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Hyperspectral imaging is useful for applications ranging from medical diagnostics to agricultural crop monitoring;
however, traditional scanning hyperspectral imagers are prohibitively slow and expensive for widespread adoption.
Snapshot techniques exist but are often confined to bulky benchtop setups or have low spatio-spectral resolution. In this
paper, we propose a novel, compact, and inexpensive computational camera for snapshot hyperspectral imaging. Our
system consists of a tiled spectral filter array placed directly on the image sensor and a diffuser placed close to the sensor.
Each point in the world maps to a unique pseudorandom pattern on the spectral filter array, which encodes multiplexed
spatio-spectral information. By solving a sparsity-constrained inverse problem, we recover the hyperspectral volume
with sub-super-pixel resolution. Our hyperspectral imaging framework is flexible and can be designed with contigu-
ous or non-contiguous spectral filters that can be chosen for a given application. We provide theory for system design,
demonstrate a prototype device, and present experimental results with high spatio-spectral resolution. © 2020 Optical

Society of America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.397214

1. INTRODUCTION

Hyperspectral imaging systems aim to capture a 3D spatio-spectral
cube containing spectral information for each spatial location.
This enables the detection and classification of different material
properties through spectral fingerprints, which cannot be seen
with a color camera alone. Hyperspectral imaging has been shown
to be useful for a variety of applications, from agricultural crop
monitoring to medical diagnostics, microscopy, and food quality
analysis [1–10]. Despite the potential utility, commercial hyper-
spectral cameras range from $25, 000−100, 000 (at the time of
publication of this paper). This high price point and the large size
have limited the widespread use of hyperspectral imagers.

Traditional hyperspectral imagers rely on scanning either the
spectral or spatial dimension of the hyperspectral cube with spec-
tral filters or line-scanning [11–13]. These methods can be slow
and generally require precise moving parts, increasing the camera
complexity. More recently, snapshot techniques have emerged,
enabling capture of the full hyperspectral datacube in a single shot.
Some snapshot methods trade off spatial resolution for spectral
resolution by using a color filter array or splitting up the camera’s
field-of-view (FOV). Computational imaging approaches can
circumvent this trade-off by spatio-spectrally encoding the incom-
ing light, then solving a compressive sensing inverse problem to
recover the spectral cube [14], assuming some structure in the

scene. These systems are typically table-top instruments with bulky
relay lenses, prisms, or diffractive elements, suitable for laboratory
experiments, but not the real world. Recently, several compact
snapshot hyperspectral imagers have been demonstrated that
encode spatio-spectral information with a single optic, enabling a
practical form factor [15–17]. Using a single optic to control both
the spectral and spatial resolution, they are generally constrained to
measuring contiguous spectral bins within a given spectral band.

Here, we propose a new encoding scheme that takes advantage
of recent advances in patterned thin film spectral filters [18] and
lensless imaging, to achieve high-resolution snapshot hyperspectral
imaging in a small form factor. Our system consists of a tiled spec-
tral filter array placed directly onto the sensor and a randomizing
phase mask (i.e., diffuser) placed a small distance away from the
sensor, as in the DiffuserCam architecture [19]. The diffuser spa-
tially multiplexes the incoming light, such that each spatial point
in the world maps to many pixels on the camera. The spectral filter
array then spectrally encodes the incoming light via a structured
erasure function. The multiplexing effect of the diffuser allows
recovery of scene information from a subset of sensor pixels, so we
are able to recover the full spatio-spectral cube without the loss in
resolution that would result from using a non-multiplexing optic,
such as a lens (see Fig. 1).

Our encoding scheme enables hyperspectral recovery in a com-
pact and inexpensive form factor. The spectral filter array can be
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Fig. 1. Overview of the Spectral DiffuserCam imaging pipeline, which reconstructs a hyperspectral datacube from a single-shot 2D measurement. The
system consists of a diffuser and spectral filter array bonded to an image sensor. A one-time calibration procedure measures the point spread function (PSF)
and filter function. Images are reconstructed using a nonlinear inverse problem solver with a sparsity prior. The result is a 3D hyperspectral cube with 64
channels of spectral information for each of 448× 320 spatial points, generated from a 2D sensor measurement that is 448× 320 pixels.

manufactured directly on the sensor, costing under $5 for both the
diffuser and the filter array at scale. A key advantage of our system
over previous compact snapshot hyperspectral imagers is that it
decouples the spectral and spatial responses, enabling a flexible
design in which either contiguous or non-contiguous spectral
filters with user-selected bandwidths can be chosen. Given some
conditions on scene sparsity and the diffuser randomness, the spec-
tral sampling is determined by the spectral filters, and the spatial
resolution is determined by the autocorrelation of the diffuser
response. This should find use in task-specific/classification appli-
cations [20–23], where one may wish to tailor the spectral sampling
to the application by measuring multiple non-contiguous spectral
bands, or have higher-resolution spectral sampling for certain
bands.

