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Abstract: Alternating projection based methods, such as ePIE and rPIE, have been used
widely in ptychography. However, they only work well if there are adequate measurements
(diffraction patterns); in the case of sparse data (i.e. fewer measurements) alternating projection
underperforms and might not even converge. In this paper, we propose semi-implicit relaxed
Douglas-Rachford (sDR), an accelerated iterative method, to solve the classical ptychography
problem. Using both simulated and experimental data, we show that sDR improves the
convergence speed and the reconstruction quality relative to extended ptychographic iterative
engine (ePIE) and regularized ptychographic iterative engine (rPIE). Furthermore, in certain cases
when sparsity is high, sDR converges while ePIE and rPIE fail or encounter slow convergence. To
facilitate others to use the algorithm, we post the Matlab source code of sDR on a public website
(www.physics.ucla.edu/research/imaging/sDR/index.html). We anticipate that this algorithm
can be generally applied to the ptychographic reconstruction of a wide range of samples in the
physical and biological sciences.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since the first experimental demonstration in 1999 [1], coherent diffraction imaging (CDI) has
been a rapidly growing field due to its broad potential applications in the physical and biological
sciences [2–5]. A fundamental problem of CDI is the phase problem, that is, the measured
diffraction pattern only contains the Fourier magnitudes without phase information. In the original
demonstration of CDI, phase retrieval was performed by measuring the diffraction pattern from a
finite object. If the diffraction intensity is sufficiently oversampled [6], the phase information can
be directly retrieved by using iterative algorithms [7–11]. Ptychography, a powerful scanning CDI
method, relieves the finite object requirement by performing 2D scanning of an extended object
with an illumination probe. The object is scanned such that adjacent scan positions are partially
overlapping, and a diffraction pattern is collected at each scan position [12,13]. The overlap of
the probes not only reduces the oversampling requirement, but also improves the convergence
speed of the iterative process. By taking advantage of ever-improving computational power and
advanced detectors, ptychography has been applied to study a wide range of samples using both
coherent x-rays and electrons [2,5,14–23]. More recently, a time-domain ptychography method
was developed by introducing a time-invariant overlapping region as a constraint, allowing the
reconstruction of a time series of complex exit wave of dynamic processes with robust and fast
convergence [24].
Algorithms for ptychography have been studied exhaustively in theory and practice. The

majority follow non-convex optimization approaches [25–27], while a few follow convex relaxation
[28]. In recent years, powerful ptychographic algorithms have been developed to handle partial
coherence [29], solve for the probe [13,30,31], correct positioning errors [32–34], reduce noise
[35,36], and deal with multiple scattering [37,38].
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These iterative algorithms can be generally divided into three classes: i) conjugate gradient
(CG) [30,34], ii) extended ptychographic iterative engine (ePIE) [31], and iii) difference map
(DM) [13], whereas the last two have a close relationship. ePIE is an alternating projection
algorithm, while DM is built on both projection and reflection which is believed to provide a
momentum to speed up the convergence. The relaxed average alternating reflection (RAAR)
method [8] is a relaxation of DM and has been shown to be effective in phase retrieval [39]. All
algorithms except ePIE take a global approach, i.e. using the entire collection of diffraction
patterns to perform an update of the probe and object in each iteration. In contrast, ePIE goes
through the measured data sequentially to refine the probe and object. The advantage of global
updating methods is the ability of parallelization which significantly reduces the computation
time and allows efficient implementation on graphical processing units (GPUs) and clusters.
However, the larger memory requirement is a major drawback of these methods. On the other
hand, sequential method ePIE is still being used effectively due to its memory efficiency and
simplicity. One drawback of sequential ePIE is that it requires a small update step size for stable
convergence. Limiting the convergence speed, the step size restriction may cause divergence if
violated. To fix this issue, rPIE was proposed, in which regularization is used for stability [40].
The significant results also show that rPIE obtains a larger field of view (FOV) than ePIE. An
attempt to implement DM sequentially is reported [41] but the algorithm is slightly modified by
enforcing the Fourier magnitude constraint update twice.

