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Ring deconvolution microscopy: exploiting 
symmetry for efficient spatially varying 
aberration correction
 

Amit Kohli    1,7  , Anastasios N. Angelopoulos    1,7, David McAllister1, 
Esther Whang2, Sixian You    3, Kyrollos Yanny4, Federico M. Gasparoli    5, 
Bo-Jui Chang    6, Reto Fiolka    6 & Laura Waller    1 

The most ubiquitous form of aberration correction for microscopy is 
deconvolution; however, deconvolution relies on the assumption that 
the system’s point spread function is the same across the entire field of 
view. This assumption is often inadequate, but space-variant deblurring 
techniques generally require impractical amounts of calibration and 
computation. We present an imaging pipeline that leverages symmetry to 
provide simple and fast spatially varying deblurring. Our ring deconvolution 
microscopy method utilizes the rotational symmetry of most microscopes 
and cameras, and naturally extends to sheet deconvolution in the case of 
lateral symmetry. We derive theory and algorithms for ring deconvolution 
microscopy and propose a neural network based on Seidel aberration 
coefficients as a fast alternative. We demonstrate improvements in 
speed and image quality as compared to standard deconvolution and 
existing spatially varying deblurring across a diverse range of microscope 
modalities, including miniature microscopy, multicolor fluorescence 
microscopy, multimode fiber micro-endoscopy and light-sheet fluorescence 
microscopy. Our approach enables near-isotropic, subcellular resolution in 
each of these applications.

Much of optical engineering is focused on reducing aberrations by add-
ing additional corrective optical elements to an imaging system; con-
sider a microscope objective, consisting of numerous lenses stacked in 
a housing. Such designs allow for high-performance imaging, but incur 
added cost, weight and complication. Even with large and expensive 
lens stacks, it is difficult and, in some cases, impossible to correct all 
aberrations across a large area and so aberrations are often what limit 
the usable field of view (FoV) of a system. Furthermore, some systems 
cannot accommodate any aberration-correction optics; for example, 

additional elements may not fit in miniaturized microscopes1 and are 
prohibitively expensive for large-aperture telescopes2.

Faced with a poorly corrected imaging system, the modern micros-
copist instead turns to computational aberration correction, where 
the burden is shifted onto computer algorithms applied post-capture. 
The most commonly used correction technique, image deconvolution, 
captures a calibration image of a small point-like source, known as the 
point spread function (PSF), to characterize the aberrations. The PSF 
can then be used to computationally deconvolve any image taken with 
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deblur the image at all points in the FoV, with only order N3 log(N)   
(N is the image side length) compute time, as compared to N4 for full 
spatially varying deblurring. For even faster computation (but without 
theoretical guarantees), we introduce a neural network-based algo-
rithm called deep ring deconvolution (DeepRD), which constrains 
learning with physical knowledge provided by the system’s Seidel 
aberration coefficients. If the system is not spatially varying or  
minimally so, RDM still offers an improvement over standard decon-
volution by instead deconvolving with a synthetic PSF generated by 
the Seidel coefficients.

Although ring deconvolution is specific to systems exhibiting 
rotational symmetry, our theory can be easily adapted to exploit other 
forms of symmetry. As an example, we derive an analogous form of 
deconvolution for situations where the blur varies laterally (along one 
Cartesian axis), which we term sheet deconvolution. This is the case 
in light-sheet microscopy, where the light-sheet illumination causes 
space-varying blur in the direction perpendicular to the imaging plane. 
We show experimental results for sheet deconvolution on images from 
a light-sheet microscope.

Our proposed algorithms outperform existing methods, 
approaching subcellular, isotropic resolution across the FoV. We 
demonstrate this on four diverse microscope modalities: miniature 
microscopy, multicolor fluorescence microscopy, multimode fiber 
micro-endoscopy and light-sheet fluorescence microscopy. Each 
of these modalities contains different characteristics and imaging 
mechanisms that are representative of a wide range of imaging sys-
tems, thereby forming a comprehensive basis to demonstrate the 
wide applicability and practical relevance of our methods. Figure 1 
provides a summary of the RDM pipeline along with an example result 
on images of live tardigrades. An open-source implementation of RDM 
and its extensions can be found in our codebase (https://github.com/
apsk14/rdmpy).

Results
Before we display our experimental results, we briefly outline the RDM 
pipeline from calibration to deblurring. More details on the RDM imple-
mentation can be found in Methods.

Ring deconvolution microscopy pipeline
The first step in our RDM pipeline is calibration; we measure the sys-
tem’s response to a point source (its PSF). The PSFs of a space-varying 
system will vary across the FoV and many PSF measurements may be 
required to fully characterize the system; however, space-varying sys-
tems that are rotationally symmetric require fewer measurements for 
system characterization, which we exploit here. Intuitively, PSFs that are 
the same distance from the center of the FoV all have the same shape, 
just rotated at different angles because of the symmetry (Fig. 1a). We 
call this property of the PSFs linear revolution-invariance (LRI), and 
denote it mathematically as

̃h(ρ,ϕ; r,θ) = ̃h(ρ,ϕ − θ; r,0),

where ̃h(ρ,ϕ; r,θ)  is the (spatially varying) PSF in polar coordinates 
from a point source at location (r, θ). Note that the shape of the PSF 
itself is not necessarily rotationally symmetric. LRI greatly improves 
complexity of the calibration procedure as we need only measure the 
PSF at any one point along the circle for each radius r from the optical 
center.

In practice, directly measuring the PSF at every radius r is still 
impractical. Instead, under LRI, there is a simple and effective method 
for simultaneously estimating these PSFs from a single image, without 
any motion stage required. It works by estimating the Seidel aberration 
coefficients from an image of point sources randomly scattered across 
the FoV (Fig. 1b). Seidel coefficients are a natural choice for LRI systems, 
as Seidel polynomials are explicit functions of the field position and 

the system via simple and fast algorithms, to yield a deblurred result. 
A main limitation of this approach is that it assumes that the system’s 
PSF does not vary spatially (the system is linear space-invariant; LSI). 
This assumption is usually only true near the center of the FoV, and 
optical designers often artificially sacrifice part of the system’s FoV 
to maintain space-invariance.

To go beyond space-invariant limitations, a large community effort 
has gone toward heuristic forms of spatially varying ‘deconvolution’, 
wherein one measures PSFs at multiple points within the FoV and uses 
them to correct the image. Such heuristics include assuming that 
each region of an image is locally LSI3, adaptively splitting the FoV by 
first quantifying the degree of space-variance4,5, interpolating PSFs6,7, 
decomposing the PSF into space-invariant orthogonal modes8–15, and 
doing the same in Fourier space16. These heuristics can approach rigor-
ous recovery as the number of PSFs collected grows, possibly into the 
hundreds of thousands; however, the trade-off in terms of the complex-
ity of calibration and computation quickly becomes intractable. For 
example, in patch-wise deconvolution, the FoV is divided into patches, 
each of which is deconvolved by a PSF measured at its center. Maximum 
accuracy is achieved when the patch size is reduced to a single pixel, 
but then a megapixel image would require a million PSF measurements 
and a computation time of hundreds of hours to deblur.

Another emerging modality is deep deblurring17–23, in which var-
ying amounts of system information are incorporated into a deep 
neural network. Networks that are primarily data-driven struggle 
with extrapolation beyond the training data, and tend to reproduce 
whatever biases existed therein, a particularly relevant point as many 
of them are trained on simulated data. Meanwhile, networks that incor-
porate physical information, such as calibrated PSFs, may have better 
generalization properties but suffer the same accuracy/efficiency 
trade-off as patch-based methods. For these reasons, spatially varying 
deblurring has not become commonplace among practitioners, and 
there remains a need for spatially varying deblurring methods that are 
effective, efficient and robust.

