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Abstract: We demonstrate PaCMAN, a ptychography algorithm that can reconstruct high
quality images with broadband illumination sources while being robust to shot, detector, and
parasitic noise. We extend prior monochromatization work to improve accuracy, especially for
discrete spectra, and also demonstrate how PaCMAN can be converted into Ms. PaCMAN, a
multi-spectral variant that outperforms multi-spectral ePIE. When comparing speed-optimized
ePIE and PaCMAN, we achieve high reconstruction quality in 4x less time, and when they are
dose-optimized, we achieve high reconstruction quality in 1.5-2x less dose. These algorithms
will enable rapid sub-10 nm imaging with table-top soft X-ray high harmonic supercontinua,
advance attosecond coherent diffractive imaging, and reduce the dose needed to image radiation
sensitive materials.
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1. Introduction

Coherent beams of extreme ultraviolet (EUV) and soft x-ray (SXR) light can now be produced
using tabletop high harmonic (HHG) sources as well as high brightness synchrotron and XFEL
sources. When combined with coherent diffractive imaging (CDI), it is finally possible to image
with sub-wavelength spatial resolution at short wavelengths, and to achieve transverse and axial
resolutions on the order of 10 nm and 0.1 nm, respectively [1,2].

Despite tremendous improvements in HHG, synchrotron, and XFEL sources, there are still
several factors that limit attainable resolution. Partial spatial coherence limited resolution for
older third-generation synchrotrons, but is no longer a limiting factor in diffraction-limited storage
rings [3] and is not an issue for HHG sources that are well phase matched [4]. However, parasitic
scattering from beamline optics or sample mounting can introduce artifacts on the detectors
that are spatially incoherent with respect to the illumination [1,5]. Reconstructing images with
diffraction patterns that include parasitic scattering will introduce high frequency ripple artifacts
in the image, or can even prevent convergence altogether. The most common approach to address
partial spatial coherence has been the inclusion of multiple probe/object modes [6] based on
a decomposition of the mutual coherence function. Another method based on the Alternating
Direction Method of Multipliers (ADMM) incorporates frame-independent scattering [5].

Another limitation to high fidelity diffractive imaging is associated with quasi-monochromatic
or broadband sources, which can span 12 octaves of bandwidth in the soft X-ray region for
HHG sources [7,8]. Broad bandwidths radially blur the diffraction patterns, thus corrupting
high resolution data at the edges of the patterns. In addition, the probe profile and sample
transmission may change significantly over the wavelength range of the illumination, especially
near absorption edges. These challenges are commonly addressed by filtering the spectrum using
monochromators or other optics that select a narrow portion of the spectrum, effectively throwing
away part of the spectrum [1,9]. More efficient algorithms that can use broadband spectra can
both improve the usable flux of the source and enable femtosecond or attosecond time resolution
spectro-ptychography [10–12].
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One solution to broadband illumination is to implement a multi-wavelength algorithm that
solves for multiple wavelength dependent probes and objects, similar to the mixed state approach
for spatial coherence [11,13,14]. Multi-wavelength algorithms are particularly useful for
reconstructing discrete spectra from a HHG comb [15] or for atto-CDI near absorption edges [11].
They also enable wavefront sensing and characterization of the source [16]. Multi-wavelength
algorithms have been demonstrated with ePIE-like updates [11,13] and difference map-like
updates [17]. One downside of multi-wavelength algorithms is they have significantly higher
data demands than monochromatic algorithms: for example, in [13], an overlap of 90% was
used to reconstruct three discrete wavelengths, while in [11], an overlap of 94% was used to
reconstruct 17 wavelengths in a continuous spectrum. For context, a scan at a moderate overlap
of 70% has 25x less data than a scan at 94%.

One alternative to multi-wavelength algorithms is to monochromatize the diffraction patterns
using a measured continuous spectrum, allowing the reconstruction of a single object/probe using
standard algorithms like ePIE [10,18,19]. The spectrum can be measured with a spectrometer or
solved using a pinhole-filter setup, wherein a quasi-monochromatic diffraction pattern is acquired
and used to solve for the full broadband diffraction pattern [20]. Monochromatization algorithms
assume the object and probe are wavelength independent, which can be a good approximation
for low fractional bandwidths away from absorption edges and for certain experimental setups.
Since monochromatization makes stronger assumptions about the diffraction patterns than
multi-wavelength algorithms, it does not require extremely high probe overlaps (extra redundant
data) or numbers of iterations to converge to an image. This makes monochromatization a
promising method for expanding the usable flux from future SXR HHG sources [8].

Lastly, shot and detector noise can limit resolution. Shot noise follows a Poisson distribution
and is negligible at high fluxes, while detector noise can be approximated as flux-independent
Gaussian distribution [5]. For radiation sensitive materials like catalysts, polymers, resists, and
biological cells, we must limit dose to prevent extensive sample damage, which can make Poisson
noise a limitation. The standard method for accounting for Poisson noise is through a maximum
likelihood model [21], which can be integrated into different optimizers like ADMM [5,22,23].

To date, an algorithm that integrates broadband illumination, spatial coherence, parasitic
scattering, and shot/detector noise in the reconstruction has not been demonstrated. The multi-
wavelength SPIRE algorithm accommodates partial spatial coherence and broad bandwidths, but
does not model noise or parasitic scattering [11]. ADP accommodates parasitic scattering and
noise, but not broadband illumination [5]. Recently, several algorithm packages were published,
including the multi-language PtyLab [24] and the MATLAB-based PtychoShelves [25]. While
these packages provide a wide variety of useful tools for ptychography, neither include a general
ADMM framework with background subtraction or numerical monochromatization.