An exceptional ability of the stochastic sequential update method is the power to escape local
minima due to stochasticity, which plays a crucial role in non-convex optimization. Especially
when measurements are sparse (less overlap), the method has a higher chance to pass local minima
than CG and DM. In this light, we motivate the utilization of non-convex optimization tools
to improve the robustness and the convergence of sequential updating methods. Our proposed
algorithm semi-implicit relaxed Douglas-Rachford (sDR) incorporates two techniques. The first
one modifies the update of the probe and object as the algorithm iterates in a semi-implicit
fashion known as Proximal Mapping. The second technique is the implementation of relaxed
Douglas-Rachford, a generalized version of DM and RAAR, on the local scale. In addition to our
formulation, we show that DM and RAAR can also be implemented locally, similarly to ePIE.

2. Proposed algorithm

Given N measured diffraction patterns at N positions, the ptychographic algorithm aims to find
a 2D object O and a 2D probe P that satisfy the overlap constraint and the Fourier magnitude
constraint

|F (POn)| =
√

In for n = 1, ..,N. (1)

Where On is the object at the nth scan position. For simplicity, we omit spatial variables and use
notations P, On and In for both continuous and discrete cases. The absolute value, multiplication,
division, conjugate, and square root operators are applied element-wise on P, On and In which
represent 2D complex matrices of the same size in the discrete case. Alternatively, On represents
the object O restricted to a sub-domain Ωn. The overlap constraint can be mathematically
interpreted as

O(x + rn) = On(x) if rn + x ∈ Ωn for n = 1, . . . ,N (2)

where {rn}
N
n=1 are displacement vectors. In short notation, we write On = O|Ωn . We find a better

representation of the problem by introducing the exit wave variable Ψ = PO. By denoting the
Fourier measurement constraint set T and the overlap object constraint set S, we have

T :=
{
Ψ = {Ψn}

N
n=1 : |FΨn | =

√
In for n = 1, . . . ,N

}
S :=

{
Ψ = {Ψn}

N
n=1 : ∃P,O s.t. Ψn = POn for n = 1, . . . ,N}

}
.

(3)
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Then we write the ptychography problem in a minimization fashion

min
Ψ

iS(Ψ) + iT(Ψ) (4)

where iS(Ψ) and iT(Ψ) are the indicator functions of sets S and T respectively, defined as

iS(Ψ) =

{
0 Ψ ∈ S

∞ otherwise
(5)

To solve Eq. (4), an alternating projection method is proposed. At each iteration, we select a
random position n and update Ψn

Ψ
′
n = ΠT(Ψ

k
n) = F

−1 (√In arg(FΨk
n)

)
(6)

{Pk+1,Ok+1
n } = argmin

P,On

1
2
‖POn − Ψ

′
n‖

2 (7)

Ψ
k+1
n = Pk+1Ok+1

n (8)

The Frobenius norm is used in this minimization problem and entire paper unless a different
norm is specified. The minimization of Eq. (7) is difficult due to instability. One way to solve
this non-convex problem is to minimize each variable while fixing the other ones.

Ok+1
n = argmin

On

1
2
‖PkOn − Ψ

′
n‖

2 =
Ψ′n
Pk

Pk+1 = argmin
P

1
2
‖POk+1

n − Ψ′n‖
2 =

Ψ′n

Ok+1
n

(9)

This approach is unstable because of the division. A cut-off method is used to avoid the divergence
and zero-division. A modification is recommended by adding a penalizing least square error
term (i.e. regularizer)

{Pk+1,Ok+1
n } = argmin

P,On

1
2
‖POn − Ψ

′
n‖

2 +
1
2s
‖P − Pk‖2 +

1
2t
‖On − Ok

n‖
2 (10)

The idea of regularization appears throughout the literature such as proximal algorithms [42,43].
Equation (10) is more reliable to solve than Eq. (7) but is still very expensive since the variables
are coupled. Pk+1 and Ok+1

n can be solved via a Backward-Euler system derived from Eq. (10).

Ok+1
n = Ok

n − tPk+1 (Pk+1Ok+1
n − Ψ′n

)
Pk+1 = Pk − sOk+1

n
(
Pk+1Ok+1

n − Ψ′n
) (11)

ePIE proposes a simple approximation by linearizing the system so that it can be solved
sequentially.

