
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gmos20

Molecular Simulation

ISSN: 0892-7022 (Print) 1029-0435 (Online) Journal homepage: http://www.tandfonline.com/loi/gmos20

Reliable computational design of biological-
inorganic materials to the large nanometer scale
using Interface-FF

Chamila C. Dharmawardhana, Krishan Kanhaiya, Tzu-Jen Lin, Amanda
Garley, Marc R. Knecht, Jihan Zhou, Jianwei Miao & Hendrik Heinz

To cite this article: Chamila C. Dharmawardhana, Krishan Kanhaiya, Tzu-Jen Lin, Amanda
Garley, Marc R. Knecht, Jihan Zhou, Jianwei Miao & Hendrik Heinz (2017) Reliable computational
design of biological-inorganic materials to the large nanometer scale using Interface-FF, Molecular
Simulation, 43:13-16, 1394-1405, DOI: 10.1080/08927022.2017.1332414

To link to this article:  https://doi.org/10.1080/08927022.2017.1332414

Published online: 19 Jun 2017.

Submit your article to this journal 

Article views: 170

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=gmos20
http://www.tandfonline.com/loi/gmos20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08927022.2017.1332414
https://doi.org/10.1080/08927022.2017.1332414
http://www.tandfonline.com/action/authorSubmission?journalCode=gmos20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gmos20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/08927022.2017.1332414
http://www.tandfonline.com/doi/mlt/10.1080/08927022.2017.1332414
http://crossmark.crossref.org/dialog/?doi=10.1080/08927022.2017.1332414&domain=pdf&date_stamp=2017-06-19
http://crossmark.crossref.org/dialog/?doi=10.1080/08927022.2017.1332414&domain=pdf&date_stamp=2017-06-19
http://www.tandfonline.com/doi/citedby/10.1080/08927022.2017.1332414#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/08927022.2017.1332414#tabModule


Molecular Simulation, 2017
VOL. 43, NOS. 13–16, 1394–1405
https://doi.org/10.1080/08927022.2017.1332414

Reliable computational design of biological-inorganic materials to the large 
nanometer scale using Interface-FF

Chamila C. Dharmawardhanaa, Krishan Kanhaiyaa, Tzu-Jen Linb, Amanda Garleya, Marc R. Knechtc, Jihan Zhoud,  
Jianwei Miaod and Hendrik Heinza

aDepartment of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA; bDepartment of Chemical Engineering, 
Chung Yuan Christian University, Taoyuan City, Taiwan, ROC; cDepartment of Chemistry, University of Miami, Coral Gables, FL, USA; dDepartment of 
Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA

ABSTRACT
The function of nanomaterials and biomaterials greatly depends on understanding nanoscale recognition 
mechanisms, crystal growth and surface reactions. The Interface Force Field (IFF) and surface model 
database are the first collection of transferable parameters for inorganic and organic compounds that 
can be universally applied to all materials. IFF uses common energy expressions and achieves best 
accuracy among classical force fields due to rigorous validation of structural and energetic properties of 
all compounds in comparison to perpetually valid experimental data. This paper summarises key aspects 
of parameterisation, including atomic charges and transferability of parameters and current coverage. 
Examples of biomolecular recognition at metal and mineral interfaces, surface reactions of alloys, as well 
as new models for graphitic materials and pi-conjugated molecules are described. For several metal–
organic interfaces, a match in accuracy of computed binding energies between of IFF and DFT results 
is demonstrated at ten million times lower computational cost. Predictive simulations of biomolecular 
recognition of peptides on phosphate and silicate surfaces are described as a function of pH. The use of 
IFF for reactive molecular dynamics is illustrated for the oxidation of Mo3Si alloys at high temperature, 
showing the development of specific porous silica protective layers. The introduction of virtual pi electrons 
in graphite and pi-conjugated molecules enables improvements in property predictions by orders of 
magnitude. The inclusion of such molecule-internal polarity in IFF can reproduce cation–pi interactions, 
pi-stacking in graphite, DNA bases, organic semiconductors and the dynamics of aqueous and biological 
interfaces for the first time.

1.  Introduction

The simulation of organic materials, inorganic materials, biolog-
ical soft matter and mixed interfaces up to the large nanometer 
scale helps advance the understanding of energy conversion 
devices, catalysts, molecular mechanisms of diseases and ther-
apeutics, as well as other functional materials [1–6]. Examples 
include decorated nanoparticles and nanofillers [7,8], interfaces 
for charge generation in solar cells [9,10], chemical reactions 
in batteries [11,12], fuel cells [13], DNA nanotechnology and 
therapeutics [14,15] and functional nanocomposites [16–18]. 
Ab-initio calculations are thereby of great help to describe inter-
actions among assemblies of atoms and clusters up to thousands 
of atoms [19]. Modelling systems up to device scales of 100 nm, 
the inclusion of solvents and relaxation processes of nanosec-
onds to microseconds, however, requires classical and reactive 
molecular dynamics simulations [20,21].

One of the promising approaches for the simulation of inor-
ganic compounds across the periodic table, organic compounds 
and biomacromolecules is the Interface Force Field (IFF), which 

uses the same energy expression as CHARMM, AMBER, PCFF 
and other major energy expressions (Figure 1) [20]. This paper 
describes key features, recent advances and opportunities in 
materials property predictions using this approach. In many 
instances, interfacial properties can be predicted in same or bet-
ter accuracy than with DFT methods at 10 million times lower 
computational cost. Yet there are many areas in which the pre-
dictive quality of IFF for new compounds as well as the predictive 
power of biomolecular force fields such as CHARMM for existing 
compounds can be improved by several orders of magnitude 
using Interface parameterisation concepts and protocols.