We present theory for our system, simulations to motivate
the need for a diffuser, and experimental results from a prototype
system. The main contributions of our paper are:

1. A novel framework for snapshot hyperspectral imaging that
combines compressive sensing with spectral filter arrays,
enabling compact and inexpensive hyperspectral imaging.

2. Theory and simulations analyzing the system’s spatio-spectral
resolution for objects with varying complexity.

3. A prototype device demonstrating snapshot hyperspectral
recovery on real data from natural scenes.

2. RELATED WORK

A. Snapshot Hyperspectral Imaging

There have been a variety of snapshot hyperspectral imaging
techniques proposed and evaluated over the past decades. Most
approaches can be categorized into the following groups: spec-
tral filter array methods, coded aperture methods, speckle-based
methods, and dispersion-based methods.

Spectral filter array methods use tiled spectral filter arrays
on the sensor to recover the spectral channels of interest [24].
These methods can be viewed as an extension of Bayer filters for
red, green, blue (RGB) imaging, since each “super-pixel” in the
tiled array has a grid of spectral filters. As the number of filters
increases, the spectral resolution increases, and the spatial resolu-
tion decreases. For instance, with an 8× 8 filter array (64 spectral
channels), the spatial resolution is 8× worse in each direction
than that of the camera sensor. Demosaicing methods have been
proposed to improve upon this in post-processing; however, they

rely on intelligently guessing information that is not recorded
by the sensor [25]. Recently, photonic crystal slabs have been
demonstrated for compact spectroscopy based on random spec-
tral responses (as opposed to traditional passband responses) and
extended to hyperspectral imaging through the tiling of the pho-
tonic crystal slab pixels [26,27]. While these methods have high
spectral accuracy, they have only been demonstrated in a 10× 10
spatial pixel configuration. Our system uses a spectral filter array,
but combines it with a randomizing diffuser in a lensless imaging
architecture, allowing us to recover close to the full spatial resolu-
tion of the sensor, which is not possible with traditional lens-based
methods. Our method uses traditional passband spectral filters,
but could be extended to photonic crystal slabs and other spectral
filter designs.

Coded aperture methods use a coded aperture, in combina-
tion with a dispersive optical element (e.g., a prism or diffractive
grating), in order to modulate the light and encode spatial-spectral
information [14,28–30]. These systems are able to capture hyper-
spectral images and videos but tend to be large table-top systems
consisting of multiple lenses and optical components. In contrast,
our system has a much smaller form factor, requiring only a camera
sensor with an attached spectral filter array and a thin diffuser
placed close to the sensor.

Speckle-based methods use the wavelength dependence of
speckle from a random media to achieve hyperspectral imaging.
This has been demonstrated for compact spectrometers [31,32]
and has been extended to hyperspectral imaging [15,16]. These
systems can be compact, since they require only a sensor and scat-
tering media as their optic; however, their spectral resolution is
limited by the speckle correlation through wavelengths. This is
challenging to design for a given application, since the spatial and
spectral resolutions are highly coupled. In contrast, our system uses
spectral filters that can easily be adjusted for a given application and
can be selected to have variable bandwidth or non-uniform spectral
sampling.

Dispersive methods utilize the dispersion from a prism or
diffractive optic to encode spectral information on the sensor.
This can be accomplished opportunistically by a prism added
to a standard digital single-lens reflex (DSLR) camera [33]. The
resulting system has high spatial resolution, equal to that of the
camera sensor, but spectral information is encoded only at the
edges of objects in the scene, resulting in a highly ill-conditioned
problem and lower spectral accuracy. Other methods use a diffuser
(as opposed to a prism) as the dispersive element [34]. This can be
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more compact than prism-based systems and can have improved
spatial resolution when combined with an additional RGB camera
[35]. To further improve compactness, [17] uses a single diffrac-
tive optic as both the lens and the dispersive element, uniquely
encoding spectral information in a spectrally rotating point spread
function (PSF).