Ok+1
n = Ok

n − tPk (PkOk
n − Ψ

′
n
)

Pk+1 = Pk − sOk+1
n

(
PkOk+1

n − Ψ′n
) (12)

Indeed, ePIE is gradient descent method applied on the minimization of Eq. (7). The system is
solved by alternating direction methods (ADM) [44]. The remaining part is to choose appropriate
step sizes t and s to ensure stability. ePIE suggests t = βO/‖Pk‖2max and s = βP/‖Ok+1‖2max where
βO, βP ∈ (0, 1) are normalized step sizes. The max matrix norm is the element-wise norm,
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taking the maximum in absolute values of all elements in the matrix. The final version of ePIE is
given by

Ok+1
n = Ok

n − βOPk (PkOk
n − Ψ

′
n
) /
‖Pk‖2max

Pk+1 = Pk − βPOk+1
n

(
PkOk+1

n − Ψ′n
) /
‖Ok+1

n ‖
2
max

(13)

We will exploit the structure of Eq. (11) to give a better approximation.

2.1. Semi-implicit algorithm

We replace the minimization of Eq. (10) by two steps

Step 1: Ok+1
n = argmin

On

1
2
‖PkOn − Ψ

′
n‖

2 +
1
2t
‖On − Ok

n‖
2

Step 2: Pk+1 = argmin
P

1
2
‖POk+1

n − Ψ′n‖
2 +

1
2s
‖P − Pk‖2

(14)

This results in a better approximation to the linearized system of Eq. (12) and is simpler than the
Backward-Euler Eq. (11)

Ok+1
n = Ok

n − tPk (PkOk+1
n − Ψ′n

)
Pk+1 = Pk − sOk+1

n
(
Pk+1Ok+1

n − Ψ′n
) (15)

In this uncoupled system, we can derive a closed form solution for each sub-problem.

Ok+1
n =

(
Ok

n + tPkΨ′n
) / (

1 + t|Pk |2
)

Pk+1 =
(
Pk + sOk+1

n Ψ
′
n
) / (

1 + s|Ok+1
n |

2) (16)

By choosing the step sizes s and t as in the ePIE algorithm and normalizing the parameters βO
and βP, we obtain

Ok+1
n =

(1 − βO)‖Pk‖2maxOk
n + βOPkΨ′n

(1 − βO)‖Pk‖2max + βO |Pk |2

Pk+1 =
(1 − βP)‖Ok+1

n ‖
2
maxPk + βPOk+1

n Ψ
′
n

(1 − βP)‖Ok+1
n ‖

2
max + βP |Ok+1

n |
2

(17)

Ok+1
n is updated as a weighted average between the previous value Ok

n and
Ψk

n
Pk . The object update

can be rewritten as

Ok+1
n = Ok + βO

Pk (Ψ′n − Ψk
n
)

(1 − βO)‖Pk‖2max + βO |Pk |2
(18)

Recall that the object update by rPIE has a similar form [40]

Ok+1
n = Ok +

Pk (Ψ′n − Ψk
n
)

α‖Pk‖2max + (1 − α)|Pk |2
(19)

It is clearly to see that α = 1− βO ∈ (0, 1) and rPIE does not have the parameter βO in front of the
fraction. i.e. rPIE has a larger step size for the object update than our proposed algorithm sDR
which will be discussed later. Consequently rPIE converges faster. However, it is still unable
to escape local minima when being trapped. This “weighted average” regularization is more
mathematically correct and enhances the algorithm’s stability.

In the next section, we apply the Douglas-Rachford (DR) algorithm to solve for the exit wave
Ψ and improve the ability to escape local minima.
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2.2. Relaxed Douglas-Rachford algorithm

The Douglas-Rachford algorithm was originally proposed to solve the heat conduction problem
[45], which represents a composite minimization problem

min
Ψ

f (Ψ) + g(Ψ) (20)

The iteration consists of

Ψ
k+1 = Ψk + proxtf

(
2 proxtg(Ψ

k) − Ψk) − proxtg(Ψ
k) (21)

Over the past decades, this accelerated convex optimization algorithm has been exhaustively
studied in both theory and practice with many applications [46–51]. Here we apply the algorithm
to ptychographic phase retrieval. Note that the Douglas-Rachford algorithm reduces to Difference
Map (DM) when f = iT and g = iS are characteristic functions of constraint sets T and S,
respectively

Ψ
k+1 = Ψk + ΠT

(
2 ΠS(Ψk) − Ψk) − ΠS(Ψk) (22)

