

L

∑L
l=1 Gl)

8: C(t+1) ← β(t)C(t+1) + (1− β(t))C(t)

9: end for
10: return C(T )

11: end procedure

C. Gradient Update

The gradient of the loss function (Eq. 8) with respect to
the design parameters has contributions at every layer of
the unrolled network through both the measurement terms,
ŷk, and the phase WOTF terms, Ak, for each measurement
k ∈ {1...K}. Here, we outline our algorithm for updating the
coded-illumination design weights via a two-step procedure:
backpropagating the error from layer-to-layer and computing
each layer’s gradient contribution. For simplicity, we outline
the gradient update for only a single training example, l, as
the gradient for all the training examples is the sum of their
individual gradients.

Unlike pure gradient descent, where each iteration’s esti-
mate only depends on the previous’, accelerated methods like
Alg. 1 linearly combine the previous two iteration’s estimates
to improve convergence. As a consequence, backpropagating
error from layer-to-layer requires contributions from two suc-
cessive layers. Specifically, we compute the error at all N
layers with the recursive relation,

∂Fl
∂φ̂

(n−2) =
∂s(n)

∂φ̂
(n−2)

∂z(n)

∂s(n)
∂φ̂

(n)

∂z(n)
∂Fl
∂φ̂

(n)

+
∂s(n−1)

∂φ̂
(n−2)

∂z(n−1)

∂s(n−1)
∂φ̂

(n−1)

∂z(n−1)
∂Fl

∂φ̂
(n−1) , (14)

where each partial gradient constitutes a single step in Alg. 1
(fully derived in the supplement).

With the backpropagated error at each layer, we compute
the gradient of the loss function with respect to C as,

∇CFl(C) =
N∑
n=0

Q(n), (15)

for which,

Q(n) =
α

K

K∑
k=1

(
∂AH

k ŷk
∂C

− ∂AH
k Ak

∂C
s(n−1))

∂φ̂
(n)

∂z(n)
∂Fl
∂φ̂

(n)
.

(16)



2333-9403 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2019.2905434, IEEE
Transactions on Computational Imaging

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Here,
(
∂φ̂

(n)
/
∂z(n)

)
backpropagates the error through the

proximal operator and other partials with respect to C relate
the backpropagated error at each layer to the changes in C.
Derivations of these partial gradients are in the supplementary
material. In Alg. 3, we unite these two steps to form a recursive
algorithm which efficiently computes the analytic gradient for
a single training example. Alternatively, general purpose auto-
differentiation included in learning libraries (e.g. PyTorch,
TensorFlow) can be used to perform the gradient updates.

Algorithm 3 Gradient Update for Single Training Example

1: procedure BACKPROPAGATION(BP)(r(N))
2: for n ∈ {N...0} do
3: b(n) ← ∂φ̂

∂z r
(n)

4: v(n) ← (I − α
K

∑K
k=1 A

H
k Ak)b(n)

5: r(n−1) ← µ(n)v(n) + (1− µ(n+1))v(n+1)

6: Q(n) ← α
K

∑K
k=1(

∂AH
k ŷk
∂C − ∂AH

k Ak

∂C s(n−1))b(n)

7: end for
8: return

∑N
n=0 Q

(n)

9: end procedure

Fig. 3. Coded-illumination designs and their corresponding phase weak object
transfer functions (WOTFs) for: (a) Traditional qDPC and (b) learned designs
for the case where 4, 3, or 2 measurements are allowed for each phase
reconstruction. The illumination source patterns are in the upper left corners,
with gray semi-circles denoting where the LEDs are constrained to be “off”.

IV. RESULTS

Our proposed method learns the coded-illumination design
for a given reconstruction and training set (Fig. 3b), yet up
to this point we have not detailed specific parameters of our

phase reconstruction. In our results, we set the parameters of
our reconstruction algorithm (Alg. 1) to have a fixed CPU
time by fixing the number of iterations at N = 40 and the
step size to α = 0.2 (see supplement for parameter analysis).
In addition, the regularization term, P(φ), has been defined
generally (e.g. `1 penalty, total variation (TV) penalty [48],
BM3D [49]). Here, we choose to enforce TV-based sparsity:

P(φ) = τ
∑
i

‖Diφ‖1, (17)

where τ = 1e−3 is set to trade off the TV cost with the data
consistency cost and Di is the first-order difference operator
along the ith image dimension. We efficiently implement
the proximal operator of Eq. 17 in closed form via parallel
proximal method [43], [50], [51] (details in supplement).

A. Learning

To train our coded-illumination design parameters using
Alg. 2, we generate a dataset of 100 examples (90 for training,
10 for testing). Each example contains ground truth phase
from a small region (95× 95pixels) of a larger image and 69
simulated single LED measurements (using Eq. 1). The LEDs
are uniformly spaced within a circle such that each single-
LED intensity measurement is a brightfield measurement.
The physical system parameters used to generate the phase
WOTFs and simulate the training data measurements are
λ = 0.532µm, pixel pitch = 6.5µm, magnification = 20×,
and NAobj = 0.25. To train, we use `2 cost between recon-
structed phase and ground truth phase as our loss function and
approximate the full gradient of Eq. 8 with a batch gradient
from random batches of 10% of the training pairs at each
iteration. We use a learning rate of γ = 1e−2 (training and
testing convergence curves are provided in the supplement).
The training is performed on a multi-core CPU (Dual-socket
Intel Xeon® E5 Processor @ 2.1GHz with 64 cores and
504GB of RAM) and batch updates are computed in parallel
with each training example on a single core. Each batch update
takes ∼ 6 seconds. 200 updates are performed, resulting in a
total training time of 20 minutes.