2.  Concepts of the interface approach

The Interface Force Field and surface model database is over 40 
inorganic compounds and are in progress to double the cover-
age in the next release [20]. It has been sufficiently tested for 
metals, minerals and polymers to achieve coverage across the 
periodic table in the near future. The initial set of compounds 
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inorganic compounds, if they were available, is the reproduction 
of lattice parameters and surface energies in excellent agreement 
with experiment (Figure 1(b)). Structures and energies are the 
main quality criteria of a classical (or quantum mechanical) 
Hamiltonian. Previous force fields, as well as some current force 
fields, pay no attention to the significance of the energy, either 
with full neglect or focus on mechanical properties which are 
the second derivative of the potential energy. Energies such as 
interfacial energies then often deviate by multiples relative to 
experimental data [6]. The Hamiltonian can be compatible and 
chemically realistic only by focus on the structure, energy and 
secondly on the associated energy derivatives with respect to 
coordinates and temperature. Therefore, the Interface approach 
is a generally valid approach to derive force field parameters with 
full compatibility with existing parameters for other compounds 
that fulfil the same criteria (e.g. water, organic molecules and 
other inorganic compounds). The importance and significance 
of these premises have been confirmed throughout the devel-
opment for various compounds, and corroborated by further 
examples on an ongoing basis (see also examples in section 3 
below) [6].

To our knowledge, the Interface approach with these founda-
tions is unique and builds on predecessors. The use of the energy 
expression of existing polynomial force fields (CHARMM, 
PCFF, GROMACS) leads to broad compatibility, especially for 
biomacromolecules (Figure 1(c)). Mandatory validation using 
experimental data provides long-term value, since reproducible 
experimental data will not change in the future, and removes 
the dependency on ab initio calculations that suffer from many 
uncertainties, limitations and scatter. Namely, it is impossible 
to obtain physically justified atomic charges from DFT [28,29], 
surface energies of metals by DFT deviate up to 50% from exper-
iment [30], and similar issues for adsorption energies of mole-
cules have been reported [31,32]. These problems are avoided 
from the outset by full interpretation of parameters in IFF in the 
context of chemical knowledge and by choosing experimental 
data as a reference. Deviations in surface energies by 50% as 
common with DFT methods, for example, have been avoided 
by application of chemical theory. Therefore, for some systems, 
the reliability of IFF is an order of magnitude better than DFT 
methods at the outset and achieves 0 to 10% agreement with 
experiment for unknown combinatorial interfaces such as DNA/

included clay minerals [22], silicates and aluminates [23–25], fcc 
metals [26], sulphates, phosphates, polyethylene oxide and full 
consistency with existing parameters for polymers and biomol-
ecules (Figure 1(a)) [27]. The distinction over earlier models for 

Figure 1. (Colour online) Key aspects of the Interface Force Field (IFF). (a) Representative images of covered compounds, (b) Main features are reproduction of lattice 
parameters and the surface (or interfacial) energy by the classical Hamiltonian and (c) The potential energy functions are the same as CHARMM, AMBER, GROMACS, PCFF 
and others to create a uniform simulation platform for all compounds across the periodic table.

Table 1. Atomic charges for selected compounds from experimentally measured 
electron deformation densities and partition into spherical atomic basins (Hirshfeld 
method). The values provide a valuable starting point for molecular simulations, 
especially for polar compounds containing heavy elements. Standard deviations of 
the last digit are indicated in brackets (see original references in Ref. [20], Table S1).

Notes: aThe density of valence electrons near the middle of the N–O bond is high, 
leading to an uncertainty in atomic charges up to ±0.1e; bThe crystal structure of 
AlPO4 is the same as for tetrahedral SiO2 (α-quartz) as Al and P are left and right 
neighbours to Si in the periodic table. The investigation was performed to obtain 
more information on the charge distribution in the isoelectronic SiO2, which is 
non-centrosymmetric and a Si charge of ~1.2 was inferred; cThe atomic charges 
are averaged over different environments. Significant anisotropy was observed, 
such as charge transfer between the metal cation and coordinated water.

Compound Atom Charge in units of e
LiF Li 0.95 (3)
LiI Li 0.67 (5)
LiNO2 · H2O Li(H2O) 0.83

N 0.51
O (nitrite) −0.67

NaCl Na 1.00 (0)
NaNO3

a Na 0.95 (5)
N −0.20 (10)
O −0.25 (10)

KBr K 0.8 (1)
CaF2 Ca 2.00 (0)
MgO Mg 1.6 (2)
Al2O3 Al 1.32 (5)
AlO(OH) Al 1.47 (27)

H 0.20 (5)
AlPO4

b Al 1.4 (1)
P 1.0 (1)

CrSO4 · 5 H2Oc Cr(H2O)5 0.96 (20)
S 0.24 (6)

O (sulphate) −0.30 (6)
Co[O(NC5H5)]6(ClO4)2 Co 1.74 (4)

Cl −0.12 (1)
O (perchlorate) −0.15 (4)

Pyridine-N-oxide ligand −0.05 (5) [individual: O 
−0.83, N 0.27, C ~ −0.2, 

H ~ 0.3]
CuSO4 · 5 H2Oc Cu(H2O)5 1.18 (10)

S 0.06 (2)
O (sulphate) −0.31 (6)

Cu6Si6O18· 6 H2O Cu 1.23 (6)
Si 1.17 (15)

O (water) −0.74 (6)
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metal, polymer/silica and protein/apatite. Yet it would be incor-
rect to consider IFF a ‘calibrated’ force field, as numerical fitting 
is in fact quite minimal. It is also not a ‘boutique’ force field since 
it can extend to any compound across the periodic table using the 
same concepts and protocols. IFF is, from its very foundation, 
a chemically understood force field that provides a molecular 
code and interpretations for the parameters for each compound 
included.