Our system uses a lensless architecture and a spectral filter array,
together with sparsity assumptions, to reconstruct 3D hyperspec-
tral information across 64 wavelengths. The design is most similar
to [17] and achieves a similar compact size; however, our system
achieves better spectral accuracy, and the use of the color filter array
and diffuser results in more design flexibility, as our spectral and
spatial resolutions are decoupled, enabling custom sensors tailored
to specific spectral filter bands that do not need to be contiguous.

B. Lensless Imaging

Lensless, mask-based imaging systems do not have a main lens, but
instead use an amplitude or phase mask in place of imaging optics.
These systems have been demonstrated for very compact, small
form factor 2D imaging [36–39]. They are generally amenable to
compressive imaging, due to the multiplexing nature of lensless
architectures; each point in the scene maps to many pixels on the
sensor, allowing a sparse scene to be completely recovered from
a subset of sensor pixels [40]. Or, one can reconstruct higher-
dimensional functions like 3D [19] or video [41] from a single 2D
measurement. In this work, we use diffuser-based lensless imaging
to spatially multiplex light onto a repeated spectral filter array,
then reconstruct 3D hyperspectral information. Because of the
compressed sensing framework, our spatial resolution is better than
the array super-pixel size, despite the missing information due to
the array.

3. SYSTEM DESIGN OVERVIEW

Our system leverages recent advances in both spectral filter array
technology and compressive lensless imaging to decouple the spec-
tral and spatial design. Furthermore, the spectral filter arrays can
be deposited directly on the camera sensor. With a diffuser as our
multiplexing optic, the system is compact and inexpensive at scale.

To motivate our need for a multiplexing optic instead of an
imaging lens, let us consider three candidate architectures: one
with a high numerical aperture (NA) lens whose diffraction-
limited spot size is matched to the filter pixel size, one with a
low-NA lens whose diffraction-limited spot size is matched to
the super-pixel size, and finally our design with a diffuser as a
multiplexing optic. Figure 2 illustrates these three scenarios with
a simplified example of a spectral filter array consisting of 3× 3
spectral filters (nine total) repeated horizontally and vertically.
Assume that the monochrome camera sensor has square pixels of
lateral size Npixel, the spectral filter array has square filters of size
Nfilter, and each 3× 3 block of spectral filters creates a super-pixel of
size Nsuper−pixel, where Npixel < Nfilter < Nsuper−pixel.

In the high-NA lens case, a point source in the scene will be
imaged onto a single filter pixel of the sensor, and thus will only
be measured if it is within the passband of that filter; otherwise it
will not be recorded [Fig. 2 (left)]. In the low-NA lens case, each
point source will be imaged to an area the size of the filter array
super-pixel and, thus, recorded by the sensor correctly, but at the
price of low spatial-resolution (matched to the super-pixel size)
[Fig. 2 (middle)]. In contrast, a multiplexing optic can avoid the

Fig. 2. Motivation for multiplexing: A high-NA lens captures high-
resolution spatial information, but misses the yellow point source, since
it comes into focus on a spectral filter pixel designed for blue light. A
low-NA lens blurs the image of each point source to be the size of the
spectral filter’s super-pixel, capturing accurate spectra at the cost of poor
spatial resolution. Our DiffuserCam approach multiplexes the light from
each point source across many super-pixels, enabling the computational
recovery of both point sources and their spectra without sacrificing spatial
resolution. Note that a simplified 3× 3 filter array is shown here for
clarity.

gaps in the measurement of the high-NA lens and achieve better
resolution than the low-NA case.

A diffuser multiplexes the light from each point source such
that it hits many filter pixels, covering all of the spectral bands.
And the spatial resolution of the final image can be on the order
of the camera pixel size, provided that conditions for compressed
sensing are met [Fig. 2 (right)]. In practice, the spatial resolution
of our system will be bounded by the autocorrelation of the PSF,
as detailed in Section 7, and the diffuser PSF must span multiple
super-pixels to ensure that each point in the world is captured.
Since compressive recovery is used to recover a 3D hyperspectral
cube from a 2D measurement, the resolution is a function of the
scene complexity, as described in Section 7.