Here we propose a spatially varying method that requires only 
a single calibration image and has reasonable compute time, while 
offering rigorous deblurring for imaging systems that are symmetric 
in some way. We focus on rotationally symmetric systems (systems that 
are symmetric about their optical axis) but also show an example with 
the lateral symmetry present in light-sheet microscopy. Rotational 
symmetry occurs in many imaging systems by design, and a consider-
able portion of optical theory is developed under this assumption. 
While some existing deblurring techniques have leveraged rotational 
symmetry, they are approximate and restricted to a specific subset of 
radially varying blurs: those due to camera zoom24,25, the specific case 
of a parabolic mirror26 and an approximate scheme only for blurs from 
a single lens by applying deconvolution to four concentric regions27–30. 
Other work does the same for digital single-lens reflex (DSLR) cameras 
and also requires red, green and blue (RGB) image channels from a 
color camera31. In contrast, what we propose applies to any rotationally 
symmetric imaging system, can incorporate more complex PSFs, even 
if they cannot be theoretically derived, makes no approximations (for 
example, isoplanatic regions) in the image formation model and can 
easily extend to other symmetries.

Our ring deconvolution microscopy (RDM) models image forma-
tion for rotationally symmetric imaging systems rigorously, allowing 
for accurate deblurring while remaining practical, both computation-
ally and in terms of calibration. The first step in RDM is a simple, 
single-shot calibration scheme, in which the system’s primary Seidel 
aberration coefficients are estimated from an image of randomly dis-
tributed point sources. These coefficients quantify the severity of 
spatial variance and provide the necessary system information for the 
second step, deblurring. We propose two alternative image deblurring 
algorithms. The first (our main algorithm) is ring deconvolution, which 
uses a new and rigorous theory for rotationally symmetric imaging to  
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thus use the same coefficients regardless of the position in the FoV32. 
This makes them a more practical choice than Zernike coefficients, 
which are different at each field position.

After calibration, the next step is to use the estimated Seidel 
coefficients to deblur the measured image. LRI systems, much like 
LSI systems, allow for computationally efficient models. For LSI sys-
tems, we leverage two axes of space-invariance to model the blur as a 
two-dimensional (2D) convolution, and for LRI systems we can lever-
age the revolution-invariant angular axis, leading to a blur computa-
tion that is a sum of one-dimensional (1D) convolutions. We provide a 
description of the forward and inverse algorithms: ring convolution 
and ring deconvolution, in Methods. Therein is also included a theoreti-
cal proof of ring convolution’s exactness under rotational symmetry. 
We briefly describe ring deconvolution here, along with an alternate 
method using deep learning, termed DeepRD. These methods form 
the second step in the RDM pipeline (Fig. 1b).

	1.	 Ring deconvolution. We derive an optimal algorithm for recon-
structing the underlying sample from a blurry image given the 
PSF at each radius of the FoV of a rotationally symmetric imag-
ing system. This is our main algorithm.

	2.	 DeepRD. Although ring deconvolution is considerably faster 
to compute than a full patch-based spatially varying deblur 
technique, it may still be relatively slow (on the order of a 
few minutes) for very large image sizes (for example, beyond 
1,024 × 1,024) or video data. Deep learning enables a faster (but 
approximate) version of ring deconvolution called DeepRD. As 
input, it takes a blurry image and a list of the five primary Seidel 
coefficients. DeepRD is trained on a dataset of natural images 
that are synthetically blurred using ring convolution.

Experimental results
Miniature microscopy. The UCLA Miniscope1 is a miniature micro-
scope used primarily for neuroimaging in freely behaving animals. Its 
gradient-index objective, which is required for implantation, causes 

spatially varying aberrations thereby limiting its FoV. We demonstrate 
that RDM can alleviate these limitations. To that end, we first cap-
ture a single calibration image of fluorescent beads and fit the five 
primary Seidel aberration coefficients. We then image a composite 
U.S. Air Force (USAF) resolution target, rabbit liver tissue and live 
fluorescence-stained tardigrades. The composite target was made by 
placing a standard USAF resolution target at nine separate locations 
in the FoV and then stitching them together, using only the region of 
each constituent image that contains the highest resolution group.

For each sample, we compare reconstructions from ring deconvo-
lution and DeepRD, as well as standard deconvolution (using the PSF 
measured at the center of the FoV) and a baseline U-Net (see Fig. 2). Ring 
deconvolution and DeepRD (having knowledge of the field-varying 
aberrations via the Seidel coefficients) give the most improvement near 
the edges and corners of the image. Standard deconvolution produces 
a noisy, low-contrast result in those regions because of the mismatch 
of the center PSF with the edge PSFs. We also note that both learning 
methods (U-Net and DeepRD) offer the best denoising performance, a 
well-known property of neural networks33; however, this comes at the 
cost of inconsistent performance; both models perform worse on the 
resolution target than on the other samples. Similar performance is 
observed for rabbit liver tissue, where our methods reveal features in 
the corners of the image, including the outlines of membranes that are 
not clear otherwise. We also capture live videos of tardigrades. We apply 
deblurring to each frame and display one such frame in the bottom row 
of Fig. 2; the full videos can be found at https://berkeley.app.box.com/s/
d1o1901uv8ehxdf7kzdapyej1c7dt6bi. Ring deconvolution and DeepRD 
better resolve the small, dot-like features within the tardigrade.

High-NA multicolor fluorescence microscopy. Next, we apply RDM 
to high magnification, high-numerical aperture (NA) microscopy. 
Such devices are critical to observing biological samples at subcel-
lular resolution; however, as the NA increases, so do field-varying 
aberrations. RDM offers a pathway to utilize the level of magnification 
and NA needed for subcellular imaging while maintaining isotropic 
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Fig. 1 | Ring deconvolution microscopy. a, Point sources at the sample plane 
(left) are imaged (right) to PSFs with a rotationally symmetric imaging system. 
The PSFs are LRI; they vary with distance from the center of the FoV (top row), 
but maintain the same shape at a fixed radius r, just revolved around the 
center (bottom row). b, The RDM pipeline. A one-time calibration procedure 
(top) captures a single image of randomly placed point sources (for example, 
fluorescent beads) and uses them to fit primary Seidel coefficients. Next, we 

either use the Seidel coefficients to generate a radial line of synthetic PSFs, if 
using ring deconvolution, or we feed the coefficients directly into DeepRD. After 
calibration, we can deblur images (bottom) using either ring deconvolution 
or DeepRD. c, Experimental deblurring of live tardigrade samples imaged with 
the UCLA Miniscope1. Left to right: measurement, standard deconvolution, 
ring deconvolution and DeepRD. Ring deconvolution and DeepRD consistently 
outperform deconvolution.

http://www.nature.com/naturemethods
https://berkeley.box.com/s/d1o1901uv8ehxdf7kzdapyej1c7dt6bi
https://berkeley.box.com/s/d1o1901uv8ehxdf7kzdapyej1c7dt6bi


Nature Methods

Article https://doi.org/10.1038/s41592-025-02684-5

resolution over the entire FoV. Moreover, RDM does this efficiently over 
multiple fluorescence color channels, allowing for multicolor, subcel-
lular resolution imaging over the entire FoV. To demonstrate this, we 
image fluorescently labeled actin (green channel) and mitochondria 
(red channel) of bovine pulmonary artery endothelial (BPAE) cells with 
a ×100 1.4 NA objective.

We chose to perform a separate calibration for each color chan-
nel, with different bead images corresponding to the different emis-
sion wavelengths; this strategy allows RDM to additionally correct 
chromatic aberrations. After calibration, we image BPAE cells and 
process them with both RDM and standard deconvolution, for com-
parison. Figure 3 shows that RDM consistently deblurs the raw images 
throughout the FoV, including the corners of the image, while standard 
deconvolution becomes low-contrast and noisy near the edges. In both 
examples, RDM is able to resolve subcellular features in the actin and 
mitochondria near the edges that are not visible in standard deconvo-
lution. Such capability allows for larger FoVs to be used, lessening the 
burden of mechanically scanning and stitching together many smaller 
FoV images when the sample is large.