The reflection operator 2ΠS − I accelerates the convergence speed in the convex case and helps
to escape local minima in the non-convex case. Momentum also compensates for the step size of
the object update in Eq. (18) and speeds up convergence. However this momentum, caused by
reflection, might be too large and causes divergence or oscillation. Especially in the case of high
sparsity (less overlap), momentum can also cause over-fitting since the ptychography problem is
no longer over-constrained. Therefore, we relax the reflection by introducing a relaxed reflection
parameter σ ∈ [0, 1]

Ψ
k+1 = proxtf

(
(1 + σ) proxtg(Ψ

k) − σΨk
)
+ σ

(
Ψ

k − proxtg(Ψ
k)
)

(23)

Since the experimental measurements are contaminated by noise, a direct projection of the
measurement constraint is not an appropriate approach. We thus relax the Fourier magnitude
constraint by a least square penalty

min
Ψn

N∑
n=1
‖|FΨn | −

√
In‖

2 + iS(Ψn) (24)

Recall that proxtf (Ψ) has a closed form solution

proxtf (Ψ
k) = argmin

Ψ

1
2
‖|FΨ| −

√
In‖

2 +
1
2t
‖Ψ − Ψk‖2

= Ψk + tF −1
[√

In arg(FΨ)
] /
(1 + t) = (1 − τ)Ψk + τF −1

[√
In arg(FΨ)

] (25)

where τ = t/(1 + t) ∈ (0, 1] is the normalized step size. We call τ the relaxed modulus constraint.
Combining this result with DM, we obtain

Ψ
k+1 = (1 − τ)

(
(1 + σ)ΠS(Ψk) − σΨk

)
+ τΠT

(
(1 + σ)ΠS(Ψk) − σΨk

)
+ σ

(
Ψ

k − ΠS(Ψ
k)
)

= τ
(
σΨk + ΠT

(
(1 + σ)ΠS(Ψk) − σΨk) ) + (

1 − τ(1 + σ)
)
ΠS(Ψ

k)

(26)
When we let β = 1− τ and σ = 1, the update reduces to RAAR. To end this section, we conclude
that relaxed Douglas-Rachford is a generalized version of RAAR. We now move to our main
algorithm.
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Algorithm 1 sDR algorithm
Input: N measurements {In}

N
n=1, number of iterations K, parameters σ, τ, βO, βP

Initialize: O0, P0, {Z0
n }

N
n=1.

for k = 1, . . . ,K do
for n = 1, . . . ,N in a random permutation do
extract Ok

n = Ok |Ωn

update Ψk+1
n

ΨS = Ok
nPk

ZS = FΨS
Ẑ = (1 + σ)ZS − σZk

n
ZT = (1 − τ)

√
In arg Ẑ + τẐ

Zk+1
n = ZT + σ(Zk

n − ZS)
Ψk+1

n = F −1Zk+1
n

update Ok+1
n , Pk+1

Ok+1
n =

(1 − βO)‖Pk‖2maxOk
n + βOPkΨk+1

n

(1 − βO)‖Pk‖2max + βO |Pk |2

Pk+1 = Pk − βP
Ok+1

n
(
PkOk+1

n − Ψk+1
n )

‖Ok+1
n ‖

2
max

update Ok+1

Ok+1 |Ωn = Ok+1
n

end for
end for

Output: OK , PK

Fig. 1. Flow chart of the sDR algorithm.
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2.3. Semi-implicit relaxed Douglas-Rachford algorithm (sDR)

In a combination of the semi-implicit algorithm and relaxed Douglas-Rachford algorithm, we
propose the sDR algorithm, shown in Algorithm 1 and presented as a flow chart in Fig. 1.
In most ptychography experiments, prior information about the probe is given and can be

used as an initial guess. This knowledge is very helpful in non-convex optimization. In light
of stochastic gradient descent methods, small step size βP performs efficiently and better since
the probe starts from a good initial guess and gets updated more often than the object. The
performance of forward Euler and semi-backward Euler methods is not very different because of
this small step size. To keep simplicity and efficiency, we only apply the semi-implicit method
on Ok

n while Pk can be integrated with the regular gradient descent method. At each iteration,
sDR processes all diffraction patterns in a random sequence and updates the probe and object.

Comparing memory usage with ePIE, sDR stores an extra variable {Zn}
N
n=1 which has the same

size as the diffraction patterns. sDR uses more computations than ePIE due to the introduction of
momentum. These extra computations are simple element-wise additions and divisions. sDR
approximately spends 20% more computation time than ePIE.