4. IMAGING FORWARD MODEL

Given our design with a diffuser placed in front of a sensor that has
a spectral filter array on top of it, in this section, we outline a for-
ward model for the optical system, illustrated in Fig. 3. This model
is a critical piece of our iterative inverse algorithm for hyperspectral

Fig. 3. Image formation model for a scene with two point sources of
different colors, each with narrowband irradiance centered at λy (yellow)
and λr (red). The final measurement is the sum of the contributions
from each individual spectral filter band in the array. Due to the spatial
multiplexing of the lensless architecture, all scene points v(x , y , z) project
information to multiple spectral filters, which is why we can recover a
high-resolution hyperspectral cube from a single image, after solving an
inverse problem.
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reconstruction and will also be used to analyze spatial and spectral
resolution.

A. Spectral Filter Model

The spectral filter array is placed on top of an imaging sensor, such
that the exposure on each pixel is the sum of point-wise multiplica-
tions with the discrete filter function,

L[x , y ] =
K−1∑
λ=0

Fλ[x , y ] · v[x , y , λ], (1)

where · denotes point-wise multiplication, v[x , y , λ] is the spec-
tral irradiance incident on the filter array, and Fλ[x , y ] is a 3D
function describing the transmittance of light through the spectral

(a)

(b)

Fig. 4. Experimental calibration of Spectral DiffuserCam.
(a) Measured PSF is constant across wavelength. The caustic PSF
(contrast-stretched and cropped), before passing through the spectral
filter array, is similar at all wavelengths. (b) Measured spectrally varying
filter function. The spectral response with the filter array only (no dif-
fuser). Top left, full measurement with illumination by a 458 nm plane
wave. The filter array consists of 8× 8 grids of spectral filters repeating in
28× 20 super-pixels. Top right, spectral responses of each of the 64 color
channels. Bottom, spectral response of a single super-pixel as illumination
wavelength is varied with a monochromator.

filter for K wavelength bands, which we call the filter function.
In this model, we absorb the sensor’s spectral response into the
definition of Fλ[x , y ]. Our device’s filter function is determined
experimentally (see Section 6.C) and is shown in Fig. 4(b). This can
be generalized to any arbitrary spectral filter design and does not
assume alignment between the filter pixels and the sensor pixels.
Here, we focus on the case of a repeating grid of spectral filters,
where each “super-pixel” consists of a set of narrowband filters.
Our device has an 8× 8 grid of filters in each super-pixel; Fig. 3
illustrates a simplified 3× 3 grid, for clarity.

B. Diffuser Model

The diffuser (a smooth pseudorandom phase optic) in our system
achieves spatial multiplexing; this results in a compact form factor
and enables reconstruction with spatial resolution better than
the super-pixel size via compressed sensing. The diffuser is placed
a small distance away from the sensor, and an aperture is placed
on the diffuser to limit higher angles. The sensor plane intensity
resulting from the diffuser can be modeled as a convolution of the
scene, v[x , y , λ]with the on-axis PSF, h[x , y ] [37],

w[x , y , λ] = crop(v[x , y , λ]
[x ,y ]
∗ h[x , y ])), (2)

where
[x ,y ]
∗ represents a discrete 2D linear convolution over spatial

dimensions. The crop function accounts for the finite sensor size.
We assume that the PSF does not vary with wavelength and validate
this experimentally in Section 6.B. However, this model can be eas-
ily extended to include a spectrally varying PSF, h[x , y , λ] if there
is more dispersion across wavelengths.

We assume that objects are placed beyond the hyperfocal
distance of the imager; therefore, the PSF has negligible depth-
variance, and a 2D convolutional model is valid [37]. If objects are
placed within the hyperfocal distance, a 3D model will be needed
to account for the depth-variance of the PSF.

C. Combined Model

Combining the spectral filter model with the diffuser model, we
have the following discrete forward model:

b=
K−1∑
λ=0

Fλ[x , y ] · crop(h[x , y ]
[x ,y ]
∗ v[x , y , λ]) (3)

=

K−1∑
λ=0

Fλ[x , y ] ·w[x , y , λ] (4)

= Av. (5)

The linear forward model is represented by the combined opera-
tions in matrix A. Figure 3 illustrates the forward model for several
point sources, showing the intermediate variable w[x , y , λ], which
is the scene convolved with the PSF, before point-wise multipli-
cation by the filter function. The final image is the sum over all
wavelengths.