B. Analysis

Traditional qDPC uses 4 measurements to adequately cover
frequency space. Our learned designs are more efficient and
may require fewer measurements; hence, we show learned
designs for the cases of 4, 3 and 2 measurements. The designs
and their corresponding phase WOTFs are shown in Fig. 3.

Comparing our learned designs with previous work, Fig. 4
shows the phase reconstruction for a single simulated test ex-
ample using 4, 3 and 2 measurements. The ground truth phase
is compared with the phase reconstructed using traditional
qDPC designs [21], annular illumination designs [21], condi-
tion number optimized designs [52], A-optimal designs [53],
and our physics-based learned designs. Table I reports the peak
SNR (PSNR) statistics (mean and standard deviation) for the
phase reconstructions from R evaluated on our set of testing
examples. Our learned designs give significant improvement
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Fig. 4. Phase reconstruction results using simulated measurements with different coded-illumination designs. We compare results from: traditional qDPC
(half-circles), annular illumination, condition number optimization, A-optimal design, and our proposed physics-based learned designs. We show results for
the cases of (a) four, (b) three, and (c) two measurements allowed for each phase reconstruction. Absolute error maps are shown below each reconstruction.

TABLE I
PSNR RESULTS: AVERAGE AND STANDARD DEVIATION PSNR (DB) OF PHASE RECONSTRUCTIONS FROM THE SIMULATED TESTING EXAMPLES USING

DIFFERENT ILLUMINATION SCHEMES AND DIFFERENT NUMBERS OF MEASUREMENTS. FACTOR FORMAT: MEAN ± STD.

# Meas. Random Traditional Annular Cond. Number A-optimal Physics-based
Illumination qDPC Illumination Optimization Design Learned Design

4 12.30 ± 2.12 15.67 ± 2.19 20.40 ± 2.09 20.37 ± 2.41 17.94 ± 2.54 28.46 ± 2.50
3 12.33 ± 2.12 15.28 ± 2.18 20.44 ± 2.26 19.33 ± 2.03 18.05 ± 2.59 28.04 ± 2.59
2 12.25 ± 2.12 14.87 ± 2.23 20.21 ± 2.24 17.19 ± 2.28 18.08 ± 2.64 23.73 ± 2.18

over other designs, recovering both the high and low fre-
quencies more accurately. The reduction in performance for
learned design with 2 measurements (as compared to 3 and 4
measurements) is due to reduced sensitivity to low frequencies.

Comparing varying depth networks, in Table II we report
the PSNR statistics for the phase reconstructions from R
evaluated on the set of testing examples using learned designs
for networks with 10, 40, and 100 unrolled iterations with fixed
step size, α = 0.2, and regularization parameter, τ = 1e−3.

TABLE II
PSNR RESULTS: AVERAGE AND STANDARD DEVIATION PSNR (DB) OF
PHASE RECONSTRUCTIONS FROM THE SIMULATED TESTING EXAMPLES

USING LEARNED DESIGN FOR DIFFERENT NUMBERS OF UNROLLED
ITERATIONS. FACTOR FORMAT: MEAN ± STD.

# of
unrolled iterations 10 40 100
Mean ± Std. (dB) 22.53 ± 2.29 28.48 ± 2.50 27.39 ± 1.92
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Fig. 5. USAF phase target reconstructions: Experimental comparison between phase results with (a) Fourier Ptychography (FP) using 69 images, (b) traditional
qDPC and (c) learned designs, for the case of 4, 3, and 2 measurements. Error maps show the difference from the FP reconstruction. (d) Cross-sections show
that phase from our learned designs (long-dashed red) is closer to that of FP (solid blue) than traditional qDPC (short-dashed green).

Fig. 6. 3T3 mouse fibroblast cells reconstructions: Experimental comparison between phase results with (a) Fourier Ptychography (FP) using 69 measurements,
(b) traditional qDPC and (c) learned designs, for the case of 4, 3, and 2 measurements. Error maps show the difference from the FP reconstruction. (d) Cross-
sections show that phase from our learned designs (long-dashed red) is closer to that of FP (solid blue) than traditional qDPC (short-dashed green).

If too few iterations are unrolled, the network cannot fully
reconstruct the phase, resulting in lower mean PSNR. As more
iterations are unrolled, the regularization biases the solution
and slightly reduces the mean PSNR.