Micro-endoscopy through a multimode fiber. Point-scanning 
micro-endoscopy through a multimode fiber15,34 is a powerful tech-
nique for deep in vivo imaging at subcellular resolution, with applica-
tions in the brain and other sensitive organs, where minimal tissue 
damage is required; however, due to the extreme constraints imposed 

in the design of the fiber, its resolution capabilities degrade rapidly and 
severely away from the center of the image, resulting in a small usable 
FoV (top row of Fig. 4). The spatially varying images from such a system 
have been heuristically deblurred in ref. 15, but RDM, with its rigorous 
formulation, offers improved performance with far less calibration.

To verify this, we process images of beads and live rat neurons from 
ref. 15 using RDM, their spatially varying Richardson–Lucy (SVRL) algo-
rithm, and standard deconvolution, for comparison. SVRL is similar to 
the modal decomposition work in35,36. The SVRL method uses fewer PSFs 
than RDM (30 versus 120), so requires slightly less memory, but requires 
more calibration images than RDM (441 images versus 1 image). Despite 
considerably lighter calibration and similar computational complexity, 
RDM provides an improvement in image quality over SVRL (Fig. 4). In 
the corners of the bead image, we see that RDM is able to remove the 
aberration-induced ellipticity of the underlying circular beads and 
resolve clumps of beads, unlike the other methods. The same holds 
for the neuron images, where RDM tightens the spread of thin spines 
far better than the other methods. Additional comparisons on these 
data are in Extended Data Fig. 2.

In summary, ring deconvolution consistently produces the best 
reconstructions among the methods we tested. The improvement 
arises due to the lack of approximations and heuristics in the method’s 
derivation. Moreover, as compared to deep-learning-based methods, 
ring deconvolution undergoes no learning procedure, and thus does 
not transmit bias from the training data into future reconstructions. 
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Fig. 2 | RDM for miniature microscopy. After calibrating the Miniscope with 
a single image of fluorescent beads (Fig. 1b), we show results from several 
deblurring methods for comparison: standard deconvolution (using a single 
measured PSF), a U-Net trained on our spatially varying blur dataset, ring 
deconvolution and DeepRD. Deconvolution assumes space-invariance while 
the remaining methods are designed to handle spatially varying aberrations. 

In the first row, ring deconvolution and DeepRD clearly resolve resolution 
target elements near the edges of the FoV, which are not as well resolved by the 
two other methods. Zoom-ins show RDM resolves up to element 6 of group 9 
(blue inset) and element 5 of group 8 (green inset). Similar results along with 
corresponding insets are shown for the other samples.
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DeepRD performs similarly to ring deconvolution, but is faster and 
less consistent. Both perform better than the U-Net and standard 
deconvolution.

Simulation results
To quantify the performance of our methods, we conducted a series 
of simulations in which we have access to the unblurred ground-truth 
image. These simulations are performed with Gaussian noise and are 
repeated with Poisson noise (Supplementary Fig. 2).

Our first step is to quantify the forward model: ring convolution. 
When a system is space-invariant, the forward model is a simple convo-
lution operation. For space-varying systems, however, we must account 
for the changes in the PSF across the FoV. The brute-force approach for 
doing so would superimpose weighted PSFs at each pixel in the image 
to compute the ‘true blur’, at the cost of long compute times; however, 
when the system is rotationally symmetric (varies only radially), ring 
convolution is an equivalent operation to the brute-force method, but 
runs much quicker (less than a second) even for image sizes upward of 
512 × 512. To verify, we blur each test image using spatially varying PSFs 
rendered from a randomly chosen set of Seidel coefficients. We treat 
the true blur as ground truth and compare the error maps for both 
standard convolution and our ring convolution. As expected, standard 
convolution results in errors near the edges of the FoV, whereas ring 
convolution produces accurate blur across the entire image (Fig. 5a). In 
Fig. 5b we see that the error for standard convolution increases approxi-
mately linearly with this aberration magnitude (the norm of Seidel 
coefficients). In contrast, ring convolution continues to produce an 
accurate blur, independent of the strength of the aberrations. In Fig. 5c, 
we compare compute times for these forward models, showing that 
our ring convolution method is nearly four orders of magnitude faster 
than the other exact method (true blur) for a megapixel-sized image.

Next, we verify our Seidel fitting method by quantifying the error 
in our estimated Seidel coefficients that were fitted from a single noisy 
image of randomly scattered point sources. As detailed in Methods, the 
Seidel fitting procedure involves searching for the set of five primary 
Seidel coefficients that best fit the measured PSFs at their given posi-
tions in the calibration image. We simulate this process many times by 
randomly generating sets of Seidel coefficients, using them to produce 
a calibration image with additive Gaussian noise, and then estimating 
those coefficients only using the noisy calibration image (Fig. 5d). We 
plotted the error between the fitted and true coefficients in Fig. 5e. 
Due to nonconvexity of the fitting problem, we see that not every 
case produces errors that converge to 0; however, two things provide 
assurance: (1) the median convergence approaches 0, meaning that a 
majority of optimizations will produce the optimal solution; and (2) 
even the runs that do not converge to the global minimum produce 
PSFs, which are close enough to the true ones to provide good qual-
ity ring deconvolution. Finally, as the Seidel fitting procedure acts 
as a PSF denoiser, we test the fit with varying amounts of noise (up to 
−20 dB signal-to-noise ratio (SNR)) and find that the fit is still accurate 
even with severe additive noise (Fig. 5f). Additional simulations for 
higher-order Seidel coefficients can be found in Supplementary Fig. 3.

After verifying that our forward model and Seidel fitting methods 
perform well, we use them as part of an inverse problem to deblur 
images and quantify the performance. We compare our methods (ring 
deconvolution and DeepRD) with standard deconvolution and the 
baseline U-Net. The learning methods are trained with images from the 
Content-Aware Image Restoration (CARE) and Div2k datasets21,37, after 
synthetically blurring them with space-varying PSFs rendered from 
a random set of Seidel coefficients. It is computationally infeasible 
to generate the entire training set using the true blur technique, so 
instead we use our ring convolution to generate the blurred images for 
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Fig. 3 | RDM for high-NA, multicolor fluorescence microscopy. a,b, Fluorescent 
beads imaged with a ×100 1.4 NA objective (a) and corresponding Seidel-
fitted PSFs demonstrate spatially varying nature of the system (b). c, Two 
representative examples of BPAE cells processed by standard deconvolution and 

RDM. Deconvolution and RDM perform similarly in the center but RDM is better 
in the corner, revealing submicron features in the actin (orange arrow). RDM 
similarly resolves actin filaments and mitochondria where deconvolution does 
not. A total of six such samples were prepared and imaged with similar results.
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training and use the true blur for the test set. The results of each method 
on one representative test image are shown in Fig. 5g,h, with the peak 
SNR (PSNR) (in dB) listed above. Both DeepRD and ring deconvolution 
deblur better near the edges and corners of the image, where the PSF 
deviates the most from the center PSF. Despite using ring convolution 
for the training set and the true blur for the test set, neither of the net-
works (U-Net and DeepRD) show signs of model mismatch.

In Fig. 5i, we plot the average accuracy (PSNR) versus runtime 
across the entire test dataset (28 images), with the size of the circle 
representing the number of parameters needed (memory footprint) 
for each method. Ring deconvolution provides the best reconstruction, 
but it is also the largest and slowest of the methods tested, taking about 
60 s for a full image; however, if we were to try to deblur the image rig-
orously without using RDM, it would take hundreds of hours, despite 
being theoretically equivalent to ring deconvolution. Thus, ring decon-
volution allows for relatively fast, accurate deblurring where it was once 
infeasible. DeepRD performs nearly as well as ring deconvolution and 
has the fewest parameters needed of all the space-varying techniques, 
allowing it to be fast and memory efficient. DeepRD is almost three 
orders of magnitude faster than RDM. The baseline U-Net and standard 
deconvolution PSNR values are considerably worse.

Sheet deconvolution: extension to lateral symmetry
Revolution-invariance is not the only form of symmetry found in practi-
cal, spatially varying systems. For example, light-sheet fluorescence 
microscopy (LSFM) exhibits lateral symmetry, in which light-sheet 
illumination causes spatial variance, but only along one axis (Fig. 6a). 
The thinnest section, or waist, of the light-sheet is focused in the center 
of the FoV and becomes thicker as a function of the distance from the 
center. As the light-sheet is constant along the axis orthogonal to the 
focusing direction, this variance only occurs along one dimension. 
The resulting PSF grows in axial extent as it moves along one of the 
lateral dimensions, but stays constant in the other lateral dimension.