Here, we demonstrate a method that monochromatizes the diffraction patterns and solves
for the object and probe through an ADMM framework that compensates for Poisson and
parasitic noise. We call this algorithm PaCMAN, which stands for "Partial Coherence and
Monochromatization Algorithm with Noise". First, we verify the base PaCMAN algorithm
on experimental monochromatic x-ray magnetic circular dichroism data (XMCD) from the
COSMIC beamline. Then, we demonstrate an improved monochromatization procedure that
significantly reduces the error for discrete spectra and high flux continuous spectra. We compare
PaCMAN to standard ePIE [26] at different fluxes through simulations and find that it improves
reconstruction quality at all fluxes. Furthermore, when holding the flux constant and changing
the probe overlap, PaCMAN can achieve lower dose than ePIE. Finally, we demonstrate that
PaCMAN can be adapted into a multi-wavelength algorithm that we call "Multi-spectral, Partial
Coherence Mitigating Algorithm with Noise" (Ms. PaCMAN) that exceeds the reconstruction
quality of state-of-the-art algorithms in the presence of artifacts. These algorithms will expand
the usable flux from SXR HHG supercontinua [27] and push the resolution to sub-10 nm for
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radiation sensitive samples, as well as enable atto-CDI at lower doses. To facilitate this, we make
our MATLAB implementation of the code freely available.

2. Theory

2.1. Definitions

Consider a standard ptychography setup with a N × N pixel detector in the far field. The probe p
illuminates a part of the full object oj, where j ∈ [1, J] is an index for one of the J scan positions.
The full object is given by the M × M matrix O. We also define a position-dependent probe Pj
embedded in a matrix of zeros to be same size as O.

2.2. Monochromatization

If we assume that the object’s complex transmission does not change over the bandwidth of the
source, the broadband diffraction pattern b(x, y) will be equal to the incoherent sum (or integral)
of the dilated intensities m(x, y) weighted by the power spectrum S(λ):

b(x, y) =
∫

1
λ2 S(λ)m

(︃
λ0
λ

x,
λ0
λ

y
)︃

dλ. (1)

Here, we choose λ0 to be the center wavelength, which is the wavelength that defines the pixel
size in the object plane. By expressing b and m as N2 × 1 vectors, we can rewrite this integral as

b = Cm, (2)

where the N2 × N2 transformation matrix C is calculated once per spectrum by mapping each
pixel in the detector to multiple pixels from the dilated grids of each wavelength in the spectrum
[10].

To accurately replicate a continuous spectrum, the scaling between wavelength λ and λ + δλ
should be much less than a pixel at the edge of the diffraction pattern [28]. This condition is
given by

λ

δλ
≫

N
2

. (3)

For Gaussian spectra with an intensity full-width half-maximum of ∆λ = fλ with relative
bandwidth f , the spectral width that we need to sample is at least 2∆λ, which is equivalent to
truncating where S(λ ± ∆λ) is 0.06 that of the center wavelength. Solving Eq. (3) for M, the total
number of samples required, gives

M ≫ fN. (4)

Thus, sampling is linear in bandwidth and in detector pixel dimension. For f = 0.05 (5%
bandwidth) and N = 256, we get M ≫ 12.8, while f = 0.5 (50% bandwidth) and N = 256 gives
M ≫ 128.

To retrieve m, we must solve m = C−1b for each diffraction pattern. Without noise, this can be
solved exactly to machine precision. In practice, there is always a small amount of noise, even
at very high fluxes. An iterative method called the Conjugate Gradient Least Squares method
(CGLS) was applied in previous work due to its robustness to noise [10,18]. However, CGLS is
valid for symmetric matrices only, and while C approaches the (symmetric) identity matrix in
the monochromatic limit, it increasingly deviates from symmetry when the spectrum is itself
asymmetric. To accommodate non-symmetric C while remaining robust to noise, we test a
biconjugate gradient stabilized method (BiCGSTAB) [29]. The number of iterations for CGLS
and BiCGSTAB in our study is picked automatically as the iteration that minimizes the norm of
b − Cm, which ranges from zero iterations when b is very noisy to dozens of iterations when b
has very low noise. We note that a recent paper implemented the BiCGSTAB algorithm for the
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same inversion, finding similar improvement with the computational spectrometer approach to
measuring the spectrum compared to CGLS implemented with a physical spectrometer ([19], see
Fig. S3 in supplementary information of reference to compare optimal images).

2.3. Mixed-state model

The jth far-field diffraction pattern for a partially coherent beam can be modeled as the sum of the
intensities of L relevant modes that can each have their own probe and object [6]:

I(pc)
j =

L∑︂
l=1

|F {PljOlj}|
2. (5)

This mixed-state model can account for both partial spatial coherence [6] and partial temporal
coherence [11,13], serving as the basis of multi-wavelength algorithms. We will adopt this model
to account for spatial coherence for the basic PaCMAN model and temporal coherence in the
multi-wavelength variant.