C. Experimental Validation

To demonstrate that our learned designs generalize well in
the experimental setting, we implement our method on an LED
array microscope. A commercial Nikon TE300 microscope is
equipped with a custom quasi-Dome [16] illumination system
(581 programmable RGB LEDs: λR = 625 nm, λG = 532
nm, λB = 450 nm) and a PCO.edge 5.5 monochrome camera
(2560 × 2160, 6.5µm pixel pitch, 16 bit). We image two

samples: a USAF phase target (Benchmark Technologies)
and fixed 3T3 mouse fibroblast cells (prepared as detailed in
the supplement). In order to validate our method, we com-
pare results against phase experimentally estimated via pupil-
corrected Fourier Ptychography (FP) [13], [44], [54] with
equivalent resolution. FP is expected to have good accuracy,
since it uses significantly more measurements (69 single-LED
measurements) and a non-linear reconstruction process.

Using the USAF target, we compare phase reconstructions
from FP with traditional qDPC and our learned design mea-
surements (Fig. 5). Traditional qDPC reconstructions consis-
tently under-estimate the phase values. However, phase recon-
structions using our learned design measurements are similar
to phase estimated with FP. As the number of measurements is
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reduced, the performance quality of the reconstruction using
traditional qDPC degrades, while the reconstruction using the
learned design remains accurate.

To demonstrate our method with live biological samples, we
repeated the experiments with 3T3 mouse fibroblast cells. Fig-
ure 6 shows that phase reconstructions from traditional qDPC
again consistently under-estimate phase values, while phase
reconstructions using learned design measurements match the
phase estimated with FP well.

V. DISCUSSION

Our proposed experimental design method efficiently learns
the coded-illumination designs by incorporating both the
system physics and the non-linear nature of iterative phase
recovery. Learned designs with only 2 measurements can
efficiently reconstruct phase with quality similar to Fourier
Ptychography (69 measurements) and better than qDPC (4
measurements), giving an improvement in temporal resolution
by a factor of 2× over traditional qDPC and far fewer than FP.
Additionally, we demonstrate (Table I) that the performance
of our designs on a set of testing examples is superior to
previously-proposed coded-illumination designs. Visually, our
learned design reconstructions closely resemble the ground
truth phase, with both low-frequency and high-frequency in-
formation accurately recovered.

By parameterizing our learning problem with only a few
weights per measurement, our method can efficiently learn
an experimental design with a small simulated dataset. This
enables fast training and reduces computing requirements
significantly. Obtaining large experimental datasets for training
may be difficult in microscopy, so it is important that our
method can be trained on simulated data only. Experimental
results in Sec. IV-C show similar quality to simulated results,
with both using the designs learned from simulated data only.

Phase recovery with the learned designs’ measurements are
trained with a given number of reconstruction iterations (e.g.
determined by a CPU budget). This makes our method partic-
ularly well-suited for real-time processing. qDPC can also be
implemented in real-time, but limiting the compute time for the
inverse problem (by restricting the number of iterations) limits
convergence and causes low-frequency artifacts. Our learned
designs incorporate the number of iterations (and hence pro-
cessing time) into the design process, producing high-quality
phase reconstructions within a reasonable compute time. While
one can reduce the number of iterations, if too few iterations
are unrolled the accuracy of the model inversion decreases
(Table II).

Finally, rather than use a fixed step size and regularization
parameter (as outlined in Sec. IV), these parameters can be
jointly learned with the illumination patterns to optimize the
whole system. For given noise statistics the regularization
parameter could be learned; however, it would perform sub
optimally for different noise statistics and would require re-
training. Future systems should learn regularization parameters
that can be adapted post training to account for variable noise
levels similar to in [55].

VI. OUTLOOK

Our method is general to the problem of experimental
design. Similar to QPI, many fields (e.g. Magnetic resonance
imaging (MRI), fluorescence microscopy) use physics-based
non-linear iterative reconstruction techniques to achieve state-
of-the-art performance. With the correct model parameteriza-
tion and physically-relevant constraints, our method could be
applied to learn optimal design for these applications (e.g.
undersampling patterns for compressed sensing MRI [56],
PSFs for fluorescence microscopy [57]).

Requirements for applying our method are simple: the
reconstruction algorithm’s updates must be differentiable (e.g.
gradient update and proximal update) so that analytic gradients
of the learning loss can be computed with respect to the design
parameters. Of practical importance, the proximal operator of
the regularizer should be chosen so that it has a closed form.
While this is not a strict requirement, if the operator itself
requires an additional iterative optimization, error will have to
be backpropagated through an excessive number of iterations.
Here, we choose to penalize anisotropic TV, whose proximal
operator can be approximated in closed form [51]. Further,
including an acceleration update improves the convergence
of gradient-based reconstructions. As a result, the unrolled
network can be constructed using fewer layers than its unac-
celerated counterpart. This will reduce both computation time
and training requirements.

VII. CONCLUSION

We have presented a general framework for incorporating
the non-linearities of regularized reconstruction and known
system physics to learn optimal experimental design. Here,
we have applied this method to learn coded-illumination
source designs for quantitative phase recovery. Our coded-
illumination designs can improve the temporal resolution of
the acquisition and enable real-time processing, while main-
taining high accuracy. We demonstrated here that our learned
designs achieve high-quality reconstructions experimentally
without the need for retraining.
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