A key aspect of the assignment of force field parameters are 
the atomic charges as they represent the balance between cova-
lent and ionic bonding [28]. Unfortunately, atomic charges have 
often been misrepresented as numerical fit parameters without 
chemical rationale. Experimental data from electron deforma-
tion densities have been readily available since the 1940’s and 
systematically disregarded as a reproducible input for molecular 
simulations (Table 1). The reliability of the near-spherical par-
tition of the electron density of atoms in molecules in the form 
of atomic charges is about ±0.1e or ±10%, whichever the lower. 
These data are greatly relevant for molecular simulations as they 
are consistent with measurements of molecular dipole moments, 

physical and chemical properties. These properties need to be 
represented in molecular dynamics simulations to gain quantita-
tive insight into adsorption, miscibility and chemical reactions. 
For example, heterolytic bond cleavage, addition and substitution 
mechanisms in organic chemistry, acid-base equilibria, as well 
as many other chemical processes and transition state energies 
require quantitative understanding of local dipole moments that 
can be represented by atomic charges. When using DFT or higher 
level QM methods with customary partition schemes, however, 
the uncertainty in atomic charges for the same compound is 
often several 100%, effectively useless for classical and reactive 
MD simulations [6,28,29].

These aspects are so critical, especially for polar inorganic 
solids, that they are the very basis of the existence of IFF, as it 
outperforms other approaches by a margin and always permits 
an explanation of the results obtained. Charge distributions need 
also not to be limited to atom-centric charges and can include 
explicit electron configurations such as d electrons in metals [33] 
and π electrons in aromatic rings, especially in newer develop-
ments (see Section 3.5). The treatment of atomic charges in IFF, 

Table 2. Examples of crystal structures for clay minerals and tobermorite in cement according to X-ray data and NPT molecular dynamics simulation using IFF. The average 
deviation is less than 0.5%.

Minerals Cell dim. a (nm) b (nm) c (nm) α (°) β (°) γ (°) V (nm3) rms dev (pm/atom)
Mica exp 5 × 3 × 1 2.596 2.705 2.005 90 95.73 90 14.00 0
k2Si6Al6O20(OH)4 sim 2.585 2.691 2.006 89.54 95.36 90.01 13.89 15
Pyrophyllite exp 5 × 3 × 1 2.580 2.690 1.869 91.18 100.46 89.64 12.76 0
Si8Al4O20(OH)4 sim 2.589 2.696 1.878 90.62 101.50 90.00 12.84 20
Kaolinite exp 3 × 2 × 2 1.546 1.788 1.478 91.92 105.04 89.80 3.945 0
Si2Al2O5(OH)4 sim 1.552 1.796 1.464 91.8 104.7 90.06 3.942 26
Tobermorite 11 Å exp 2 × 2 × 1 1.347 1.477 2.249 90 90 123.25 3.741 0
Ca4Si6O15(OH)2·5 H2O sim 1.348 1.467 2.247 89.55 90.15 123.13 3.721 23

Tricalcium aluminate (Ca3Al2O6)

+1.5e +1.2e -1.35e     -0.75e
Ca3 Al2  O4

apical O2
ring

Property Expt PCFF CHARMM CVFF AMBER OPLS-AA

Lattice parameter 

a (nm)

1.5263 1.5265 1.5280 1.5240 1.5267 1.5258

Al Oring bond

length (pm)

175.5 174.5 174.0 173.5 176.0 175.5

Al Oapical bond

length (pm)

175.0 174.5 172.5 172.0 174.5 174.5

Cleavage energy 

(mJ/m2)

1250 ±150

(±12%)

1260

(±0%)

1325

(+5.2%)

1321

(+4.1%)

1341

(+6.4%)

1380

(+9.5%)

Bulk modulus 

(GPa) at 0-1 GPa

106 ±8 98 ±3 107 ±3 108 ±3 107 ±3 108 ±3

(a)

(b)