For parameter selections, we choose a small relaxed modulus constraint τ. Specifically τ = 0.1
in all experiments. The values of the relaxed reflection parameter σ depends on the specific
problem. In many cases, σ = 1 works very well (full reflection). However in noisy or low
overlap data, large σ might cause divergence. A smaller σ is then preferred in these cases such
as σ = 0.5. Similar to the choice of σ, we select large βO in many cases, for example βO = 0.9,
and smaller βO in noisy data. On the other hand, βP is selected differently. It needs not to be
large since the probe gets updated more often than the object. A value of βP = 0.1 can start
the reconstruction and decrease as a function of iteration. In our case, we choose a square root
decreasing function

βk
O = β

0
O

√
k/(K − k) (27)

where β0O is the initial βO. This adaptive step-size has been introduced as a strategy for
noise-robust Fourier ptychography [52].

3. Experimental results

3.1. Reconstruction from simulated data

To examine the sDR algorithm, we simulate a complex object of 128 × 128 pixels with a
cameraman and a pepper images representing the amplitude and the phase, respectively (Fig. 2).
The circular aperture is chosen as probe with a radius of 50 pixels. We raster scan the aperture
over the object with a step size of 35 pixels, resulting in 4x4 scan positions. The overlap is
therefore 56.4% which is approximately the lower limit for ePIE to work in this simulated data
test. Poisson noise is added to the diffraction patterns with a flux of 1 × 108 photons per scan
position. We use Rnoise to quantify the relative error with respect to the noise-free diffraction
patterns

Rnoise =
1
N

N∑
n=1
‖|F (P0O0

n)| −
√

In‖1,1

/
‖
√

In‖1,1 (28)

where P0 and O0 is the noise-free model and the L1,1 matrix norm represents the sum of all
elements in absolute value of the matrix. The above flux results in Rnoise = 3.73%. Figure 3
shows that three algorithms (ePIE, rPIE and sDR) all successfully reconstruct the object in the
case where the overlap between adjacent positions is high and the noise level is low.
Next, we apply the three algorithms to the reconstruction of sparse data, which is centrally

important to reducing computation time, data storage requirements and data acquisition time. We
increase the scan step size to 50 pixels while keeping the same field of view, which reduces the
number of diffraction patterns to 3 × 3. Consequently, the overlap is reduced to 39.1%. Not only
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Fig. 2. A simulated complex object with the amplitude being a camera man image shown
in (a) and the phase being a pepper image shown in (b).

Fig. 3. The reconstructions of ePIE, rPIE and sDR of a complex object consisting of
128 × 128 pixels, a scan step size of 35 pixels and 4 × 4 diffraction patterns. Poisson noise
was added to the diffraction patterns with Rnoise = 3.73%. (a-c) The amplitude and (d-f) the
phase of ePIE, rPIE and sDR reconstructions, respectively.

is the overlap between adjacent positions low, but the total number of measurements is also small,
creating a challenging data set for conventional ptychographic algorithms. βO = 0.7, β0P = 0.01
and σ = 0.9 are used for sDR in this test. Figure 4 show that sDR can work well with sparse data,
while ePIE and rPIE fail to reconstruct the object faithfully.

3.2. Reconstruction from experimental data

3.2.1. Optical laser data

As an initial test of sDR with experimental data, we collect diffraction patterns from an USAF
resolution pattern using a green laser with a wavelength of 543 nm. The incident illumination
is created by a 150 µm diameter pinhole. The pinhole is placed approximately 6 mm in front
of the sample, creating a illumination wavefront on the sample plane that can be approximated
by Fresnel propagation. The detector is positioned 26 cm downstream of the sample to collect



Research Article Vol. 27, No. 22 / 28 October 2019 / Optics Express 31254

Fig. 4. Ptychographic reconstructions of sparse data by ePIE, rPIE and sDR. The data
consist of 3 × 3 diffraction patterns with a scan step of 50 pixels. Poisson noise was added
to the diffraction patterns with Rnoise = 3.73%. (a-c) The amplitude and (d-f) the phase
of ePIE, rPIE and sDR reconstructions, respectively. For this sparse data, ePIE and rPIE
fail to converge in the reconstructions no matter how many iterations are used, but sDR
converges to a high quality image. Furthermore, amplitudes and phases in the ePIE and rPIE
reconstructions are mixed and could not be separated.