5. HYPERSPECTRAL RECONSTRUCTION

To recover the hyperspectral datacube from the 2D measurement,
we must solve an underdetermined inverse problem. Since our sys-
tem falls within the framework of compressive sensing due to our
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incoherent, multiplexed measurement, we use l1 minimization.
We use a weighted 3D total variation (3DTV) prior on the scene,
as well as a nonnegativity constraint, and a low-rank prior on the
spectrum. This can be written as

v̂ = argmin
v≥0

1

2
‖ b− Av ‖2

2 +τ1 ‖ ∇x yλv‖1 + τ2 ‖ v‖∗, (6)

where ∇x yλ = [∇x∇y∇λ]
T is the matrix of forward finite

differences in the x , y , and λ directions, ‖ ·‖∗ represents the
nuclear norm, which is the sum of singular values. τ1 and τ2 are
the tuning parameters for the 3DTV prior and low-rank priors,
respectively. We use the fast iterative shrinkage-thresholding algo-
rithm (FISTA) [42] with weighted anisotropic 3DTV to solve this
problem according to [43].

6. IMPLEMENTATION DETAILS

We built a prototype system using a CMOS sensor, a hyperspectral
filter array provided by Viavi Solutions (Santa Rosa, CA) [18], and
an off-the-shelf diffuser (Luminit 0.5◦) placed 1 cm away from
the sensor. The sensor has 659× 494 pixels (with a pixel pitch of
9.9 µm), which we crop down to 448× 320 to match the spectral
filter array size. The spectral filter array consists of a grid of 28× 20
super-pixels, each with an 8× 8 grid of filter pixels (64 total,
spanning the range 386–898 nm). Each filter pixel is 20 µm in
size, covering slightly more than four sensor pixels. The alignment
between the sensor pixels and the filter pixels is unknown, requir-
ing a calibration procedure (detailed in Section 6.A). The exposure
time is adjusted for each image, ranging from 1 ms–13 ms, which is
short enough for video-rate acquisition. The computational recon-
struction typically takes 12–24 min (for 500–1000 iterations) on
an RTX 2080-Ti GPU using MATLAB.

A. Filter Function Calibration

To calibrate the filter function [Fλ[x , y ] in Eq. (3)], including the
spectral sensitivity of both the sensor and the spectral filter array, we
use a Cornerstone 130 1/3 m motorized monochromator (Model
74004). The monochromator creates a narrowband source of
5 nm full width at half-maximum (FWHM), and we measure the
filter response (without the diffuser) while sweeping the source by
8 nm increments from 386 nm to 898 nm. The result is shown in
Fig. 4(b).

B. PSF Calibration

We also need to calibrate the diffuser response by measuring the
diffuser PSF pattern without the spectral filter array. Because the
diffuser is relatively smooth with large features (relative to the
wavelength of light), the PSF remains relatively constant as a func-
tion of wavelength, as shown in Fig. 4(a). Hence, we only need to
calibrate for a single wavelength by capturing a single point source
calibration image [19]. However, this is not trivial because the
spectral filter array is bonded to the sensor and cannot be removed
easily. In our setup, we instead take advantage of the fact that our
filter array is smaller than our sensor, so we can measure the PSF
using the edges of the raw sensor, by shifting the point source to
scan the different parts of the PSF over the raw sensor area and
stitching the sub-images together. In a system where the filter
size is matched to the sensor, this trick will not be possible, but an

optimization-based approach could be developed to recover the
PSF from measurements.

C. System Non-Idealities

Our reconstruction quality and spectral resolution are limited
by two non-idealities in our system. First, our camera develop-
ment board performs an undefined and uncontrollable nonlinear
contrast stretching to all images. This makes the measurement
nonlinear and impedes our imaging of dim objects (since the
camera performs a larger contrast stretching for dimmer images).
Further, our spectral calibration may have errors, since each cal-
ibration image cannot be normalized by the intensity of light
hitting the sensor. This may cause certain wavelength bands to
appear brighter or dimmer than they should in our spectral recon-
structions. A better camera board without automatic contrast
stretching should fix this problem and provide more quantitative
spectral profile reconstructions in the future.