Figure 2. (Colour online) Transferability of parameters and validation of surface and mechanical properties for various polynomial energy expressions for the example of 
tricalcium aluminate (C3A). (a) Chemical structure and atomic charges and (b) Key structural, energetic and mechanical properties according to experiment and IFF using 
different energy expressions. Atomic charges are the same in all energy expressions. LJ parameters and/or bonded parameters are slightly adjusted to account for different 
LJ exponents, combination rules and 1, 4 scaling rules. The performance is closely the same, whereby modulus and cleavage energy are about 5 to 10% lower using a 9-6 
LJ potential (PCFF) vs. 12-6 LJ potential (CHARMM, CVFF, AMBER, OPLS-AA). The differences remain within experimental uncertainty. The performance and transferability 
of IFF for other compounds is similar (adapted with permission from Ref. [24]).
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IFF reproduces lattice parameters for a range of complex 
inorganic and hydrous minerals, shown for some representa-
tive examples (Table 2). On average, the lattice constants deviate 
less than 0.5% from X-ray data and the number of force field 
types is small. In the IFF parameterisation, the second step after 
assigning atomic charges is the assessment of covalent bonding 
terms between pairs of nearest atoms. Terms for covalent bond-
ing are assigned if the average atomic charges are less than half 
the formal charges. If atomic charges between pairs of nearest 
atoms are more than half the formal charges, no explicit bonding 
terms are necessary, i.e. Coulomb plus Lennard-Jones parameters 
suffice. The bonded terms include harmonic bond stretching and 
angle bending functions, plus torsion and out of plane for chain 
molecules and planar molecules depending on need, consistent 
with the functional form of CHARMM, PCFF and other force 
fields. Next follows the final definition of atom types (initial atom 
types are identified along with the analysis of the structure and 
charges), at least one per element and often more depending 
on chemical environment to specify separate Lennard-Jones 
parameters in different chemical environments and particular 
bond angles, for example. Using an available crystal structure 
from X-ray data, the initial bond lengths and bond angles are 
defined, as well as harmonic stretching constants according to 
experimental IR spectra and computed velocity autocorrelation 
functions. The assignment of initial Lennard-Jones parameters 
follows established trends across the periodic table (see Refs. 
[6,20]). Lattice parameters are computed with all atoms flexible 
in NPT molecular dynamics and refinements of the parame-
ters made to match the X-ray data (<0.1% deviation if possible). 
Subsequently, an appropriate energy, e.g. cleavage energy, hydra-
tion energy, is computed and compared to available experimental 
measurements, followed by adjustments in Lennard-Jones and 
bonded parameters to reproduce this energy (<1% uncertainty if 
possible). Last, secondary checks of elastic constants, heat capac-
ity, thermal expansion and other derivative properties can be 
carried out, which typically do not require further adjustments 
of parameters. The concept of reproducing atomic charges (the 
nature of chemical bonding), structures and energies first typi-
cally means that all other properties follow as good as possible 
without further need for parameter adjustments thereafter. The 
force field parameters are then also interpreted in the context of 
similar compounds, which helps in refinements during the above 
optimisation, and finally locked in similar to a molecular code 
for the given compound.

The transferability of parameters from one to another har-
monic/polynomial energy expression is very good. In some cases, 
such as Lennard-Jones (LJ) parameters for fcc metals with zero 
atomic charge [26], it is even trivial. In other instances, atomic 
charges remain the same for every energy expression and adjust-
ments in LJ parameters are made to accommodate the different 
functional form (e.g. 9-6 vs. 12-6 LJ parameters), combination 
rules and scaling of non-bond interactions between 1,4 bonded 
atoms. The compatibility and transferability is illustrated for tri-
calcium aluminate using different energy expressions with appro-
priately modified parameters (Figure 2(a) and (b)). Only minor 
differences in computed properties are seen. Lattice parameters 
and bond lengths are essentially identical. Differences of 0.1% 
in lattice parameters and up to 1% in individual bond lengths 
are tolerable. Cleavage energies as the major energy criterion for 

however, is not entirely based on direct experimental values as 
often no data are available, and is equally founded in the chem-
ical relationships represented in the Extended Born model [28]. 
Accordingly, known atomisation energies, ionisation energies, 
electron affinities, coordination numbers and bond distances 
provide an equally reproducible rationale for atomic charges, 
especially relative from one compound to another when a few 
reference compounds with reliable atomic charges nearby in 
the periodic table are known. Details of the charge assignments 
can be found in the original reference and in separate publica-
tions introducing force field parameters for specific compounds 
[20,22–25,27].

A few notable trends from experimental data shown in  
Table 1 are highlighted in the following. A major observation 
is that many compounds believed to be ionic are in fact signifi-
cantly covalent. For example, LiI is best characterised by atomic 
charges of only ±0.67e and not ±1.0e. Nitrate ions in NaNO3 
have charges of −0.20e on nitrogen and −0.25e on oxygen, very 
unlike formal charges. Cr in CrSO4 carries an atomic charge of 
about +1.0e, not a formal charge of +2.0e, Al in its oxides and 
hydroxides about +1.4e and Si in silicates +1.2e (or +1.1e), also 
far from  +4.0e assumed in older computational studies [34] 
or +2.1e in the popular CLAYFF [35]. Since these concepts have 
not yet been widely applied, much remains to be learned from 
molecular simulations using realistic polarity. Many inconsist-
ent and erroneous assumptions of atomic charges are still used 
in molecular simulations and result in highly distorted physical 
and chemical properties. Interfacial energies, for example, scale 
with the square of the atomic charges, according to Coulomb’s 
law, and are thus even more strongly affected by discrepan-
cies [22]. Misleading results are often not easily detected in 
molecular simulations since experimental measurements of the 
computed target properties may not be immediately feasible, or 
only properties that are not very energy-sensitive are, in fact, 
reported. It therefore can take a long time to uncover short-
comings in force fields with sub-par atomic charges. However, 
unfortunate assumptions about atomic charges will be ulti-
mately dismantled after some time as they lead to inevitable 
disagreements of major scale. Therefore, it is worth making 
informed choices of atomic charges from the start based on 
experimental evidence, the Extended Born model, and chemical 
cross-checks, as earlier described [6,20,28], and not on ab initio 
calculations, to prevent unnecessary confusion and nonsensical 
results.