far-field diffraction patterns. We raster scan across the sample with a step size of 50 µm and
acquire 169 diffraction patterns. We perform a sparsity test by randomly choosing 85 diffraction
patterns (50% density) and run ePIE, rPIE, and sDR on this subset with 300 iterations. If we
assume the probe diameter is to where the intensity falls to 10% of the maximum, then the
overlaps are 73% and 46.4% for the full and sparsity sets respectively. The parameters used for
the sDR test are βO = 0.9, β0P = 0.5 and σ = 0.3. Figure 5 shows that rPIE and sDR obtain
a larger FOV than ePIE as both use regularization. Furthermore, sDR removes noise more
effectively and obtains a flatter background than ePIE and rPIE. We monitor the R-factor (relative
error) to quantify the reconstruction, defined as

RF =
1
N

N∑
n=1
‖|F (POn)| −

√
In‖1,1

/
‖
√

In‖1,1 (29)

RF is 16.94%, 13.95% and 13.28% for the ePIE, rPIE and sDR reconstructions, respectively.

3.2.2. Synchrotron radiation data

To demonstrate the applicability of sDR to more realistic experimental data, we reconstruct a
ptychographic data set collected from the Advanced Light Source [16]. In this experiment, 710
eV soft x-rays are focused onto a sample using a zone plate and the far-field diffraction patterns
are collected by a detector. A 2D scan, which imparts an estimated total dose of 1.17 × 103 Gy
on 7,500 scan positions, spans approximately 10 × 4 µm. The sample is a portion of a HeLa cell
labeled with nanoparticles, which is supported on a graphene-oxide layer. To compare the three
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Fig. 5. The ePIE (a), rPIE (b) and sDR (c) reconstructions respectively of a sparse data
with 300 iterations, where sDR obtains a better quality reconstruction than ePIE and rPIE.
Both sDR and rPIE produce a larger FOV than ePIE. Scale bar 200µm.

algorithms, we choose a subdomain of a 3.70 × 3.70 µm region, consisting of 2,450 diffraction
patterns. Under the same assumption, the overlap is computed to be 79.5%.

First, we run the three algorithms with many iterations to assure the convergence of reconstruc-
tions (results do not change after such many iterations). Figure 6 displays the ePIE, rPIE, and sDR
reconstructions after 10000 iterations, respectively. All three algorithms converge to images with
high quality. When reducing the number of iterations to 100, we observe that sDR converges faster
and reconstruct a larger FOV than both ePIE and rPIE. The individual nanoparticles, which serve
as a resolution benchmark, are better resolved in the sDR reconstruction than reconstructions
obtained by ePIE and rPIE. Furthermore, the reconstruction by ePIE at 100 iterations still contains
artifacts such as faint square grids and halo-artifacts, which have been removed by rPIE and sDR.

We next perform a sparsity test by randomly picking 980 out of 2,450 diffraction patterns, i.e.
a reduction of data by 60%. The corresponding overlap of the sparsity set is 50.8%. Since fewer
data is selected, the problem becomes less over-constrained. As a result, not only the quality but
also the R-factor decreases. Figure 7 shows the reconstructions by ePIE, rPIE, and sDR with
10000 and 300 iterations. sDR is shown to perform better than ePIE and rPIE in the sense of
quality and convergence rate. At 10000 iterations, the features are resolved better by sDR where
more distinguishable individual nanoparticles are obtained. Especially, sDR converges faster than
ePIE and rPIE which encounter slow convergence. At 300 iterations, sDR reconstructs a much
better qualitative image with a larger FOV while ePIE and sDR cannot resolve the nanoparticles
and still contain artifacts. The sDR result at 300 iterations looks very similar to the one at 10000
iterations. Additionally, the R-factor of sDR at 300 iterations is very close to the one at 10000
iterations while the R-factors of ePIE and rPIE are still very far from their final values. In both
full and sparsity cases, βO = 0.6, β0P = 0.02 and σ = 0.7 are used for the sDR tests.
To validate the quality of the sparsity results, we use Fourier Ring Correlation (FRC) [53]