Second, we used a simplified spectral calibration in which we
measured the response with uniform spectral sampling, instead of
at the true wavelengths of the filters. Due to the mismatch between
our calibration scheme (measured every 8 nm with constant band-
width) and the actual spectral filters (center wavelengths spaced
5–12 nm apart with bandwidths between 6–23 nm), sometimes
our calibration wavelengths fall between two filters, resulting in an
ambiguity. Given this non-ideal calibration, our effective spectral
bands are limited to 49 bands, instead of 64. In our results, we show
all 64 bands, but note that some will have overlapping spectral
responses. In the future, we will calibrate at the design wavelengths
of the filter to fix this issue. Further, the deposition of the spectral
filters directly on top of the camera pixels (requiring precise place-
ment during the manufacturing stage) would alleviate the need for
this calibration entirely.

7. RESOLUTION ANALYSIS

Here, we derive our theoretical resolution and experimentally
validate it with our prototype system. First, we discuss spectral res-
olution, which is set by the filter bandwidths, and then we compute
the expected two-point spatial resolution, based on the PSF auto-
correlation. Since our resolution is scene-dependent, we expect
the resolution to degrade with scene complexity. To characterize
this, we present theory for multi-point resolution based on the
condition number analysis introduced in [19]. We compare our
system against those with a high-NA and low-NA lens instead of
a diffuser. Our results demonstrate two-point spatial resolution
of ∼0.19 super-pixels and multi-point spatial resolution of ∼0.3
super-pixels for 64 spectral channels ranging from 386–898 nm.

A. Spectral Resolution

Spectral resolution is determined by the spectral channels of the
filter array. As such, we expect to be able to resolve the 64 spectral
channels present in our spectral filter array. The filters have an aver-
age spacing of 8 nm across a 386–898 nm range with bandwidths
between 6–23 nm. To validate our spectral resolution, we scan a
point source across those wavelengths using a monochromator.
Figure 5 shows a sampling of spectral reconstructions overlaid on
top of each other, with the shaded blocks indicating the ground
truth monochromator spectra. Our reconstructions all match the
ground truth peaks within 5 nm of the true wavelength. The small
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Fig. 5. Spectral resolution analysis. Sample spectra from hyperspectral
reconstructions of narrowband point sources, overlaid on top of each
other, with shaded lines indicating the ground truth. For each case, the
recovered spectral peak matches the true wavelength within 5 nm.

(a)

(b)

Fig. 6. Spatial resolution analysis. (a) The theoretical resolution of
our system, defined as the half-width of the autocorrelation peak at 70%
its maximum value, is 0.19 super-pixels. (b) Experimental two-point
reconstructions demonstrate 0.19 super-pixel resolution across all wave-
lengths (slices of the reconstruction shown here), matching the theoretical
resolution.

red peaks around 400 nm are artifacts from the monochroma-
tor, which emitted a second peak around 400 nm for the longer
wavelengths.

B. Two-Point Spatial Resolution

Spatial resolution of our system, in terms of the two-point resolu-
tion, will be bounded by that of a lensless imager with the diffuser
only (without the spectral filter array). The expected resolution can
be defined as the autocorrelation peak half-width at 70% the maxi-
mum value [37], Fig. 6(a). For our system, this is∼3 sensor pixels,
or 0.19 super-pixels. To experimentally measure the spatial reso-
lution of our system, we image two point sources at three different
wavelengths (618 nm, 522 nm, 466 nm). The reconstructions
in Fig. 6 show that we can resolve two point sources that are 0.19
super-pixels apart for each wavelength and orientation, as deter-
mined by applying the Rayleigh criterion. This demonstrates that
our system achieves sub-super-pixel spatial resolution, consistent
with the expected resolution that would be achieved without the
spectral filter array.