2.4. Alternating direction method of multipliers

For monochromatic, partially spatially coherent illumination, the measured diffraction patterns Ij
with Poisson noise, structured noise ϕ, and additive white Gaussian noise with standard deviation
σ are given by

Ij = Poiss[I(pc)
j + ϕ] + AWGNj. (6)

Following [5], we can formulate a maximum-likelihood estimate for Poisson noise using the
mixed-state model Eq. (5) as

G(z, µ) =
1
2

∑︂
j

[︄
L∑︂

l=1
|zlj |

2 + µ2
j − Ij ln

(︄
L∑︂

l=1
|zlj |

2 + µ2
j

)︄]︄
(7)

with the corresponding minimization problem

min
P,O,µ,z,σ

G(z, µ) such that zlj − Ψlj = 0 & µj − µ̄ = 0, (8)

where Ψ is the diffracted wave at the detector plane with a corresponding auxiliary variable z,
and µ is an auxiliary variables representing the combined effects of the Gaussian and parasitic
noise, with a corresponding mean of µ̄.

The augmented Lagrangian for this minimization is

L(P, O, zl,σl,Λl, Λ̄, µ) = G(z, µ) + r
L∑︂

l=1

∑︂
j
R⟨Λlj, zlj − Ψlj⟩ + r

∑︂
j
⟨Λ̄, µj − µ̄⟩

+
r
2

L∑︂
l=1

∑︂
j

∥︁∥︁Λlj, zlj − Ψlj
∥︁∥︁2
+

r
2

∑︂
j

∥︁∥︁µj − µ̄
∥︁∥︁2 ,

(9)

where ⟨·, ·⟩ denotes an inner product and ∥·∥ denotes the L2 norm. Minimizing Eq. (9) with
respect to each of its variables gives an iterative ptychographic algorithm. The derivation is a
straightforward extrapolation from the work conducted in [5], and so we refer to this work for
details.
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2.5. PaCMAN algorithms

We begin by initializing z1
lj = F {P1

l O1
j } and the multipliers Λ1

lj to zeros. The step-size r controls
the relative weighting of the Fourier modulus update, with r = 0 using only the measured modulus
for the update (equivalent to difference map without a noise model [23]) and r>0 using both
the measured modulus and reconstructed modulus to make the update (Eq. (15)). The object
is initialized as ones, while the probe is initialized as a uniform intensity within its support.
Additional states (l>1) are initialized based on prior information and whether they are temporal
states or spatial modes. For each iteration n = 1. . .N, we perform the following:

(1) Define a temporary variable z̄lj, which represents an approximate exit wave from the
sample:

z̄lj = F −1
{︂
zn
lj + Λ

n
lj

}︂
. (10)

(2) Update the probe for each state

pn+1
l =

pn
l +

∑︁
j(on

lj)
∗z̄n

lj

1 +
∑︁

j |on
lj |

2 . (11)

(3) Update the object for each state

On+1
l =

On
l +

∑︁
j(Pn+1

lj )∗z̄n
lj

1 +
∑︁

j |Pn+1
lj |2

. (12)

(4) Calculate intermediate variables

Ψ
n+1
lj = F {pn+1

l on+1
lj }, (13)

Xj =

√︄∑︂
l
|Ψn+1

lj − Λn
lj |

2 + | µ̄ − Λ̄n
j |

2, (14)

ρj =
rXj +

√︂
r2X2

j + 4(1 + r)Ij

2(1 + r)
. (15)

(5) Update z, µ, and the mean µ̄

zn+1
lj = ρj(Ψ

n+1
lj − Λn

lj)/Xj, (16)

µn+1
j = ρj(µ̄ − Λ̄

n
j )/Xj, (17)

µ̄n+1 =
1
J

∑︂
j
µn+1

j . (18)

(6) Update Lagrange multipliers

Λ
n+1
lj = Λn

lj + zn+1
lj − Ψn+1

lj , (19)

Λ̄
n+1
j = Λ̄n

j + µ
n+1
j − µ̄n+1. (20)
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Note that µ and µ̄ would always be zeros in this case. At some iteration n = Npc, we can
re-initialize the average background to be the square root of the average difference between
the noisy incoherent patterns and the diffraction patterns reconstructed from the probe and its
gradients:

µ̄n+1 =

⌜⃓⎷
max

{︄
0,

1
J

∑︂
j

(︄
Ij −

∑︂
l
|Ψn+1

lj |2

)︄}︄
. (21)

Empirically, choosing Npc to be between 5-20 seems to yield the best results, as it allows for
accurate background retrieval with a decent probe/object guess. For PaCMAN, the monochroma-
tization step occurs before the iterations begin, and the only states propagating are spatial modes.
For Ms. PaCMAN, we require wavelength-dependent temporal modes, but can use spatial modes
as well. The algorithm outlined by Eqs. (10) – (21) is the same for either version.

3. Experiment

First, we test the base algorithm on near-monochromatic x-ray magnetic circular dichroism
(XMCD) data from the COSMIC beamline at ALS. The sample, shown in Fig. 1(a), is a thin
Fe/Gd film with fiducial holes milled out for ease of alignment. To generate XMCD images with
magnetic contrast, we subtract the optical densities found from the ptychographic reconstructions
for left and right circularly polarized light. We acquired three tilt series of data to perform vector
ptycho-tomography, but limit the discussion here to two datasets—one good and one bad—with
different angles in the same tilt series. The primary difference between the datasets is the size of
the parasitic scattering region in the diffraction patterns (Fig. 1(b)): the bad dataset acquired
at a different angle has a larger parasitic scattering region that extends closer to the center. We
ran ePIE and PaCMAN using the unaltered diffraction patterns and 300 iterations, with a probe
initialized by the probe reconstructed at the beamline and set to update after iteration 10. For

Fig. 1. Experimental XMCD reconstructions. a) SEM image of the sample. b) Representa-
tive diffraction amplitude at the detector on a log scale. c-d) XMCD reconstructions for a
good dataset. e-f) XMCD reconstructions for a bad dataset. All XMCD reconstructions are
plotted on the same color scale.
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ePIE, we set βobj = βprb = 1 and reduced them to 0.5 halfway through the simulations, while for
PaCMAN we set Npc = 20 and r = 0.6. No additional spatial modes were included.