which measures the normalized cross-correlation coefficient between two 2-dimensional (or
3-dimensional) images over corresponding rings (or shells) in Fourier space (as a function of
spatial frequency correlation). We assume that the ePIE reconstruction from the full dataset with
10000 iterations serves as the ground truth while all ePIE, rPIE and sDR reconstructions from
40% data set with 10000 iterations are the subjects. Figure 8 shows the FRC curves of ePIE, rPIE
and sDR on a normalized frequency domain (% of Nyquist). The high correlation to high spatial
frequency of all three algorithms confirms that their reconstructions are comparable to the full
dataset result. FRC indicates that the reconstruction obtained by sDR is more highly correlated
to the ground truth as compared to the other reconstructions. We now move to discussion section
and future potential applications.
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Fig. 6. The ePIE (a), rPIE (b) and sDR (c) reconstructions of a 3.70 × 3.70µm region of the
HeLa cell after 10000 iterations with RF = 15.80%, 15.84% and 14.40%, respectively. (d-f)
Magnified regions (1.66 × 1.66µm) in (a-c), respectively. (g-l) The ePIE, rPIE, and sDR
reconstructions and their magnified regions after 100 iterations with RF = 18.69%, 16.60%
and 14.92%, respectively. sDR converges fastest among the three algorithms. Scale bar
500nm and 200nm respectively.
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Fig. 7. (a-c) The ePIE, rPIE, and sDR reconstructions of a sparse dataset and (d-f)
their magnified regions after 10000 iterations with RF = 15.62%, 15.72% and 13.89%,
respectively. (g-l) The ePIE, rPIE and sDR reconstructions and their magnified regions after
300 iterations with RF = 19.52%, 16.58% and 14.26%, respectively. To create the sparse
data, we randomly pick 980 out of 2,450 diffraction patterns from the HeLa cell dataset.
sDR reproduces a more distinguishable features than ePIE and rPIE. In particular, ePIE and
rPIE encounter slow convergence while sDR converges faster with fewer iterations.
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Fig. 8. Fourier ring correlation (FRC) of ePIE, rPIE, sDR reconstructions of the 40%
dataset. FRC shows that the sDR reconstruction is more highly correlated to the ground
truth(reconstruction using full dataset) than the ePIE and rPIE reconstructions.

4. Discussion

The sDR test with these simulated and experimental data has been shown to perform well with
fewer scan positions (low overlap ratio) covering the same FOV while regular methods such as
ePIE and rPIE fail to converge or experience slow convergence. As the overlap is reduced, the
reconstruction not only requires more iterations for convergence but the quality also decreases.
This result is consistent with the “dose fractionation theorem” of Hegerl and Hoppe about the
dose needed for a given resolution [54,55]. The high FRC results shown in Fig. 8 demonstrate
that all algorithms can produce sustainable images with low overlap given enough time and
iterations. However, the slow convergence makes ePIE and rPIE reconstructions infeasible in
terms of computation time. Thanks to sDR, the reconstruction is accelerated and can be obtained
with better quality in practical application.

Depending data and noise, the lower limit of overlap ratio with which sDR works can vary, but
is roughly 40% in our experiments. For example in the synchrotron data, 60% of data reduction
corresponding to 50.8% overlap, can still produce an acceptable reconstruction by sDR. This
implies that sDR may have useful application where beam time is scarce and sample positioning
is a significant fraction of the total acquisition time. Additionally, the effect of systematic errors
such as instability in the illumination and sample drift, is reduced. sDR hence allows users to
effectively collect more data per given beam time, which is important in this scared beam time
case.

5. Conclusion

In this work, we have developed a fast and robust ptychographic algorithm, termed sDR,
which incorporates two techniques relaxed Douglas-Rachford and semi-implicit scheme (semi-
Backward Euler). Using both simulated and experimental data, we have demonstrated that
sDR outperforms ePIE and rPIE in both quality and convergence speed. Especially in sparse
data, sDR has been evidenced to have capability to defeat local minima, significantly reduce
computation time, and obtain ptychographic reconstructions without losing much quality. We
believe that sDR provides a powerful ptychography algorithm to the X-ray community. To
promote the use of sDR algorithm, we publish our Matlab source code of sDR on our website
www.physics.ucla.edu/research/imaging/sDR/index.html while the experimental data used in this
paper can be found at zenodo website https://zenodo.org/record/3408463#.XX2A0ChKhdg.

http://www.physics.ucla.edu/research/imaging/sDR/index.html
https://zenodo.org/record/3408463#.XX2A0ChKhdg
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