Here we derive sheet convolution, an exact forward model for 
LSFM (assuming a space-invariant objective lens), which leverages 
symmetry by convolving over the two dimensions that are spatially 
invariant, while integrating over the one that does vary. As a result, 
sheet convolution enjoys a similar improvement in computational 
performance as ring convolution; instead of the O(N6) scaling of the 
general three-dimensional spatially varying forward model, it achieves 
a O(N4log(N)) scaling. This improvement enables rigorous, spatially 
varying LSFM deconvolution where it once was computationally infea-
sible. All that remains is to obtain the three-dimensional (3D) PSF at 
each point along the light-sheet focusing axis. This can be carried out in 
multiple ways using only a single calibration volume; the experimental 
PSFs from this volume are either interpolated at the missing locations 
or are used to fit the parameters of a PSF model. Details along with the 
derivation of sheet convolution/deconvolution are in Methods and 
simulations are in Supplementary Fig. 1.

To combat the inherent spatial variance of LSFM, practitioners 
typically use only the thin lateral slab of the image that lies within the 
light-sheet waist, then shift the sample repeatedly to acquire the full 
FoV38. The final image is then stitched together from multiple tiled 
acquisitions; however, by using our sheet deconvolution approach, 
the parts of each acquisition that lie outside of the waist can be recov-
ered computationally, thereby expanding the usable FoV of the LSFM 
system and reducing the number of acquisitions needed for an object 
with a large lateral extent. While there are techniques, like axially swept 
LSFM39, which speed up the process in hardware, a purely computa-
tional solution is desirable for its ease of use, reduced irradiation and 
flexibility.

Figure 6 shows a demonstration of sheet deconvolution on LSFM 
data. For the experiment, a 3D stack of randomly scattered fluorescent 
nanospheres in agarose gel was imaged and used to obtain PSFs at 
each position along the spatially varying axis (Methods). Then, using 
these PSFs, sheet deconvolution is applied to samples of two types: 
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fluorescent beads and SU8686 cells. Unlike standard deconvolution, 
sheet deconvolution is able to better resolve features that do not lie in 
the light-sheet waist and create a more homogeneous axial resolution 
across the entire FoV than standard deconvolution. We quantified the 
resolution improvement by measuring the lateral and axial full-width 
half-maximum (FWHM) of fluorescent beads across the entire FoV 
after applying the two deconvolution methods. As expected, the lateral 
FWHM does not change substantially as the PSF spatial variance occurs 
primarily in z, but the axial FWHM values from sheet deconvolution are 
on average 300 nm smaller than those from standard deconvolution 
with 200 nm less s.d. This increase in resolution outside of the beam 
waist can reveal subcellular-scale features that were previously only 
accessible by shifting the sample. In this experiment, sheet deconvo-
lution ran on a volume size of 512 × 512 × 160 in about 7 min, which is 
orders of magnitude faster than solving a spatially varying deblurring 
method without leveraging symmetry. With sheet deconvolution, users 
of LSFM can speed up the capture of large samples while still getting 
high resolution across the entire FoV.

Space-invariant systems
We have demonstrated our methods for rotational and lateral sym-
metry, and expect that the extension to other symmetries would be 
analogous. In addition, elements of RDM may find use even when the 
system is not space-varying or when calibration data are not available. 
If aberrations are not space-variant, the first part of the RDM pipeline 
can still provide value by estimating the spherical aberration coefficient 
from a calibration image via Seidel fitting. With this coefficient, we 
can generate a synthetic center PSF and perform deconvolution. We 
call this procedure Seidel deconvolution, and find that it essentially 
denoises the PSF measurement as it finds the closest synthetic PSF to 
the measured one. Additionally, this single coefficient can be jointly 

estimated with the deconvolved image with no calibration, providing 
a technique for blind deconvolution (details are in Methods).

In the results shown in Extended Data Fig. 1, Seidel deconvolu-
tion resolves smaller features and gives a cleaner reconstructed 
image than standard deconvolution with the measured PSF. The blind 
deconvolution result is similar to that of Seidel deconvolution, though 
cannot resolve the smallest features and has overly high contrast due 
to noise. Future work extending this idea to blind, spatially varying 
deblurring could use DeepRD to iteratively search over the space 
of deblurring networks and choose the network with the sharpest 
reconstruction.

We note that while existing work has fit a variety of parametric 
models to the experimentally measured PSF, including a 2D Gaussian 
distribution40, Gaussian mixture model41, Zernike basis42–47, spherical 
aberration diffraction model48 and Seidel ray model49,50, fitting Seidel 
polynomials in the pupil function is new.

Discussion
In summary, we developed a pipeline for image deblurring in rota-
tionally symmetric systems, called RDM, which encompasses both an 
analytically derived deblurring technique, ring deconvolution and its 
fast alternative, DeepRD. Like standard deconvolution microscopy, 
our methods only require a single calibration image; however, they 
offer space-varying aberration correction. We support RDM with a 
new theory of imaging under rotational symmetry, which we call LRI, 
and an implementation of the LRI forward model (ring convolution). 
For RDM calibration we also develop a procedure for fitting Seidel 
aberration coefficients from a single calibration image of randomly 
placed point sources. To show generality of our ideas, we further 
derive, implement and test an analogous method that exploits linear 
(instead of radial) symmetry, for applications in light-sheet microscopy.  
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We verify the accuracy of our deblurring methods in both simulation 
and experimentally over four diverse microscope modalities.

We hope that RDM will ultimately replace deconvolution micros-
copy as standard practice in widespread applications from biology 
to astronomy. We believe that RDM will find most use in systems that 
approach optical extremes such as miniature microscopes or large FoV 
systems, but may also empower optical designers to simplify hardware 
knowing they have the ability to better correct for aberrations digi-
tally. RDM is well suited to dynamic conditions in which the system or 
sample is changing, as long as the system calibration can be updated 
accordingly. For simpler cases that can be directly modeled, such as the 
time-varying deformation of an imaging fiber, it should be possible to 
update the initial calibrated PSFs with a theoretical model51,52.

We intend RDM to be a living, breathing tool with constant 
improvements to its speed, accuracy and artifacts. Already we have 
seen a 20-fold decrease in ring deconvolution’s runtime in preliminary 
experiments by parallelizing it over multiple graphical processing units 
(GPUs) using the novel Chromatix optical framework53. Moreover, 
the constant improvement in deep-learning architecture, including 
better conditional models54, can also improve the performance of 
DeepRD in future. We plan to continually update our codebase with 
these improvements.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02684-5.
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Methods
Ring convolution and ring deconvolution
We begin with a primer on notation. Let g(u, v) describe the object’s 
intensity at (u, v) and h(x, y; u, v) describe the space-varying PSF; the 
intensity at (x, y) of the PSF generated by a point source at (u, v). We 
further use the notation ̃g  to denote the transformation of g to polar 
coordinates. Then the final image intensity f(x, y) of a linear optical 
system is formed by the superposition integral55:

f(x, y) = ∫∫ g(u, v)h(x, y;u, v)dudv. (1)

This equation is the system forward model for a linear space-varying 
system; it describes the image as a function of the object and PSFs at 
different locations in the FoV.

Standard image deconvolution approximates the system as LSI, 
which means the PSF is the same at all positions in the FoV, h(x, y; u, v) 
= h(x − u, y − v; 0, 0). This simplifies the forward model in equation (1) 
by reducing it to a convolution with a single PSF. This greatly reduces 
the computation for forward and inverse problems, but at the cost of 
being inaccurate for space-varying aberrations.