One of the earliest examples showing the relevance of exper-
imental data for atomic charges, in sharp contrast to ab initio 
calculations, are the common SPC and TIP5P water models in 
the 1980s [36,37]. Atomic charges according to experimental 
dipole moments for liquid and gas phase water were used in 
these force fields, and not speculative, widely scattered charges 
from ab initio calculations, which offer a whopping range from 
−0.17e to −1.24e for O atoms [28]. For example, the SPC water 
model employs an O charge of −0.82e, very close to the result 
from electron deformation density measurements in a hydrous 
copper silicate of −0.74e (Table 1). While it is not possible to 
determine unequivocal ‘exact’ atomic charges, the typical uncer-
tainty is only 10% (using multiple measures: 5%) and therefore 
the room to freely choose one particularly well performing value 
very limited.
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3.  Insight into molecular recognition on surfaces, 
nanoparticles and surface reactions

3.1.  Metal–organic interfaces

Metal–water and metal–organic interfaces can be very precisely 
understood using IFF due to the representation of surface and 
interfacial energies with uncertainties in the low per cent range 
[26]. The models and simulations indeed allowed the discov-
ery of the mechanism of non-covalent ligand binding to metal 
surfaces consistent with experiment, which involves attraction 
of polarisable atoms (C, N, O, S) to epitaxial sites on the metal 
surface [38]. Details and implications of this mechanism, specific 

validation are within the experimental uncertainty of ±12% for 
all energy expressions, and tend to be 5% to 10% higher using 
12-6 LJ potentials (CHARMM, CVFF, AMBER, OPLS-AA) 
compared to the 9-6 LJ potential (PCFF). The origin for these 
changes is stronger repulsion in the 12-6 LJ potentials, especially 
as non-bond interactions between 1,4 bonded atoms are par-
tially excluded (full inclusion of Coulomb and LJ interactions 
in CHARMM/CVFF vs. 83.3/50% inclusion in AMBER and 
50/50% inclusion in OPLS-AA). Other properties such as bulk 
and Young’s modulus agree very well with experiment without 
further adjustments (Figure 2(b)) [24], in part compensating the 
deviation in cleavage energy for tricalcium aluminate.

(c)

(a)

(b)

(d) (e)

Figure 3.  (Colour online) Equilibrium conformations and binding energies of organic ligands adsorbed on small AuPd nanoparticles using DFT and CHARMM-IFF, as 
well as facet specific differences of the adsorption of a peptide on (hkl) metal facets in aqueous solution using CHARMM-IFF. (a) AuPd nanoparticles in contact with 
ethylpyrrolidone for various surface coverage using DFT and CHARMM-IFF (reproduced with permission from Ref. [51]), (b) Computed adsorption energies using DFT and 
CHARMM-IFF. The agreement is excellent and the computational expense is ten million times lower using CHARMM-IFF (reproduced with permission from Ref. [51]) and 
(c–e) Distinct binding patterns and adsorption energies of the Pd4 peptide (TSNAVHPTLRHL) on (hkl) surfaces of palladium in water at pH ~7 computed by CHARMM-IFF. 
The trends in adsorption strength (1 1 1) > (1 1 0) > (1 0 0) are similarly observed for other peptide sequences, ligands and fcc metal surfaces related to a soft epitaxial 
binding mechanism.
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to match by polarisable atoms in the chain molecule, resulting 
in stronger coordination of epitaxial sites by small mobile water 
molecules and in a water interlayer between the metal surface 
and the peptide (side view not shown). Therefore, the adsorption 
energy turns slightly positive to +3 kcal/mol.

These facet-specific trends for adsorption, i.e. stronger 
adsorption in the order (1 1 1) >  (1 1 0) >  (1 0 0), are similarly 
found for other peptide sequences, ligands and synthetic poly-
mers [38,41,42,44]. Differences according to monomer sequence 
and chemistry are observed, although rarely strong enough to 
supercede the classification according to facet (Figure 3(c)–(e)). 
Facet-specific trends are also similar for other fcc metals such as 
Ag, Al, Au, Cu, Ni, Pt and Rh. The relative strength of adsorption 
is proportional to the surface energy (ranging from 1.2 to 2.5   
J/m2 with 1.98 J/m2 for Pd) [26,53], and the extent of binding 
differential to distinct (hkl) facets is also proportional to the 
surface energy [6]. A particular case is the binding of thiols, 
however, which leads to stronger adsorption via multi-centre 
covalent bonds, and needs a bonded approximation in IFF (using 
a larger LJ well depth for the chemically bonded S atom) [50,54].

3.2.  Surface properties of pH-sensitive mineral surfaces 
and selective adsorption of biomolecules

The surface chemistry of minerals such as silica, carbonates and 
phosphates is greatly dependent on pH [55–57]. Large changes in 
cleavage energies, hydration energies and adsorption equilibria 
are known experimentally and have recently been introduced into 
surface models supplied with IFF (Figure 4) [20]. Information on 
the surface chemistry of minerals can be obtained using exper-
imental pK values of the corresponding acids, measurements 
of the zeta potential and point of zero charge, in a very detailed 
fashion from surface titration, as well as from spectroscopy of 
the surfaces [23,58]. Interestingly, quantitative, reproducible data 
have been available for over 50 years yet for the first time sys-
tematically incorporated into molecular models and molecular 
simulations in IFF. There are no alternatives to using experimen-
tal data, too, as ab initio calculations cannot be applied to the 
required large systems with many water molecules, ionic con-
centrations and dynamics. Ab-initio methods are also of limited 
reliability to predict pK values and pH equilibria. Experimental 
data, once measured reproducibly, have the advantage of high 
accuracy and permanent validity, unlike continuous changes in 
density functionals where it is hardly certain which functional 
and which value to trust.