The XMCD reconstructions for ePIE and PaCMAN are shown in Fig. 1(c-f). For the good
dataset, the magnetic textures are well reconstructed by both algorithms. However, upon
close inspection the ePIE reconstruction has significant ripple artifacts whereas the PaCMAN
reconstruction does not. This is due to parasitic scattering, which adds high frequency noise to
the reconstructions. For the bad dataset, only PaCMAN achieves decent reconstruction quality,
whereas the textures are barely recognizable in the ePIE reconstructions. Thus, the base PaCMAN
algorithm works very well even in the presence of noise and artifacts, which is particularly
important in ptycho-tomography where the parasitic scattering region can become significant at
large tilt angles.

4. Simulations

4.1. Methods

For our simulations, we use a 200 × 200 pixel object and 64 × 64 pixel probe embedded in a
256 × 256 matrix of zeroes to have the same pixel dimensions as the detector. The object and
probe are shown in Fig. 2. The object transmission ranges from 0.5 to 1, which results in the
diffraction patterns having a photon flux that ranges from 0.264 and 0.995 times the flux incident
on the sample, with a mean of 0.696. Unless otherwise noted, we used a moderate probe overlap
of 0.7, measured as the linear distance offset [30]. Random offsets of 20% were applied to the
probe positions to prevent raster pathology. The center wavelength used was 4.13 nm (300 eV)
and the distance between the sample and detector was 5 cm. The effective detector pixel size is
40 µm, yielding a pixel size of about 19 nm in the object plane.

Fig. 2. Object and probe used for the simulations. The object modulus is "cameraman" and
the object phase (in radians) is "peppers" (from MATLAB demo images). The probe phase
(in radians) and amplitude is a Gaussian with a hard aperture at the 1/e intensity.

To create the broadband diffraction patterns, we dilated the diffraction patterns of the center
wavelength (shown in Fig. 3(a)), multiplied them by the appropriate spectral weights, and added
them up incoherently to get Fig. 3(b). For the continuous spectra in this study, we used a Gaussian
spectrum comprised of 257 wavelengths, which satisfies Eq. (4). The resultant broadband pattern
loses much of the speckle contrast of the monochromatic pattern. Monochromatization restores
the speckle contrast near the center of the diffraction pattern (Fig. 3(c)).

After creating the broadband patterns, we corrupt the pattern with parasitic scattering (Fig. 3(c)),
modelled as a triangular region with a small, constant amplitude in the upper right corner of
the diffraction patterns. This type of corruption is fairly common in synchrotrons or table-top
experiments, limiting the performance of conventional phase retrieval algorithms [1,5]. Finally,
after forming the broadband pattern and corrupting it, we add Gaussian detector noise and
Poissonian shot noise.
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Fig. 3. Sample diffraction pattern amplitudes. a) is the ideal monochromatic amplitude, b)
is the ideal broadband amplitude at 20% bandwidth, c) is the ideal broadband amplitude
after numerical monochromatization, and d) is the broadband pattern with Poisson noise at a
flux of 107 photons, Gaussian detector noise, and a triangular parasitic scattering region.

To quantitatively evaluate image quality, we use a normalized root-mean-square error (NRMSE),
calculated as

NRMSE =

⌜⎷
1
N

∑︁
x,y(|Orec(x, y)| − |Oexa(x, y)|)2

1
N

∑︁
x,y |Oexa(x, y)|2

, (22)

where the sums over x, y indicate summing each pixel within a region of interest consisting of N
pixels.

Unless noted otherwise, we used 200 iterations for all algorithms. For ePIE, we set βobj =
βprb = 0.7, and halved this halfway through the iterations to improve convergence. For PaCMAN,
we set Npc = 20 and r = 0.4. The object is initialized as ones, while the probe is initialized as a
uniform intensity within its support, which is then updated starting at iteration Nprb = 5.

4.2. Varying bandwidth to test monochromatization

We first compare standard ePIE to ePIE with CGLS and BiCGSTAB monochromatization to
gauge the effectiveness of the three different algorithms at dealing with continuous and discrete
spectra. We set the flux incident on the sample to 1010 photons, so Poisson noise is low. No
other noise or artifacts were included.

First, we consider continuous Gaussian spectra with bandwidths ranging from 1% to 50%. The
reconstructed objects are shown in Fig. 4(i). Without monochromatization, the reconstructions
look nearly exact up to a bandwidth of 5%, but degrade significantly beyond about 10% (Fig. 4(ia)).
With monochromatization, the reconstructions look nearly exact up to a bandwidth of 20%,
but degrade significantly beyond this (Fig. 4(ib-c)). By calculating the NRMSE from 1% to
50%, we see that the error increases linearly with bandwidth (Fig. 4(id)), approaching zero in
the monochromatic limit. Monochromatization reduces error at all bandwidths, even at 1%.
Compared to CGLS, BiCGSTAB provides greater improvement, especially at larger bandwidths,
and achieves the same NRMSE as standard ePIE at more than twice the bandwidth.