In this paper, we incorporate radially varying aberrations ana-
lytically into the forward model to provide a middle ground between 
purely space-invariant and completely space-varying systems. The 
assumption is that the system is LRI (its physical configuration is sym-
metric about the optical axis; Fig. 1a). This is true of many typical optical 
imaging systems. Our core observation is that all LRI optical systems 
satisfy

̃h(ρ,ϕ; r,θ) = ̃h(ρ,ϕ − θ; r,0). (2)

Under this assumption, the object intensity can be written as what 
we call a ring convolution, denoted by f ≜ g ⊚ h. By substituting equation 
(2) into equation (1) with x = ρcosϕ and y = ρsinϕ, we get

f(x, y) = (g⊚ h)(x, y) = ∫
∞

0
r( ̃g∗θ ̃h) (√x2 + y2, tan−1( y/x); r,0)dr, (3)

where the *θ operator indicates a 1D convolution over the θ dimension. 
The r arises in the deconvolution as we are integrating over object space 
(u, v) in polar coordinates (r, θ). This ring-wise computation, wherein 
points at different radii are filtered heterogeneously, is consistent 
with the underlying intuition in LRI: the blur varies radially. Our first 
main result allows for an efficient, fast Fourier transform (FFT)-based 
version of ring convolution.
Theorem 1. Ring convolution theorem. Under LRI, where ℱΘ is a 1D 
Fourier transform over θ,

̃f(ρ,ϕ) = ℱ−1
Θ {∫ rℱΘ{ ̃g(r,θ)}ℱΘ{ ̃h(ρ,θ; r)}dr} (ϕ).

Proof. As the given system is LRI, equation (3) holds. Substituting 
ρ = √x2 + y2  and ϕ = tan−1(y/x), we can rewrite equation (3) as

̃f(ρ,ϕ) = ∫
∞

0
r( ̃g∗θ ̃h)(ρ,ϕ; r,0)dr.

Applying the Fourier convolution theorem to the 1D convolution on 
the right-hand side yields

̃f(ρ,ϕ) = ∫ rℱ−1
Θ {ℱΘ{ ̃g(r,θ)}ℱΘ{ ̃h(ρ,θ; r)}} (ϕ)dr,

where ℱΘ is the 1D Fourier transform over θ. By Fubini’s theorem, we 
pull the inverse Fourier transform outside of the integral, which gives

̃f(ρ,ϕ) = ℱ−1
Θ {∫ rℱΘ{ ̃g(r,θ)}ℱΘ{ ̃h(ρ,θ; r)}dr} (ϕ).

There is an efficient and convex formulation for computing the 
inverse of ring convolution, namely ring deconvolution:

̂g = argmin
̄g

||f − ̄g⊚ h||22. (4)

This problem can be solved via an iterative least squares solver using 
Algorithm 1 as a substep. A Fourier interpretation of ring convolution 
is provided in Supplementary Fig. 5. While the above results are all rigor-
ous, the discrete time implementations of them have small, but nonzero 
errors due to discretization. For example, the polar transformation in 
Algorithm 1 requires a small amount of interpolation. As is the case with 
standard deconvolution, there are conditions for which ring convolu-
tion is not fully invertible and consequently ring deconvolution will not 
recover the sample exactly. The diffraction limit, for example, manifests 
in PSFs whose frequency spectrum is bandlimited, rendering frequen-
cies in the sample that are past the bandlimit irrecoverable. This can also 
happen if certain frequencies in the system’s transfer function are below 
the noise floor. In such cases ring deconvolution, because it is convex, 
will return an estimate of the sample that is closest in l2 norm to the true 
sample. Regularization can improve this result even further by leverag-
ing previous knowledge about the sample in question. Visualizations 
of these algorithms can be found in the Supplementary Information.

Algorithm 1. Ring convolution
Input: N × N pixel image g; PSFs along one radial line h(j), j = 1,…, K;  
corresponding distances rj, j = 1,…, K of each PSF from the center.
Output: LRI blurred image f
  1:  ̃g ← polarTransform(g)      ⊳ �polar dimensions are M × K, angle 

by radius
  2:  ̃f ← zeros(M × K)    ⊳ �initialize the output in polar form as an all 

zero matrix
  3:  for j = 1,…, K do
  4:    ̃h

( j)
← polarTransform(h(j))

  5:    for i = 1,…, K do
  6:      ̃f∶,i ← ̃f∶,i + iFFT{r j FFT{ ̃g∶,j}FFT{ ̃h

( j)
∶,i }}      ⊳ �compute polar 

output ring by 
ring, FFT is 1D

  7:  f ← inversePolarTransform( ̃f )

Fitting Seidel coefficients to PSFs
Ring (de)convolution algorithms require h, the collection of PSFs 
along one radial line in the FoV. Fortunately, there is a convenient and 
compact alternative to measuring these manually. The Seidel aber-
ration coefficients32,56 are a polynomial basis that can represent any 
rotationally symmetric system. We mathematically describe the form 
of these aberrations in the Supplementary Information.

The estimation procedure for estimating the Seidel coefficients 
involves fitting them to a single, sparse image of a few randomly scat-
tered point sources (for example fluorophores on a microscope slide). 
Such an image is usually easier to obtain than an image of an isolated 
point source in the center of the FoV. The presence of off-axis PSFs in 
the calibration image provides information about all aberration coef-
ficients. Though it may be possible to fit these coefficients from a single 
off-axis PSF, we find that a few, randomly placed PSFs provide a robust 
fit. The locations of the point sources are not known a priori and are 
estimated via local peak detection. The optical center of the system is 
also needed to properly localize the PSFs; this can be found heuristically 
or by using common optical center finding algorithms such as ref. 57.

Let r1,…, rJ be the object-plane radii of the J points in the calibration 
image. We then find the primary Seidel coefficients ω̂ whose generated 
PSFs best match the measured PSFs. Once again, this searching proce-
dure is succinctly stated as an optimization problem,

ω̂ = argmin
ω̄

J
∑
j=1

||h( j) − ℱ−1{P(ω̄)( j)}||22, (5)
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where P(ω̄)( j) is the pupil function with Seidel coefficients w̄ from a 
point source at distance rj from the center of the FoV.

It has been shown that for LRI systems, the optimal fit ŵ achieves 
a diminishing error32. Furthermore, the five primary Seidel coefficients 
index the dominant aberrations present in practical imaging systems: 
sphere, coma, astigmatism, field curvature and distortion. For more 
complex aberrations it is possible to add higher-order Seidel coeffi-
cients to the fit (Supplementary Information); however, our experi-
ments demonstrate that the five primary coefficients suffice to 
characterize practical, spatially varying LRI systems. In practice, we fit 
these five coefficients via the ADAM optimizer58 and obtain reasonable 
local minima even though the problem is nonconvex. We note that this 
procedure is optimal in the maximum likelihood sense59. Armed with 
the estimated Seidel coefficients, we can generate synthetic PSFs at 
any radius. Note that Seidel coefficients are easier to estimate than 
Zernike coefficients in a similar fashion, which are different at each 
field position42,43.

Deep ring deconvolution
DeepRD accepts a two-part input, a blurred image and its corresponding 
primary Seidel coefficients. DeepRD is designed to incorporate these 
Seidel coefficients into the deblurring process in a parameter-efficient 
and interpretable manner. To that end, we propose a neural network 
architecture inspired by the physical LRI image formation model. The 
first key design element is to use a modified Hypernetwork60, a network 
that predicts the weights of another, task-specific ‘primary’ network. 
In DeepRD, an multilayer perceptron (MLP)-based hypernetwork takes 
in Seidel coefficients and produces a deep deblurring network that 
specifically works for the given coefficients. Our second key design 
element is the use of ring-wise convolution kernels. Specifically, the 
hypernetwork produces CNN kernels for each radius which the primary 
network applies ring by ring. This replicates the revolution-invariance 
assumption central to ring deconvolution and eases the space-invariant 
constraint of typical convolutional kernels. Together, this design ena-
bles a neural network that is a fraction the size of a conventional U-Net 
with improved performance and generalization.