C. Multi-Point Resolution

Because our image reconstruction algorithm contains nonlinear
regularization terms, our reconstruction resolution will be object

(a) (b)

Fig. 7. Condition number analysis for Spectral DiffuserCam, as
compared to a low-NA or high-NA lens. (a) Condition numbers for the
2D spatial case (single spectral channel) are calculated by generating
different numbers of points on a 2D grid, each with separation distance d .
(b) Condition numbers for the full spatio-spectral case are calculated on a
3D grid. A condition number below 40 is considered to be good (shown
in green). The diffuser has a consistently better performance for small
separation distances than either the low-NA or the high-NA lens. The dif-
fuser can resolve objects as low as 0.3 super-pixels apart for more complex
scenes, whereas the low-NA lens requires larger separation distances and
the high-NA lens suffers errors due to gaps in the measurement.

dependent. Hence, two-point resolution measurements are not
sufficient for fully characterizing the system resolution, and should
be considered a best case scenario. To better predict real-world
performance, we perform a local condition number analysis, as
introduced in [19], that estimates resolution as a function of object
complexity. The local condition number is a proxy for how well the
forward model can be inverted, given known support, and is useful
for systems such as ours in which the full A matrix is never explicitly
calculated [44].

The local condition number theory states that given knowledge
of the a priori support of the scene, v, we can form a sub-matrix
consisting only of columns of A corresponding to the non-zero
voxels. The reconstruction problem will be ill-posed if any of the
sub-matrices of A are ill-conditioned, which can be quantified by
the condition number of the sub-matrices. The worst-case condi-
tion number will be when sources are near each other; therefore, we
compute the condition number for a group of point sources with a
separation varying by an integer number of voxels and repeat this
for increasing numbers of point sources.

In Fig. 7, we calculate the local condition number for two
cases: the 2D spatial reconstruction case, considering only a single
spectral channel, and the 3D case, considering points with varying
spatial and spectral positions. For comparison, we also simulate
the condition number for a low-NA and high-NA lens, as intro-
duced in Section 3. The results show that our diffuser design has
a consistently lower condition number than either the low- or
high-NA lens, having a condition number below 40 for separation
distances of greater than∼0.3 super-pixels. The low-NA lens needs
a separation distance closer to∼1 super-pixel, as expected, and the
high-NA lens has an erratic condition number due to the missing
information in the measurement.
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(a) (b)

(c) (d)

Fig. 8. Simulated hyperspectral reconstructions comparing
our Spectral DiffuserCam result with alternative design options.
(a) Resolution target with different sections illuminated by narrow-
band 634 nm (red), 570 nm (green), 474 nm (blue), and broadband
(white) sources (ground truth). (b) Reconstruction of the target by
Spectral DiffuserCam, (c) a low-NA lens design, and (d) a high-NA lens
design, each showing the raw data, false-colored reconstruction, and λy
sum projection. The diffuser achieves higher spatial resolution and better
accuracy than the low-NA and the high-NA lens.

From this analysis, we can see that, beyond 0.3 super-pixels sep-
aration, the condition number for the diffuser does not get arbitrar-
ily worse for increasing scene complexity. Thus, our expected spa-
tial resolution is approximately 0.3 super-pixels.

D. Simulated Resolution Target Reconstruction

Next, we validate the results of our condition number analysis
through simulated reconstructions of a resolution target with
different spatial locations illuminated by different sources (red,
green, blue, and white light), as shown in Fig. 8. For each simula-
tion, we add Gaussian noise with a variance of 1× 10−5 and run
the reconstruction for 2000 iterations of FISTA with 3DTV. Our
system resolves features that are 0.3 super-pixels apart, whereas
the low-NA lens can only resolve features that are roughly 1 super-
pixel apart, and the high-NA lens results in gaps, validating our
predicted performance.

8. EXPERIMENTAL RESULTS

We start with experimental reconstructions of simple objects with
known properties—a broadband USAF resolution target displayed
on a computer monitor, and a grid of RGB LEDs (Fig. 9). We

(a)

(b)

Fig. 9. (a) Resolution target reconstruction. Experimental reconstruc-
tion of a broadband resolution target, showing the x y sum projection
(top) and λy sum projection (bottom), demonstrating spatial resolu-
tion of 0.3 super-pixels. (b) RGB LED reconstruction. Experimental
reconstruction of 10 multi-colored LEDs in a grid with∼0.4 super-pixels
spacing (four red LEDs on left, four green in middle, two blue at right).
We show the x y sum projection (top) and λy sum projection (bottom).
The LEDs are clearly resolved spatially and spectrally, and spectral line
profiles for each color LED closely match the ground truth spectra from a
spectrometer.

resolve points that are ∼.3 super-pixels apart, which matches our
expected multi-point resolution based on the condition number
analysis above. For the RGB LED scene, the ground truth spectral
profiles of the LEDs are measured using a spectrometer, and our
recovered spectral profile closely matches the ground truth, as
shown in Fig. 9(b).