Next, we created a discrete spectrum comprised of three wavelengths separated by the
bandwidth (i.e. for a 50% bandwidth, we have 0.5λ, λ, and 1.5λ). The spectral weights were
set to [2/7, 4/7, 1/7]. The noiseless results are shown in Fig. 4(ii). We can see that CGLS
and BiCGSTAB provide comparable improvement below 10%. However, CGLS becomes
significantly worse beyond 15% and exceeds the error of ePIE after 25%. BiCGSTAB on the
other maintains an error well below 0.01 regardless of bandwidth, returning an image that appears
identical to the exact object.

4.3. Varying flux to test noise robustness

To gauge the robustness of PaCMAN, we compare the full PaCMAN algorithm to that of ePIE in
the presence of noise and artifacts at different fluxes for continuous and discrete spectra. For both
ePIE and PaCMAN, the triangular region of parasitic noise was set to zero. Since the accuracy
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Fig. 4. Reconstructed object modulus as a function of bandwidth for i) a continuous
Gaussian spectra and ii) discrete three-wavelength spectra. The images are a) ePIE without
monochromatization, b) monochromatized ePIE using CGLS, and c) monochromatized ePIE
using BiCGSTAB. d) The NRMSE is plotted as a function of bandwidth, with the shaded
regions corresponding to a-c. e) The exact object modulus for reference. f) The spectrum
used.

of the monochromatization is sensitive to noise, we tested the base PaCMAN algorithm with and
without monochromatization. We test both CGLS and BiCGSTAB to see how noise affects each
monochromatization algorithm.

First, we consider a Gaussian spectrum with a bandwidth of 20%. The results are shown in
Fig. 5(i). For all fluxes, PaCMAN without monochromatization has superior reconstruction
quality, as shown in Fig. 5(ia-b)) and confirmed by the the NRMSE plot in Fig. 5(ic). For
fluxes below 107, monochromatization increases rather than decreases error. Between 107

and 109, CGLS has slightly better performance than BiCGSTAB, while in the high flux limit
BiCGSTAB has slightly better performance than CGLS, as demonstrated previously in Fig. 4(id).
Despite noise, artifacts, a large bandwidth, and a low-moderate probe overlap, PaCMAN with
monochromatization can still achieve fairly good reconstruction quality (Fig. 5(ic), flux of 109).
These results indicate that we can achieve roughly an order of magnitude reduction in dose using
PaCMAN rather than ePIE by reducing photon count at fixed probe overlap.

Next, we used the same three-wavelength discrete spectrum as before with a wavelength
separation of 30%. The results are shown in Fig. 5(ii). PaCMAN without monochromatization
still has better performance for all wavelengths compared to ePIE, but the two algorithms converge
to similar error at high fluxes (Fig. 5(iia,b,d)). Monochromatization with CGLS provides worse
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Fig. 5. Comparison between ePIE and PaCMAN for i) a continuous spectrum and ii) a
discrete spectrum. a) The reconstructed object modulus from a) ePIE, b) PaCMAN without
monochromatization, and c) PaCMAN with monochromatization using BiCGSTAB. Each
column corresponds to a different flux. d) NRMSE vs. flux incident on the target for ePIE
and PaCMAN. e) Exact object modulus for comparison. f) Spectrum used.

reconstruction quality across all fluxes, while BiCGSTAB provides significant improvement for
fluxes above 107. Thus, PaCMAN can achieve excellent reconstructions even for discrete spectra
contaminated by noise and artifacts.

4.4. Varying probe overlap to test dose reduction

Assuming a constant flux from the source, the total dose applied to the sample will be proportional
to the camera integration time, so reducing the dose needed to achieve a desired resolution will
accelerate data acquisition. Moreover, for radiation sensitive materials like polymers or biological
cells, reducing the dose applied is crucial for preventing damage [31].

For a constant photon count per scan position, the dose D applied to the target can be expressed
in terms of the linear probe overlap O and size of the diffraction patterns Mdp as

D ∝
1

(1 − O)2
∝ Mdp. (23)

Dose is proportional to the scan density s−2, where s = 2Rprb(1 − O) is the separation between
scan positions for a given probe radius Rprb. Thus, dose is proportional (1 − O)−2. Note that in
estimating dose, we are also assuming that the absorbed dose is wavelength-independent over the
illumination bandwidth.



Research Article Vol. 33, No. 1 / 13 Jan 2025 / Optics Express 727

From our results varying the flux (Fig. 5(id)), a photon count of 109 is where the NRMSE
reaches its minimum value for both PaCMAN and ePIE, so in this section we set the photon
count to 109. We enable Gaussian and Poisson noise, but not parasitic scattering. We then
vary O from 0.3 to 0.9, which corresponds to a dose range of 2 to 100 (in arbitrary units).
We examine the performance of ePIE, PaCMAN without monochromatization, and PaCMAN
with monochromatization. In theory (and as confirmed by Fig. 4(i)), monochromatic sources
always achieve higher resolution than quasi-monochromatic sources at the same dose, as
ptychography algorithms assume monochromatic illumination. However, in practice, the need for
femtosecond/attosecond pulses, lack of effective monochromatizing optics, or speed increase from
higher total flux necessitate broader bandwidths. To comprehensively analyze dose efficiency, we
simulate bandwidths of 1%, 5%, 10%, and 20%. We perform 300 iterations for each algorithm,
with step sizes for the probe/object in ePIE set to 0.7 and r = 0.4 for PaCMAN.