A useful future step in building pH resolved models for com-
pounds like silica, titania, apatites, carbonates and other oxides 
will be the development of a graphical user interface that auto-
matically generates models of (hkl) surfaces and nanostructures 
of correct surface chemistry, using all known experimental data. 
The relevance of correct surface models is high as it has been 
shown, for example, that combinatorially selected peptides bind-
ing to ordinary silica at pH 3 have less than 10% sequence sim-
ilarity with peptides binding to the same silica at pH 7 [57,59]. 
The same lack of correlation is found when a different type of 
silica, e.g. Q2 rather than Q3 silica is used. Many computational 
studies with unrealistic assumptions of surface chemistry have 
been published at DFT and MD levels that have poor credibility 
[6]. Common unrealistic assumptions include non-protonated 

guidance in nanocrystal growth and catalytic performance have 
since then been elucidated [39–45]. Specific peptide sequences 
for shape control in synthesis [46,47] and nanoparticle shapes 
for higher reactivity in catalysis were suggested [48,49]. IFF has 
also been used as a reactive force field by allowing bond break-
ing and computation of transition state energies in the form of 
activation energies and proxies thereof [48–50]. The advantage 
over DFT calculations to assess reaction rates is access to much 
larger system size, full inclusion of solvents and large molecular 
ligands, pH conditions and extensive dynamics at low compu-
tational cost.

Recently, a direct comparison of the conformations and 
adsorption energies of ethylpyrrolidone to small AuPd nano-
particles was reported using DFT at the M06 level and molecular 
mechanics using CHARMM-IFF, which demonstrates quanti-
tative agreement (Figure 3(a) and (b)) [51]. The conformations 
of the adsorbed molecules for a set of different surface coverage 
have an excellent degree of match (Figure 3(a)). The adsorption 
energies agree within 10% or better, which is also a remarkable 
fit (Figure 3(b)). The data also do not signify that DFT would 
be more accurate than CHARMM-IFF as surface energies of 
metals from DFT deviate much more from experiment (up to 
50%) than with IFF (typical uncertainty <5%) [30]. Nevertheless, 
the data clearly show that it is not necessary to use DFT or ab 
initio dynamics for equilibration and conformation analysis. The 
much more expensive quantum mechanical calculations can be 
restricted to the investigate local electron densities and stereoe-
lectronic effects pertinent to surface reactions. Rate predictions 
for large series of catalysts, for example, can be carried out using 
a combination of chemical knowledge of reaction mechanisms, 
DFT, QM/MM calculations and reactive molecular dynamics 
using reactive modifications of IFF or ReaxFF.

An example of differential binding of larger organic ligands 
to (hkl) metal surfaces in aqueous solution is shown for a palla-
dium-binding peptide TSNAVHPTLRHL [52] on (1 1 1), (1 1 0) 
and (1 0 0) surfaces of palladium metal (Figure 3(c)–(e)). The 
conformations and energies were obtained using CHARMM-
IFF [20]. The metal surface is depicted with larger spheres for 
atoms in the top layer, medium spheres for atoms in the first 
sublayer, and yet smaller spheres for atoms in the second sublayer 
(following the ABCABC stacking sequence of fcc Pd metal). On 
the (1 1 1) surfaces that show the full ABC stacking sequence, 
the coordination of epitaxial sites (sublayer sites) by the peptide 
is clearly seen (Figure 3(c)). The backbone and the side chains 
adapt conformations that avoid contact with top layer atoms 
and coordinate a maximum of polarisable atoms (C, N, O) with 
hollow sites. In these conformations, the peptide binds stronger 
to the surface than competing water molecules and achieves the 
most attractive adsorption energy of −68  kcal/mol among all 
facets. Very significant adsorption is also found on (1 1 0) facets, 
although the wider grooves in the surface reduce the specificity 
of adsorption (Figure 3(d)). Several side chains orient themselves 
parallel to the wide grooves, gaining access to epitaxial sites. The 
overall selectivity of adsorption of the Pd4 peptide versus water 
is not as strong as on the (1 1 1) surface, leading to somewhat 
diminished attraction with −43  kcal/mol adsorption energy. 
Finally, on the (1 0 0) surface, water adsorbs more strongly and 
the peptide has barely any surface contact (Figure 3(e)). The 
square pattern of epitaxial sites at 2.75 Å distance is very difficult 
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oxygen atoms in superficial monohydrogenphosphate ions. At 
lower pH values of ~5, binding residues change to serine and 
valine, which form hydrogen bonds with dihydrogen phosphate 
surface groups. An ion pair is remains between the N-terminal 
ammonium group and surface anions, and the overall adsorption 
energy at pH ~5 can be stronger than at pH ~10. The recognition 
mechanisms of peptides therefore shift significantly on apatites 
as a function of solution conditions, and simulations tools are 
ready to identify biochemical implications [27].

3.3.  Defects and strain fields in alloys

The application of pair potentials to metals is still a recent devel-
opment and consistent with quantum mechanical descriptions 
of pairwise interatomic interactions rather than artificial many 
body interactions [26]. Bcc metals such as tungsten and iron can 
be described using extensions of the single atom Lennard-Jones 
potential with four virtual d electrons of negative charge. The 
potential then employs harmonic W–e bonds, e–W–e angles, 
Coulomb and van-der-Waals interactions [33]. The coverage 
of multiple bcc, hcp and fcc metals using this approach is in 
progress and enables precise reproduction of crystal structure, 
surface energy, as well as elastic constants.