To produce a training dataset for DeepRD, we synthetically gener-
ate blurred input images from the Div2k and CARE fluorescence micros-
copy datasets using ring convolution with randomly sampled sets of 
Seidel coefficients. We must sample coefficients which adequately 
cover the attributes of realistic imaging systems. Each coefficient, 
which is in units of waves, is drawn from a uniform distribution and 
a noise-perturbed grid in the range 0−3 waves (we empirically find 
this range to cover the aberrations of systems ranging from perfect to 
highly aberrated). Note that without ring convolution, such a dataset 
would be prohibitively slow to produce. With that in mind, we will 
release both an implementation of ring convolution as well as our 
dataset. Each model is first pretrained on 80,500 data points from 
the Div2k dataset (800 base images blurred with 100 different Seidel 
coefficients) and then fine-tuned on a small 8,400 data point subset 
of the CARE dataset (24 images and 350 different Seidel coefficients). 
After training, each method is tested on a test set of 28 unseen images 
from the CARE dataset, which are blurred using the true blur method 
and noised with additive Gaussian noise.

We find that this physically grounded synthetic dataset generation 
is effective in training models that generalize to real-world evaluation. 
As further evidence of generalization, DeepRD seems to disentangle the 
effects of each aberration coefficient. An exploration of this interpret-
ability is found in the Supplementary Information.

Sheet convolution, deconvolution and the LSFM PSF model
Here we derive sheet convolution and deconvolution mathematically. 
The derivations are roughly similar to those for ring convolution, but 
with a different symmetry. Because of the similarities, our exposition 
here is more terse.

Sheet convolution and deconvolution. LSFM is a 3D imaging modal-
ity and therefore the object and PSF will be a function of three space 
variables. Let g(u, v, t) describe the object intensity at location (u, v, 
t), and h(x, y, z; u, v, t) describe the space-varying PSF due to Gaussian 
light-sheet illumination focused along the u dimension (the choice of 
u as the first spatial dimension is arbitrary). The superposition integral 
for a linear optical system can then be written as

f(x, y, z) = ∫∫∫ g(u, v, t)h(x, y, z;u, v, t)dudvdt,

analogously to equation (1). As before, we will incorporate the symme-
try of LSFM to simplify the above display. The symmetry assumption 
states that the imaging optics are space-invariant, but the PSF varies 
in the u direction due to the beam profile. Recall also that the total PSF 
is the product of the imaging PSF with the illumination PSF, which is 
varying. The following equation encodes these assumptions:

h(x, y, z;u, v, t) = h(x, y − v, z − t;u,0,0).

As before, plugging this into the linear forward model gives us sheet 
convolution:

f(x, y, z) = ∫∫∫ g(u, v, t)h(x, y − v, z − t;u,0,0)dudvdt

= ∫(g∗v,th)(x, y, z;u,0,0)du,

where *v,t represents a 2D convolution along the v and t axes. From the 
equation we see that the image is the integral of 2D convolutions of 
y − z sheets of the object with y − z sheets of the PSFs. To compute this 
integral, we only need to know the PSF at all values of u, and the v and 
t dimensions do not matter.

With a forward model in hand, sheet deconvolution can be 
solved the same way as ring deconvolution: iterative least squares 
(equation (4)). The discretization and computational implementa-
tion of these algorithms mimic those of ring convolution and can 
be found in our codebase.

LSFM PSF model. The remaining component of LSFM deblurring 
strategy is to obtain the necessary set of 3D PSFs along one dimen-
sion. Similar to our earlier strategy for calibrating ring convolution/
deconvolution, we can do so by imaging a single calibration volume 
containing randomly located, sparsely distributed point sources (for 
example, fluorescent beads embedded in agarose). The resulting image 
stack will contain a random set of PSFs at different u locations.

The simplest option is to directly estimate the PSFs at the miss-
ing u locations by taking the convex combination of the two closest 
measured PSFs from the calibration stack. We use this strategy for the 
bead experiment in Fig. 6.

The second option is more akin to our Seidel fitting procedure; it 
involves parametrization of the spatially varying PSFs with a unified, 
differentiable model. In this case we develop a modified version of 
popular Gibson–Lanni 3D PSF model for LSFM61. We will focus on our 
modifications of the model; further details about the Gibson–Lanni 
model and its variants are ubiquitous in the literature61,62. Given a 
vector p of system characteristics (for example, sample refractive 
index) the Gibson–Lanni model calculates the optical path difference 
between the ideal and experimental imaging systems. Integrating 
over this optical path difference gives the system’s 3D PSF. Our LSFM 
PSF model takes this PSF and truncates its z extent according to 
the light-sheet illumination thickness, thereby creating a spatially 
varying PSF in u. Formally, let the Gibson–Lanni PSF be hp, then our 
LSFM PSF

h(x, y, z;u, v, t) = hp(x − u, y − v, z − t) 1
σ(u)√2π

e−
1
2
( z−t
σ(u)

)
2

,
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where

σ(u) = α√1 + (βu)2.

The above equations arise from modeling the light-sheet as a Gaussian 
beam along u; its spread σ(u) changes hyperbolically along the focus 
direction and its profile at a given u is a Gaussian with variance σ(u)2. 
We have two control knobs for it, α, which controls the z spread of the 
PSF at the thinnest section or waist, and β, which controls the rate that 
the spread increases as a function u. Given the calibration stack, we can 
optimize α and β such that our PSF model produces PSFs close to the 
experimental ones. Since the PSF is a differentiable function of (α, β), 
they can be solved for using gradient-based iterative optimization, just 
like for equation (5). It is also possible to incorporate elements of p into 
this optimization if they are not known a priori. This model is used to 
calibrate sheet deconvolution on the cell sample in Fig. 6.

To deploy the above models experimentally, one must ensure 
that the point sources are sufficiently sparse such that the PSFs are 
mostly nonoverlapping. The exact point source locations are not 
important and can be estimated. Noisy PSFs are best handled with the 
Gibson–Lanni fitting method, which uses synthetic PSFs but still fits the 
measured PSFs well (Supplementary Fig. 1). The interpolation method 
is more sensitive to noise but can be denoised effectively with thresh-
olding and median filtering. The fitting procedures are detailed in our 
codebase and follow the same general structure: first take a calibration 
stack of randomly scattered point sources, estimate the locations of the 
PSFs using local peak finding algorithms, produce generated PSFs at 
those locations and use the error between the generated and measured 
PSF to update the PSF model. In the case of interpolation, the last step 
is replaced by linearly interpolating the two closest measured PSFs to 
the desired location to create the generated PSF there.

Blind deblurring
Our version of blind deconvolution also takes advantage of the Seidel 
coefficients. Given just a blurry image, we start by randomly picking 
a value for the spherical Seidel coefficient. Then we use this value to 
synthetically generate a PSF and use it to deconvolve the blurry image. 
We then compute the sum of the spatial gradient of the resulting decon-
volved image (this acts as a surrogate measure of image sharpness) 
and use its negative as a loss. We then minimize this loss (maximize the 
sharpness) by updating our initial guess of the spherical aberration 
coefficient using its gradient with respect to the loss function. Running 
this iteratively, we eventually converge to a final spherical aberration 
coefficient, generate a final synthetic PSF and deconvolve the blurry 
image with this PSF to get the final result.

Note that this procedure generalizes to spatially varying systems. 
We would instead jointly estimate all five Seidel coefficients and use 
ring deconvolution instead deconvolution at each step. This, however, 
is computationally expensive and requires generating N (the image side 
length) PSFs per iterative step. We believe it is possible to do this more 
efficiently with DeepRD by replacing the ring deconvolution operation 
at each step with DeepRD. That is, we search the space of DeepRD net-
works for the one that produces the sharpest reconstruction; however, 
this is out of scope for this project and we leave it as future work.

Experimental details
Experimental details for the micro-endoscopy experiment can be 
found in ref. 15.

Sample preparation. Live tardigrades. Tardigrades were mixed-staged 
adults (3–6 weeks old) of the eutardigrade species Hypsibius exemplaris 
Z151 (reclassified from Hypsibius dujardini in 2017), purchased from 
Sciento. Animals were cultured as described previously63. A mixture 
of starved and nonstarved tardigrades were stained overnight with 
Invitrogen nucleic acid gel fluorescent stain, whose excitation and 

emission maxima are 502 nm and 530 nm, respectively. Individual 
stained tardigrades were then isolated onto a glass slide for imaging. 
Meanwhile, the nonfluorescent samples (USAF resolution targets and 
rabbit liver tissue) were obtained imaging-ready on glass slides.