Our results are shown in Fig. 6. Examining the NRMSE plots (Fig. 6(a-d)), we find that
decreasing the bandwidth decreases the dose required to achieve a desired NRMSE, as expected.
Regardless of bandwidth, PaCMAN without monochromatization reduces the dose relative
to ePIE. With monochromatization, PaCMAN becomes even more efficient, most notably at
larger bandwidths. The total dose reduction from PaCMAN ranges from 1.5-25x within each
bandwidth. For example, for a bandwidth of 10%, PaCMAN with monochromatization at
O = 0.5 (Fig. 6(j3)) has the same NRMSE as ePIE at O = 0.9 (Fig. 6(i1)) while having 25x
lower dose. At a bandwidth of 20%, PaCMAN with monochromatization at O = 0.5 (Fig. 6(l3))
has a lower NRMSE than ePIE at O = 0.9 (Fig. 6(k1)) while having more than 25x lower dose.
As we approach a monochromatic illumination with 1% bandwidth, each algorithm converges
to the exact object at high overlaps, although PaCMAN still provides a modest dose reduction
of about 1.5-2x at small overlaps. Increasing the number of iterations from 300 to 1000 does
not significantly change the results, and from testing lower contrast objects, we saw similar
improvement of PaCMAN relative to ePIE, though both algorithms had lower performance.

One surprising result from comparing Fig. 6(a) and 6(c) is that PaCMAN with monochromati-
zation at 10% achieves a low NRMSE of 0.05 at D ≈ 3.2, while ePIE at 1% achieves the same
NRMSE at D ≈ 4.8. This means that even at broad bandwidths, PaCMAN is more dose-efficient
than ePIE with nearly monochromatic illumination.

4.5. Ms. PaCMAN

As a proof of concept, we compared Ms. PaCMAN without any additional spatial modes to
Ptychographic Information Multiplexing (PIM) [13] for the same continuous and discrete spectra
used in the flux section. We assumed that the object and probes were the same for each wavelength.
Since each wavelength has a different pixel size in the object plane, we scaled the probes and
objects to maintain the same physical size for each wavelength. We applied noise and parasitic
scatting to each diffraction pattern.

For the continuous Gaussian spectrum with a bandwidth of 20%, we used nine uniformly
sampled wavelengths for both PIM and Ms. PaCMAN. The reconstructed objects and errors for
the center wavelength are shown in Fig. 7(i). When we compare PIM (Fig. 7(ia), flux of 109) to
ePIE (Fig. 5(ia), flux of 109), we achieve a lower NRMSE, with more distinguishable features in
the image. However, compared to PaCMAN, PIM has higher NRMSE for all fluxes (Fig. 7(ic)).
Monochromatization still achieves a lower NRMSE error (Fig. 5(ic)), which can be clearly seen
in the sharp features of Fig. 5(ic) relative to Fig. 7(ib) at a flux of 109. We also plot the five
central wavelength reconstructions from PIM and Ms. PaCMAN in Fig. 8, where we see a slight
improvement in image quality from Ms. PaCMAN.

For the discrete three-wavelength spectrum with a separation of 30%, we used three wavelengths
in PIM and Ms. PaCMAN. The results are shown in Fig. 7(ii). Both PIM and Ms. PaCMAN
give excellent reconstructions at high fluxes of 108 or higher, with Ms. PaCMAN having lower
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Fig. 6. Comparison between ePIE and PaCMAN for probe overlaps of 0.3 to 0.9, or
equivalently doses of 2 to 100. a-d) Plot of NRMSE vs. dose for each bandwidth. e-l)
Plot of the reconstructed object modulus, with column 1 for ePIE, col. 2 for PaCMAN (no
monochromatization), and col. 3 for PaCMAN (with monochromatization).
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Fig. 7. Comparison between PIM and Ms. PaCMAN for i) a continuous spectrum and ii) a
discrete spectrum. a) The reconstructed object modulus from PIM for a given flux incident
on the sample. b) The reconstructed object modulus from Ms. PaCMAN. c) NRMSE vs. flux
incident on the target for PIM and multi-wavelength PaCMAN. d) Exact object modulus for
comparison. e) Spectrum used. For the continuous case, the nine reconstructed wavelengths
are indicated by the blue delta functions.

Fig. 8. Object modulus reconstructed by a) PIM and b) Ms. PaCMAN for the central five
wavelengths.
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NRMSE at low fluxes. By comparing Fig. 5(ii) and Fig. 7(ii), we can see that for this discrete
spectrum, monochromatization and multi-wavelength algorithms give comparable results.

4.6. Memory costs and runtime

Understanding the hardware requirements for ePIE and PaCMAN is important for their practical
usage. ePIE is a serial method: within each iteration, we loop through each position and update
the probe and object, resulting in a low memory cost. PaCMAN is a parallel method: within each
iteration, the entire object and probe can be updated simultaneously without looping through
positions, resulting in a high memory cost.

MePIE, the memory usage of ePIE, is approximately equal to the memory required to store the
diffraction patterns Mdp. For PaCMAN, when we account for all the variables and NM additional
modes, the memory requirement is

MPaCMAN ≈ (14 + 10NM)Mdp ≈ (14 + 10NM)MePIE, (24)

more than ten times that of ePIE. For the data acquired in Fig. 5, ePIE had a total GPU memory
requirement of 0.089 GB while PaCMAN with NM = 2 (with or without monochromatization)
had a total memory GPU requirement of 3.0 GB for 256 × 256 × 169 double precision (89 MB)
diffraction patterns. Both of these can easily fit in a single one of our 40 GB NVIDIA A100
GPUs.