The first of these potentials for W was developed along with 
parameters for occluded C to quantify the diffusion of carbon 
atoms into a tungsten tip (forming WCx), coupled with exper-
imental measurements to explain the observed strain tensor 
and elucidate the likely depth of penetration of carbon atoms 
(Figure 5) [33]. The experimental measurement was performed 
by atomic electron tomography (AET), allowing 3D structure 
determination of crystals defects and chemical order/disorder 
of materials at atomic resolution [60–63]. Figure 5(a) shows the 

hydroxyapatite and calcium carbonate surfaces at pH 7, silica sur-
faces without silanol groups or inappropriate surface ionisation, 
non-protonated titania surfaces, or entirely non-stoichiometric 
surfaces, and without mention of possible differences in surface 
chemistry and pH equilibria. The use of realistic surface models 
and force fields can enormously improve the fidelity of molec-
ular dynamics simulations to gain insights into mineralisation/
demineralisation, surface reactions and biological calcification, 
placing molecular simulations closer to par with experimental 
measurements [59]. Computed binding free energies of peptides 
to various silica surfaces, for example, have reached ±10% agree-
ment with laboratory measurements [59].

Hydroxyapatite, as a recent example, is among the most 
important biominerals in bone and teeth (Figure 4). The surface 
energies for the dominant (0 1 0) basal plane change from 1080 
to 320  mJ/m2 as protonation proceeds from the neat cleaved 
hydroxy phosphate surfaces that are only stable at pH values >15 
to physiological pH values of ~5 in bone (Figure 4) [27]. The 
highly adaptive surface states are critical for reversible crys-
tal growth and dissolution. The hydration energy (immersion 
energy) also changes from values above 1000 mJ/m2 at pH 15 to 
800 mJ/m2 at pH 10 and ~620 mJ/m2 at pH 5. The accompany-
ing decrease in area density of calcium ions on the surface leads 
to different adsorption mechanisms of peptides and proteins 
(Figure 4). The area density of calcium ions is about half for 
dihydrogen phosphate termination at pH 5 compared to that 
for monohydrogen phosphate termination of the hydroxyapatite 
surface at pH 10. Higher pH values of ~10 lead to ion pairing 
between the carboxylate anion of the C terminus of the peptide 
SVSVGGK and superficial calcium ions on the apatite surface, 
as well as between the ammonium group of the lysine side chain 
(only partially protonated above pH 9) with negatively charged 

Figure 4.  (Colour online) pH responsive surfaces of hydroxyapatite (HAP) and selective peptide adsorption. Cleavage and hydration (immersion) energies change 
remarkably for different solution acidity, related to modifications in the density of superficial calcium ions and protonated phosphate ions. Changes in binding mechanism 
from ion pairing at higher pH towards weaker ion pairing and hydrogen bonds at lower pH affect the selective adsorption of peptides, binding residues and binding 
energy as shown for the HAP-binding peptide SVSVGGK (adapted from Ref. [27] with permission).
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Figure 5. (Colour online) Structure and strain field of a WCx tip in experiment and simulation. (a) 3D structure of a WCx tip that contains amorphous carbon inclusions. The 
positions of the W atoms are shown according to atomically resolved electron tomography, colored by atomic layer. The positions of carbon atoms that cause disorder 
cannot be seen, (b) Transmission electron micrograph of the sample using the TEAM I microscope (one projection). Occluded carbon atoms weaken the intensity or 
appear as invisible dark spots, (c) The strain field in each atomic layer according to experiment and (d) The computed strain field in each atomic layer after insertion of 
carbon atoms with a reasonably close match to experiment. The carbon atoms penetrate into the W tip 8 atomic layers with a surface composition of approximately WC0.15 
(reproduced with permission from Ref. [33]).

Figure 6. (Colour online) Reactive molecular dynamics simulation of Mo3Si oxidation using IFF and related experimental data. (a) Reaction scheme, (b) Formation of a 
protective amorphous, porous silica layer as a function of simulation time on the Mo3Si alloy surface at 800 °C monitored by reactive MD. The evaporation of MoO3 can be 
seen (gray spheres) and (c) Morphology of porous silica structures after complete oxidation of samples in experiment, analysed by equal slope tomography (about 100 nm 
size). The sample shows smaller porosity (circled, top), higher porosity (bottom) and the pore size distributions can be broad (plot on the right).



1402   ﻿ C. C. DHARMAWARDHANA ET AL.

approximate location of unidentified carbon atoms, molecular 
dynamics simulations with different carbon loading and dis-
tribution were carried out. For each equilibrium structure, the 
strain fields of the tungsten atoms relative to a perfect bcc lattice 
were computed and compared with the strain field according 
to experiment (Figure 5(c) and (d)). As a result, the surface 

3D atomic positions of the W tip with 19 pm precision. The 
observed irregularity of the surface structure is related to the 
inclusion of C atoms, which cannot be detected in the electron 
microscope. The projection from the side view also shows gaps 
and overall lower definition of atomic positions in the superficial 
atomic layers of the tungsten tip (Figure 5(b)). To determine the 

Figure 7. (Colour online) New IFF models for graphitic and π-conjugated molecules with virtual electrons to account for cation–π, π–π stacking, H–π bonds, solvent and 
organic interactions. (a) The magnitude of cation–π interactions is far greater than hydrogen bonds and neglected in prior force fields, (b) New models with virtual π 
electrons overcome this problem quantitatively, (c) Existing models exclude local Coulomb interactions that are essential for the interfacial dynamics of π-conjugated 
molecules and graphitic layers and (d) Density, surface energy, hydration energy and contact angle of graphite according to experiment, the new graphitic force field and 
existing force fields. Large deviations in hydration energies and contact angles are removed. Force fields for many aromatic compounds, including DNA, amino acids and 
polymer semiconductors can greatly benefit from analogous refinements to include virtual π electrons.
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graphitic layer stacking is also reproduced with the new models, 
while challenging with the older models. The computed density 
and surface energy are in much better agreement with experi-
ment. The enhancements in the representation of interactions 
of graphitic substrates with water, organic and biological mac-
romolecules are critical as such interactions are qualitatively 
misleading when neat LJ potentials without charges for the π 
electrons are used (Figure 7(d)). Hydration energies have some-
times been obtained positive rather than negative, and contact 
angles very far from experimental observations without these 
new additions. Clearly, LJ parameters alone are a poor approxi-
mation for non-bond interactions between graphitic layers and 
can be very much improved.