BPAE cells. BPAE cells were obtained from Thermo Fisher. They are 
labeled with MitoTracker Red CMXRos and Alexa Fluor 488 Phalloidin.

Beads. The 100-nm fluorescent beads were obtained from Polysciences 
(17150-10). For measuring the PSF in the light-sheet fluorescence micro-
scope, we embedded the beads in 2% agarose with a final density 5 × 10−4 
of the stock solution.

SU8686 cells. SU8686 cells labeled with F-tractin-mRuby were embed-
ded in soft bovine collagen and then fixed before imaging with 
light-sheet fluorescence microscope. They were obtained from ATCC.

Imaging. UCLA Miniscope. We used the UCLA Miniscope v.3 with the 
Ximea MU9PM-MBRD 12 bit, 2.2-μm pixel sensor. Optically, the Mini-
scope consists of a gradient-index objective and achromat tube lens; 
further details are provided elsewhere1. To obtain the system PSFs, we 
imaged 1-μm fluorescent beads randomly smeared on a glass slide. We 
used the resulting image to fit Seidel coefficients, obtaining 0.85, 0.56, 
0.25, 0.29 and 0 waves of spherical aberration, coma, astigmatism, 
field curvature and distortion, respectively. These numbers, while 
specific to our particular assembly of the Miniscope, are consistent 
with the aberration profile of a radial gradient-index (GRIN) lens64, 
which is the objective lens used by the Miniscope. The fact that the 
off-axis coefficients (all the primary coefficients except for spherical) 
are nonzero confirms that the system is indeed spatially varying. For 
comparison with standard deconvolution, we also acquired the center 
PSF by imaging a single fluorescent bead isolated and centered in the 
FoV. The PSF was then denoised before its use in deconvolution. For 
deconvolution microscopy calibration, we repeatedly diluted the bead 
solution with isopropyl alcohol until we were able to sufficiently isolate 
a single bead, whereas for RDM calibration we used a single dilution 
and imaged a slide containing a sparse collection of beads. We used a 
custom Prior Scientific 3D motion stage controlled with Micromanager 
v.1.4 and Pycromanager65.

Multicolor fluorescence microscope. We used a Nikon Plan Apo VC ×100 
Oil DIC N2 objective with 1.518 refractive index oil in a Nikon Eclipse 
Ti2 controlled with the Nikon NIS Elements Software (v.6.9.0). Images 
were taken with a Hamamatsu Orca Flash 4.0 camera with 0.065-μm 
pixel pitch. The PSFs were obtained with 0.01-μm FluoSpheres 
Yellow-Green505/515-nm F8803 and FluoSpheres Red 580/605-nm 
F8801 beads. First, we diluted beads in water and then further in etha-
nol until sufficient sparsity was achieved. The bead solution was then 
smeared on a slide and left to dry. Finally, the beads were mounted with 
a drop of glycerol and sealed with nail polish.

Light-sheet fluorescence microscope. We used a previously published 
setup for Field Synthesis66 that was operated without a ring mask, 
rendering it to a multidirectional selective plane illumination mSPIM67 
system with a Gaussian sheet. The microscope equipped with 488 and 
561 nm laser illumination, a Special Optics ×28.5/NA 0.67 illumination 
objective and a Nikon ×25/NA 1.1 detection objective, and is controlled 
with a custom LabView 2016 program written by Coleman Technolo-
gies and is equipped with temperature control for long-term live-cell 
imaging.

Image processing. All experimental images were captured and stored 
in a raw, unprocessed format (npy or tif). Miniscope images under-
went hot pixel removal (detailed in the public code) and normaliza-
tion before deblurring. These images were cropped afterward by  
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10 pixels in each dimension to remove edge artifacts. Multicolor 
images were downsampled by a factor of 2, separated into two chan-
nels and deblurred independently. After deblurring, the channels were 
recombined and globally contrast-stretched for display. Pseudocol-
oring was conducted with ImageJ using the Green/Magenta look-up 
table (LUT). These images were also cropped for edge artifacts. The 
details of the multimode fiber images can be found elsewhere15. The 
bead images were upsampled by 3× and convolved with a Gaussian 
kernel (3/2 pixel width) after deblurring. Neuron images were con-
volved with a Gaussian kernel (1 pixel width) after deblurring. This was 
carried out according to ref. 15. LSFM stacks were similarly cropped 
and contrast-stretched equally for each method for the purpose of 
display. For simulation data, images were normalized before deblur-
ring and cropped after deblurring. All displayed PSFs were globally 
contrast-stretched for display.

Computation. PSF generation for the simulation experiments was 
conducted by synthetically generating pupil functions with the given 
Seidel coefficients56. Computation was conducted using Python 
on a single GPU, either a NVIDIA GeForce RTX 3090 or NVIDIA RTX 
A6000. For standard deconvolution the measured PSF was denoised 
through background subtraction and pixel-wise thresholding. For 
each 1,024 × 1,024 image from the Miniscope and high-NA multicolor 
systems, ring deconvolution took about 115 s and DeepRD took about 
125 ms. For each 512 × 512 image in simulation ring deconvolution took 
about 60 s and DeepRD took about 0.1 s. For the 360 × 360 images from 
the micro-endoscope, ring deconvolution took about 20 seconds. For a 
single 512 × 512 × 160 volume from the LSFM system, sheet deconvolu-
tion took about 7 min.

All nonlearning, iterative methods are solving linear least squares 
optimization problems (equation (4)); we additionally add TV regu-
larization to these and run them till convergence using an ADAM opti-
mizer58. For each method, the hyperparameters (including learning 
rate and regularization strength) that provided the smallest loss and 
best qualitative results were used. For deconvolution we tried a variety 
of algorithms in addition to the iterative scheme, including Wiener 
filtering and Richardson–Lucy deconvolution, and used the best recon-
struction, which was either iterative deconvolution or unsupervised 
Wiener filtering68.

Open-source implementations of ring convolution, polar trans-
form, Seidel fitting and ring deconvolution as well as the light-sheet 
extension methods can be found in our codebase. Our intent is for 
this codebase to function as an easy-to-use library such that any prac-
titioner with any imaging system can utilize RDM with little-to-no 
overhead.

The baseline U-Net and DeepRD were both trained on ring- 
convolved images from the Div2k dataset. For the simulation results, 
both models were additionally fine-tuned on images from the CARE 
dataset. All models were trained till convergence of the validation loss 
and optimized over hyperparameters. The baseline U-Net architecture 
is based on the popular CARE model21.

We used the following Python packages: Python 3.8.1, numpy 
1.20.2, pytorch 2.4.1, scipy 1.6.2, scikit-image 0.17.2, pillow 8.2.0, mat-
plotlib 3.2.2, tqdm 4.65.0, kornia 0.5.3 and jupyter 1.0.0. ImageJ 1.53a 
was also used for psuedocoloring for display.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used in all of the imaging experiments (Miniscope, multicolor 
fluorescence, multimode fiber and light-sheet) are publicly available 
on Box (https://berkeley.box.com/s/zmsjjgmquwq2roh4d9qthcn-
v3rhwuidn). Additional experimental data from the multimode fiber 

system can be requested from ref.15 (https://opg.optica.org/boe/
fulltext.cfm?uri=boe-11-8-4759&id=433935). The datasets used to 
train and fine-tune DeepRD and to evaluate the quantitative perfor-
mance of the methods are also hosted on Box (https://berkeley.box.
com/s/vv3g6avhrr9agijmlj3b1153oo7x9gao). These datasets were 
sourced from the CARE dataset21 (https://publications.mpi-cbg.de/
publications-sites/7207/) and the Div2k dataset37 (https://data.vision.
ee.ethz.ch/cvl/DIV2K/). The high-resolution pretraining dataset, due 
to its large memory useage, will be made available upon request.