For Ms. PaCMAN, NM = Nsp(Nw − 1), where Nsp is the number of spatial modes and Nw the
number of wavelengths. For continuous spectra, we may need Nw>10, making Ms. PaCMAN
roughly an order of magnitude more memory intensive than PaCMAN.

Despite the increase in memory, the iterative portion of PaCMAN has a runtime comparable
to ePIE. For the data acquired in Fig. 5 (100 iterations), ePIE had a runtime of 15 seconds while
PaCMAN (without monochromatization) had a runtime of 25 seconds. The monochromatization
step adds a few extra seconds. Without the two additional spatial modes and monochromatization,
PaCMAN has a runtime of 17 seconds. While not extensively tested here, we have found that
PaCMAN has a faster convergence than ePIE in the presence of artifacts, thus requiring fewer
iterations overall. We also note that since dose is proportional to the size of the diffraction
patterns (Eq. (23)) and PaCMAN achieves the same NRMSE as ePIE with 1.5-25x lower dose, the
total memory cost for PaCMAN could be only a few times larger than ePIE, with each iteration
running faster than ePIE. This is especially important for the more computationally demanding
Ms. PaCMAN. Calculating C took a few minutes when using parallelized CPU processing, but
is only calculated once per spectrum.

5. Discussion

From the noiseless monochromatization results, we found that BiCGSTAB and CGLS give
comparable improvements at bandwidths below 10% regardless of spectrum. For continuous
Gaussian spectra (Fig. 4(i)), BiCGSTAB provides a moderate decrease in the error relative to
CGLS for reconstructions above 10% bandwidth. For a given NRMSE, monochromatization
with BiCGSTAB provides the same error at more than twice the bandwidth, which means that
we can extend usable flux by more than a factor of two without changing the NRMSE.

We then fixed the bandwidth to 20% and enabled noise (Fig. 5(i)) to compare ePIE to PaCMAN
for different fluxes, finding that PaCMAN can give high quality reconstructions at high fluxes
despite the large bandwidth, parasitic scattering, and noise. ePIE, on the other hand, cannot.
We note that the monochromatization step is sensitive to noise, which means it is only useful
for fluxes greater than 107, or a mean of 7 × 106 photons in each diffraction pattern for our
chosen sample transmission. In practice, for continuous spectra, CGLS and BiCGSTAB are
interchangeable: CGLS provides lower error at moderate fluxes, while BiCGSTAB provides
lower error at high fluxes.
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By varying probe overlap (Fig. 6), we found that the iterative core of PaCMAN is more
dose-efficient than ePIE, owing to the more robust ADMM framework of PaCMAN. With
monochromatization, it is even more robust, providing a 1.5-25x decrease in the dose required.
Smaller bandwidths are intrinsically more dose efficient, which means that the smallest feasible
bandwidth should be chosen for the radiation-sensitive experiments. For 1% bandwidths,
PaCMAN can achieve excellent reconstructions at 1.5-2x lower dose than ePIE. This could
be especially important in minimizing the vast data required for spectro-ptycho-tomography
experiments, which involve scanning a small bandwidth probe in photon energy (spectroscopy),
position (ptychography), and angle (tomography) [12]. Low-dose non-iterative approaches based
on machine learning have also been demonstrated that are capable of achieving fair reconstruction
quality at probe overlaps approaching zero by stitching together predicted object transmissions
[32,33]. These approaches likely outperform PaCMAN at very small overlaps, though integrating
machine learning with PaCMAN to improve its performance at low probe overlaps could be
a powerful way to further reduce dose. More studies should also be conducted to see if the
dose reduction of ADMM over ePIE by reducing probe overlap also holds compared to other
algorithms such as LSQ-ML [34], sDR [35], or automatic differentiation [36].

If speed rather than dose efficiency is the top priority, then a bandwidth of about 10% seems to
be ideal for PaCMAN, while for ePIE it is about 5%. Comparing both algorithms for reasonably
low NRMSE of 0.05, PaCMAN will enable about 4x faster data acquisition than speed-optimized
ePIE due to twice the flux and about 1/2 the dose. This will be useful for sub-10 nm imaging
with table-top SXR HHG sources [27] or ptycho-tomography with large data-sets. While not
rigorously demonstrated here, we have found that the improvements in speed and dose reduction
are comparable when we reduce the object contrast, which is relevant for optically thick samples
in the SXR. A promising avenue for future work will be combining this algorithm with strong
reference scatterers placed in the sample plane or in a plane slightly in front of the sample, which
could provide an additional order of magnitude decrease in dose [37,38].

Next, we demonstrated Ms. PaCMAN, which is the first multi-wavelength algorithm based on
the general ADMM framework that includes parasitic scattering. When we ran Ms. PaCMAN
on the same continuous 20% spectrum as Fig. 5(i), we were able to reduce the error relative to
PaCMAN without monochromatization, but the reconstruction was not as good as PaCMAN
with monochromatization (Fig. 7(i)). This reinforces that monochromatization is better than
multi-wavelength algorithms for continuous spectra of moderate bandwidths around 20% (see
Fig. 9). However, like PaCMAN compared to ePIE, when we compared Ms. PaCMAN to PIM,
we found that it had superior performance at all fluxes. In other work, a method called Spectrum,
Probe, and Image REconstruction (SPIRE) improved upon PIM by including additional spatial
modes and probe replacement, allowing more wavelengths to be reconstructed at high quality
[11]. By enabling multiple spatial modes and adding probe replacement to Ms. PaCMAN, we
expect that it can surpass SPIRE’s performance. Future work will explore how Ms. PaCMAN
compares to SPIRE when the probes and objects are wavelength dependent, and test to see how
much Ms. PaCMAN can reduce the dose to get the same image quality.