The concept of this treatment also applies to aromatic mole-
cules such as benzene, DNA bases, aromatic amino acids (Phe, 
Tyr, Trp, His) and conjugated polymers. Very similar parameters 
can be used, with superposition of added polarity by heteroa-
toms, to significantly improve predictions of stacking of DNA 
bases, CH-π bonds and include realistic ion effects. The same 
enhancements apply to conjugated polymers for solar cells and 
displays such as polythiophenes (e.g. P3HT) and paraphenylene 
vinylenes (PPVs) to describe polymer folding and morphology 
more reliably. The introduction of virtual π electrons will also 
enable a revision of standard biological force fields and organic 
force fields (CHARMM, AMBER, GROMACS, OPLS-AA, 
PCFF). On this path, the Interface concept will maintain full 
compatibility with existing parameters also after virtual electrons 
are added as a result of thorough validation of chemical bonding, 
structure and energies for each compound. This is a great advan-
tage as therefore no re-parameterisation of other compounds or 
functional groups will be required.

4.  Conclusions

Concepts and recent progress in the simulation of inorganic and 
biological-inorganic hybrid interfaces using the Interface MD 
platform have been summarised. IFF relies on a universal pro-
cedure to determine force field parameters based on chemically 
justified charges, validation of structures and energies for each 
compound using reproducible experimental data rather than 
ab initio computed quantities subject to ongoing amendments. 
The most common harmonic/polynomial energy expressions are 
used to accommodate compounds across the periodic table for 
predictions in high accuracy using a single simulation platform.

Interfaces of metal nanostructures with organic molecules 
and biopolymers can be simulated in the same accuracy as 
with DFT methods at far lower computational cost. Interfaces 
of oxides, hydroxides, phosphates, silicates and other minerals 
with water and ligands can be simulated in quantitative agree-
ment with experiment for surface chemistries consistent with pH 
and ionic strength. Recent applications to alloys, including bcc 
metals, and reactive molecular dynamics using IFF were illus-
trated that provide insight into surface reactions and morphology 
development upon oxidation and corrosion. New representations 
of π electron density are described to correctly include multipole 
moments, cation-π interactions and polarity of graphitic sub-
strates upon interaction with water, polar molecules and ionic 
macromolecules.

composition was found to be approximately WC0.15 and the pen-
etration depth of carbon atoms amounted to about eight atomic 
layers [33]. The example shows that high resolution imaging 
can be well combined with molecular simulations to quantify 
missing structural details and explain observed properties. An 
essential part of such modelling is the construction of models 
that closely match the experimental system, which can be chal-
lenging in details.

3.4.  Reactive molecular dynamics of alloy oxidation

Mo-Si-B alloys are used for the protection of SiC–C compos-
ites and ultrahigh temperature applications [64,65]. The oxida-
tion at temperatures above 800 °C involves the formation of an 
amorphous silica layer that possesses a porous structure and 
protects the alloy from further oxidation once a certain thick-
ness is reached (Figure 6(a)) [66]. To understand details of the 
oxidation mechanism for the neat Mo3Si (A15) alloy, reactive 
molecular dynamics simulations were employed, in which the 
crystalline Mo3Si was oxidised layer-by-layer at a given rate, 
producing MoO3 gas and silica (Figure 6(b)). The formed silica 
was described by a non-bonded potential (Coulomb plus LJ) 
that reproduces bond geometry, density and modulus. Nascent 
MoO3 gas was represented by coarse-grain beads that reproduce 
the molecular volume and intermolecular interactions (Lennard-
Jones parameters σ and ε). The morphology of the developing 
porous silica layer varies as a function of temperature and oxygen 
partial pressure. Thin layers (2 nm) have less porosity than layers 
grown beyond 100 nm thickness as observed using equal slope 
tomography (Figure 6(c)) [67]. Qualitative trends in pore size 
as a function of temperature and oxidation rate from the simu-
lation correlate with experimental observations and will be later 
reported in detail. The computational protocol can be applied 
up to millions of atoms to study the formation and properties 
of amorphous oxide layers.

3.5.  New models for graphitic materials and π-conjugated 
molecules

New models for graphitic materials and π-conjugated molecules 
have been developed as part of IFF (Figure 7). The inclusion 
of virtual π electrons addresses a fundamental shortcoming in 
existing all-atom force fields - the neglect of internal polarity of 
conjugated systems that account for cation-π and π-π-stacking 
interactions (Figure 7(a)) [68–70]. These interactions amount 
nearly to the strength of weak covalent bonds and are about 
100 times stronger than computed by current force fields such 
as CHARMM, CVFF, AMBER and ReaxFF. The new models 
include virtual electrons via harmonic bond and angle terms 
that reproduce the strength of cation–π interactions measured in 
experiment (Figure 7(b)). Therefore, multipoles along the cloud 
of conjugated π-electrons are represented truthfully. The atomic 
charges are + 1e on each aromatic carbon atom and −0.5e on 
the two corresponding virtual electron clouds above and below 
the atomic plane. Traditional force fields take no note of these 
interactions (Figure 7(c)) and lead to large errors in computed 
cation-π interactions, surface energies, hydration energies 
and contact angles with solvents (Figure 7(d)). The registry of 
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