Next, we show reconstructions of more complex objects, either
displayed on a computer monitor or illuminated with two halogen
lamps (Fig. 10). We plot the ground truth spectral line profiles, as
measured by a Thorlabs CCS200 spectrometer, from four points in
the scene, showing that we can accurately recover the spectra. A ref-
erence RGB scene is shown for each image, demonstrating that the
reconstructions spatially match the expected scene.

9. DISCUSSION

A key advantage of our design over previous work is its flexibil-
ity to choose the spectral filters in order to tailor the system to a
specific application. For example, one can nonlinearly sample a
wide range of wavelengths (which is difficult with many previous
snapshot hyperspectral imagers). In the future, we plan to design
implementations specific to various task-based applications, which
could make hyperspectral imaging more easily adopted, especially
since the price is several orders-of-magnitude lower than currently
available hyperspectral cameras.
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(a) (b)

(c) (d)

Fig. 10. Experimental hyperspectral reconstructions. (a)–(c) Reconstructions of color images displayed on a computer monitor and (d) Thorlabs plush
toy placed in front of the imager and illuminated by two Halogen lamps. The raw measurement, false color images, xλ sum projections, and spectral line
profiles for four spatial points are shown for each scene. The ground truth spectral line profiles, measured using a spectrometer, are plotted in black for ref-
erence. Spectral line profiles in (a) and (b) show the average and standard deviation spectral profiles across the area of the box or letter in the object, whereas
(c) and (d) show a line profile from a single spatial point in the scene.

Currently, we experimentally achieve a spatial resolution of
∼0.3 super-pixels, or 5 sensor pixels. In future designs, we should
be able to achieve the full sensor resolution (along with better
quality reconstructions) by optimizing the randomizing optic,
instead of using an off-the-shelf diffuser. This could be achieved by
end-to-end optical design [45,46].

Our system has two main limitations: light-throughput and
scene-dependence. Due to the use of narrowband spectral fil-
ters, much of the light is filtered out by the filters. This provides
good spectral accuracy and discrimination, but at the cost of low
light-throughput. In addition, since the light is spread by the
diffuser over many pixels, the signal-to-noise ratio (SNR) is fur-
ther decreased. Hence, our imager is not currently suitable for
low-light conditions. This light-throughput limitation can be
mitigated in the future by the use of photonic crystal slabs instead
of narrowband filters, in order to increase light-throughput while
maintaining spatio-spectral resolution and accuracy [27]. In
addition, end-to-end design of both the spectral filters and the
phase mask should improve efficiency, since application-specific
designs can use only the set of wavelengths necessary for a particu-
lar task, without sampling the in-between wavelengths. Reducing
the number of spectral bands improves both light-throughput
(because more sensor area will be dedicated to each spectral band)
and spatial resolution (because the super-pixels will be smaller).

Our second limitation is scene-dependence, as our reconstruc-
tion algorithm relies on object sparsity (e.g., sparse gradients).

Because of the nonlinear regularization term, it is difficult to pre-
dict performance, and one might suffer artifacts if the scene is
not sufficiently sparse. Recent advances in machine learning and
inverse problems seek to provide better signal representations,
enabling the reconstruction of more complicated, denser scenes
[47,48]. In addition, machine learning could be useful in speed-
ing up the reconstruction algorithm [49] as well as potentially
utilizing the imager more directly for a higher-level task, such as
classification [50].

10. CONCLUSION

Our work presents a new hyperspectral imaging modality that
combines a color filter array and lensless imaging techniques for
an ultra-compact and inexpensive hyperspectral camera. The
spectral filter array encodes spectral information onto the sensor,
and the diffuser multiplexes the incoming light such that each
point in the world maps to many spectral filters. The multiplexed
nature of the measurement allows us to use compressive sensing
to reconstruct high spatio-spectral resolution from a single 2D
measurement. We provided an analysis for the expected resolution
of our imager and experimentally characterized the two-point and
multi-point resolution of the system. Finally, we built a prototype
and demonstrated reconstructions of complex spatio-spectral
scenes, achieving up to 0.19 super-pixel spatial resolution across 64
spectral bands.
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