Code availability
The code for implementing ring convolution, ring deconvolution, 
DeepRD (including pretrained model weights) and Seidel PSF fitting 
along with tutorials on our experimental data are publicly available on 
GitHub (https://github.com/apsk14/rdmpy).

References
55.	 Goodman, J. W. Introduction to Fourier Optics 4th edn  

(Roberts and Company, 2017).
56.	 Voelz, D. G. Computational Fourier Optics: a MATLAB Tutorial  

(SPIE, 2011).
57.	 Zheng, Y., Kambhamettu, C. & Lin, S. Single-image optical center 

estimation from vignetting and tangential gradient symmetry. 
In Proc. IEEE Conference on Computer Vision and Pattern 
Recognition, 2058–2065 (IEEE, 2009).

58.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. 
Preprint at https://arxiv.org/abs/1412.6980 (2014).

59.	 Southwell, W. H. Wave-front analyzer using a maximum likelihood 
algorithm. J. Opt. Soc. Am. 67, 396–399 (1977).

60.	 Ha, D., Dai, A. M. & Le, Q. V. Hypernetworks. In Proc. International 
Conference on Learning Representations (ICLR, 2017).

61.	 Gibson, S. F. & Lanni, F. Experimental test of an analytical  
model of aberration in an oil-immersion objective lens used  
in three-dimensional light microscopy. JOSA A 8, 1601–1613 
(1991).

62.	 Li, J., Xue, F. & Blu, T. Fast and accurate three-dimensional point 
spread function computation for fluorescence microscopy.  
J. Opt. Soc. Am. A 34, 1029–1034 (2017).

63.	 Lyons, A. M., Roberts, K. T. & Williams, C. M. Survival of tardigrades 
(Hypsibius exemplaris) to subzero temperatures depends on 
exposure intensity, duration, and ice-nucleation–as shown  
by large-scale mortality dye-based assays. Preprint at bioRxiv 
https://doi.org/10.1101/2024.02.28.582259 (2024).

64.	 Wang, D. Y. H. & Moore, D. T. Third-order aberration theory for 
weak gradient-index lenses. Appl. Opt. 29, 4016–4025 (1990).

65.	 Pinkard, H. et al. Pycro-manager: open-source software for 
customized and reproducible microscope control. Nat. Methods 
18, 226–228 (2021).

66.	 Chang, B. J. et al. Universal light-sheet generation with field 
synthesis. Nat. Methods 16, 235–238 (2019).

67.	 Huisken, J. & Stainier, D. Y. R. Even fluorescence excitation  
by multidirectional selective plane illumination microscopy 
(mSPIM). Opt. Lett. 32, 2608–2610 (2007).

68.	 Orieux, F., Giovannelli, J.-F. & Rodet, T. Bayesian estimation 
of regularization and point spread function parameters for 
Wiener-Hunt deconvolution. J. Opt. Soc. Am. A 27, 1593–1607 
(2010).

Acknowledgements
We acknowledge A. Lyons and S. Kato’s laboratory for providing the 
tardigrades, the authors of ref. 15 for providing the micro-endoscopy 
data, the Nikon Imaging Center at Harvard Medical School,  
N. Aggarwal for 3D printing, G. Gunjala, M. Gihana from the Danuser 
laboratory at the University of Texas Southwestern for SU8686 
cells and D. Deb from the Janelia Research Campus for multi-GPU 

http://www.nature.com/naturemethods
https://berkeley.box.com/s/zmsjjgmquwq2roh4d9qthcnv3rhwuidn
https://berkeley.box.com/s/zmsjjgmquwq2roh4d9qthcnv3rhwuidn
https://opg.optica.org/boe/fulltext.cfm?uri=boe-11-8-4759&id=433935
https://opg.optica.org/boe/fulltext.cfm?uri=boe-11-8-4759&id=433935
https://berkeley.box.com/s/vv3g6avhrr9agijmlj3b1153oo7x9gao
https://berkeley.box.com/s/vv3g6avhrr9agijmlj3b1153oo7x9gao
https://publications.mpi-cbg.de/publications-sites/7207/
https://publications.mpi-cbg.de/publications-sites/7207/
https://data.vision.ee.ethz.ch/cvl/DIV2K/
https://data.vision.ee.ethz.ch/cvl/DIV2K/
https://github.com/apsk14/rdmpy
https://arxiv.org/abs/1412.6980
https://doi.org/10.1101/2024.02.28.582259


Nature Methods

Article https://doi.org/10.1038/s41592-025-02684-5

experiments. A.K. was funded by the Berkeley Fellowship for Graduate 
Study and the Air Force Office of Scientific Research. A.N.A. was 
supported by the Berkeley Fellowship for Graduate Study and the 
National Science Foundation Graduate Research Fellowship Program 
under grant number DGE 1752814. Any opinions, findings, and 
conclusions or recommendations expressed in this material are those 
of the author(s) and do not necessarily reflect the views of the National 
Science Foundation. This work was funded by the Air Force Office of 
Scientific Research under award number FA9550-22-1-0521, CZI grant 
DAF2021-225666 and grant https://doi.org/10.37921/192752jrgbn from 
the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley 
Community Foundation (funder https://doi.org/10.13039/100014989) 
and STROBE: A National Science Foundation Science and Technology 
Center under grant number DMR 1548924 (grant 1351896). L.W. is a 
Chan Zuckerberg Biohub SF investigator.

Author contributions
A.K., A.N.A. and L.W. conceptualized the work. A.K. and A.N.A. 
developed the theory and code. A.K. created the light-sheet 
extension. A.K., D.M. and E.W. created the deep-learning component. 
A.K., A.N.A., S.Y., K.Y., F.M.G., B.C. and R.F. gathered experimental data. 
A.K., A.N.A., D.M., B.C., R.F. and L.W. wrote the paper.

Competing interests
L.W. has a financial interest in SCI Microscopy. The other authors 
declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41592-025-02684-5.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41592-025-02684-5.

Correspondence and requests for materials should be addressed to 
Amit Kohli or Laura Waller.

Peer review information Nature Methods thanks Christopher Metzler, 
and the other, anonymous, reviewer(s) for their contribution to the 
peer review of this work. Peer reviewer reports are available. Primary 
Handling Editor: Rita Strack, in collaboration with the Nature Methods 
team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://doi.org/10.37921/192752jrgbn
https://doi.org/10.13039/100014989
https://doi.org/10.1038/s41592-025-02684-5
https://doi.org/10.1038/s41592-025-02684-5
https://doi.org/10.1038/s41592-025-02684-5
http://www.nature.com/reprints


Nature Methods

Article https://doi.org/10.1038/s41592-025-02684-5

Extended Data Fig. 1 | RDM for space-invariant systems. Our Seidel and blind 
deconvolution algorithms compared with standard deconvolution on USAF 
test target and live tardigrade images from the Miniscope. The field-of-view 
is cropped to ensure space-invariance. Our methods outperform standard 
deconvolution by using a synthetic PSF, which prevents artifacts and loss of 

resolution from noise-based artifacts. Our blind deconvolution method usually 
correctly estimates the spherical Seidel coefficient well; however, for certain 
images, the blind method can overestimate the coefficient, leading to over 
sharpening of the image, as in the USAF resolution chart.
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Extended Data Fig. 2 | Additional comparisons on micro-endoscope data. 
An evenly spaced grid of 13 × 13 point sources are imaged with the micro-
endoscope system. a) Results from each method. Top row (left to right) is the raw 
measurement, deconvolution with an experimental PSF and deconvolution with 
a Gaussian kernel fitted to the PSF. Bottom row (left to right) is deblurring via 
modal decomposition, SVRL, and ring deconvolution. As seen in b), the spatially 
varying methods (bottom row) are superior to the deconvolution methods 

(top row) due to the substantial spatial variation in the PSF. Among the spatially 
varying methods, ring deconvolution produces the smallest, most consistent 
beads. The quantitative results in c) also show that ring deconvolution has the 
smallest average bead radius with the least variation. Moreover, unlike the other 
methods, its performance does not degrade on beads far from the center of  
the FoV.
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