In addition to continuous Gaussian spectra, we also tested the monochromatization and
multi-wavelength algorithms on a discrete three-wavelength spectrum. For the high flux case, we
found that BiCGSTAB gives near perfect reconstructions regardless of the separation between
the wavelengths, while CGLS is only effective for small separations (Fig. 4(ii)). This is the
first demonstration of a monochromatization algorithm for discrete spectra. After we tested it
with noise (Fig. 5(ii)), we compared it to Ms. PaCMAN and PIM(Fig. 7(ii)), finding that we
get excellent reconstruction quality from both PaCMAN and Ms. PaCMAN. Thus, for EUV
HHG sources that emit a comb of harmonics, monochromatization is a viable alternative for
making use of (or correcting for) multiple harmonics (see Fig. 9), provided the objects/probes
are approximately wavelength independent. Monochromatization could potentially be combined
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Fig. 9. Table for selecting an algorithm for broadband correction. Monochromatization is
the most heavily constrained algorithm, which means less data is required to get excellent
reconstructions. Multi-wavelength algorithms with an unknown spectrum and wavelength
dependent probes/objects require significantly more data to converge because they are poorly
constrained. A summary comparing PaCMAN and ePIE optimized for speed and dose are
shown below the table.

with spatial entropy engineering to ensure wavelength-independent illumination within a desired
bandwidth [39].

The last variables of importance when deciding which bandwidth to use are geometrical
parameters. For the spectral blurring caused by broadband illumination to be negligible, we
require the probe radius to satisfy [40,41]

R<
λ2

2∆λ sin(α)
≈

zλ2

∆λNds
. (25)

With our simulated setup, the max angle at which we get usable signal is sin(α) ≈ Nds/z, the
object-detector distance is z = 5 cm, the center wavelength is λ = 4.13 nm, the probe radius is
R = 0.608 µm, effective detector pixel size is ds = 40 µm, and the pixel dimension of the detector
is N = 256. This means that for relative bandwidths

∆λ

λ
<

zλ
RNds

= 3.12%, (26)

the illumination is effectively monochromatic, which agrees well with our results: ePIE performs
very well for 1% and even 5%, but sharply drops in performance at 10% and higher. For our
selected parameters, the limit at which PaCMAN can achieve excellent reconstructions seems
to be about 20% bandwidth (Fig. 6(d)). By reducing the probe size further, or by increasing
the divergence of the probe [42], we may be able to extend monochromatization to even larger
bandwidths. Alternatively, increasing object-detector distance should also benefit reconstructions
at larger bandwidths (albeit at the expense of resolution), as suggested by Huijt’s et al. [10] and
Eq. (26). We hypothesize that the bandwidth results of our simulation study will scale linearly
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with Eq. (26), e.g. if we double z, we may be able to get excellent reconstructions up to 40%
bandwidth. Not accounting for the effective monochromaticity or the fact that ptychography
is more robust to bandwidth than single-shot CDI is a likely cause of discrepancies between
the maximum bandwidths of monochromatization algorithms cited in the literature, e.g. about
11% for CDI in [10], about 15.8% for ptychography in [18], about 20% for ptychography in this
manuscript, and about 40% for ptychography in [19]. Future simulations and experiments will
seek to verify this.

Overall, PaCMAN is a more efficient algorithm than ePIE in nearly every case except when
ultra-narrow bandwidths with near-perfect reconstruction quality are required. This comes
at the expense of roughly an order of magnitude higher memory costs. However, since the
monochromatization step is separate from the iterative part of PaCMAN, our monochromatization
results can be readily applied to ePIE, other ptychography algorithms, or CDI more generally.
Future work will explore how the monochromatization and multi-wavelength components can be
combined to improve performance relative to either algorithm alone, and how machine learning
could be combined with PaCMAN to further reduce probe overlap and therefore dose.

6. Conclusion

In summary, we introduced PaCMAN and Ms. PaCMAN to account for partial spatial coherence,
shot noise, parasitic scattering, and broad bandwidth illumination. By improving the monochrom-
atization algorithm, we demonstrated superior performance at continuous bandwidths at low
noise levels and significantly better performance for discrete spectra. We showed that the iterative
portion of PaCMAN can provide a substantial improvement over ePIE when the diffraction
patterns have noise and artifacts, while the monochromatization step provides a further increase
for broadband illumination beyond a flux of 107 photons. PaCMAN can recover images with a
quality comparable to ePIE at 1.5-2x lower dose, allowing imaging of radiation sensitive samples
without causing damage. When both algorithms are optimized for speed, PaCMAN is still about
four times faster than ePIE, as the usable flux is doubled while the rigorous ADMM framework
allows half the scan positions to be used, which will allow rapid imaging using future SXR HHG
sources. Finally, we show how Ms. PaCMAN outperforms multi-wavelength algorithms based
on ePIE, enabling attosecond CDI at lower doses. Ultimately, these algorithms will advance
attoscience, low-dose imaging, and attempts to achieve sub-10 nm with SXR HHG sources.
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