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INTRODUCTION:Discovered inthemitochondrion
of Trypanosoma brucei, a protozoan parasite
that causes African sleeping sickness, RNA edit-
ing denotes a spectrum of phylogenetically
widespread and often mechanistically unre-
lated molecular processes that change RNA se-
quence. In trypanosomal RNA editing, gRNAs
direct massive recoding of cryptic mitochondrial
transcripts to generate mRNAs. Assembled into
the partially defined editosome, two principal
ribonucleoprotein particles execute anunconven-
tional method of genetic information transfer
fromgRNA tomRNA. TheRNA-editing substrate-
binding complex (RESC) stabilizes gRNAs and
engagesmRNAs. TheRNA-editing catalytic com-

plex (RECC) fulfills gRNA-programmed mRNA
cleavage, uridine insertion or deletion, and rel-
igation reactions.

RATIONALE: Mitochondrial gRNA forms an im-
perfect duplex with mRNA precursor in which
secondary structure defines multiple editing sites.
To reveal gRNA stabilization and mRNA recog-
nitionmechanisms, we have determined atomic
structures of three states of the RESC using cry-
ogenic electron microscopy and characterized
individual subunits’ RNA-binding specificity.

RESULTS: Biochemical studies defined theRESC
as a heterogenous assembly of ~18 proteins that

enclose gRNAs and mRNAs. Prior work also
demonstrated that theRESC1/2 dimer stabilizes
gRNAs and most other proteins bind mRNAs.
The structure of the six-member RESC-A shows
howRESC2RNA triphosphatase pseudoenzyme
engulfs the triphosphorylated gRNA’s 5′ end,
and how the RESC5/6 dimer fastens the 3′ end.
These contacts promote gRNA folding into a
“hairpin-like” conformation and shield both
termini from nucleases. The 10-polypeptide
RESC-B structure suggests that a remodeling
event recovers gRNA from theRESC-A “storage”
mode and transitions the single-stranded mol-
ecule into mRNA proximity. In the process, the
gRNA’s 5′ end is ejected from the RESC2 tri-
phosphate binding tunnel but the 3′ end re-
mains wedged between RESC5 and RESC6,
which are the only proteins shared between
RESC-A and RESC-B. All RESC-B subunits, in-
cluding RESC5/6, contact mRNA along a ~20-
nucleotide segment. However, gRNA andmRNA
do not interact within RESC-B boundaries.
A typical gRNA starts with an “anchor” fully

complementary to the mRNA target; the adja-
cent “guiding” part pairs with mRNA sparsely
and creates editing sites typified by single-
stranded bulges and loops. A few nucleotides
separate this “information-rich” sequence from
the terminal uridine tail. Mechanistically, se-
questering gRNA’s “information-poor” 3′ end
inside RESC-B allows guiding and anchor parts
to hybridize with mRNA beyond RESC-B’s sur-
face. Apparently, RESC-B proteins recruit gRNAs
and mRNAs irrespective of their sequences and
position the two strands in a roughly antipar-
allel orientation, but distant enough to prevent
spurious annealing within the complex. The ex-
posed gRNA and mRNA regions likely sample
each other until productive hybridization cre-
ates a substrate for the catalytic RECC complex.

CONCLUSION: The architectures of distinct
RESC states reveal a diversity of protein folds
that have been co-opted into the RNA editing
machinery. We have discovered how common
gRNA elements function in stabilizing this
shortmolecule andengagingmRNA.Our results
show that gRNA-mRNA recognition emanates
from ribonucleoprotein complex remodeling
rather than initiating base pairing of the
anchor sequence with the mRNA target. Last,
structural information on essential functional
features, such as the RESC2 triphosphate bind-
ing site, may facilitate development of new
trypanocides.▪
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In Trypanosoma brucei, the editosome, composed of RNA-editing substrate-binding complex (RESC)
and RNA-editing catalytic complex (RECC), orchestrates guide RNA (gRNA)–programmed editing to recode
cryptic mitochondrial transcripts into messenger RNAs (mRNAs). The mechanism of information transfer from
gRNA to mRNA is unclear owing to a lack of high-resolution structures for these complexes. With cryo–electron
microscopy and functional studies, we have captured gRNA-stabilizing RESC-A and gRNA-mRNA–binding
RESC-B and RESC-C particles. RESC-A sequesters gRNA termini, thus promoting hairpin formation and
blocking mRNA access. The conversion of RESC-A into RESC-B or -C unfolds gRNA and allows mRNA selection.
The ensuing gRNA-mRNA duplex protrudes from RESC-B, likely exposing editing sites to RECC-catalyzed
cleavage, uridine insertion or deletion, and ligation. Our work reveals a remodeling event facilitating gRNA-
mRNA hybridization and assembly of a macromolecular substrate for the editosome’s catalytic modality.

K
inetoplastids are a group of flagellated
protozoans that infect humans and live-
stock in some of the most impoverished
regions of theworld.Trypanosomabrucei
spp. cause African human and animal

trypanosomiasis, a substantial health threat
and economic burden, respectively, in sub-
Saharan Africa. The toxicity and complex regi-
mens of existing treatments call for identification
ofpotential parasite-specific drug targets, among
which the distinct organellar RNA-editing com-
plexes stand prominent. In trypanosomes, RNA
editing restores the protein coding capacity
of mitochondrial cryptogenes bymassive post-
transcriptional insertions and deletions of
uridines (uridine, U) (1, 2). Short noncoding
RNAs bind to andprogram sequence changes in
themRNA.Astutely termedguideRNAs (gRNAs)
are ~50–nucleotide (nt) molecules that feature
a triphosphorylated 5′ end, followed by the
“anchor” region complementary to mRNA tar-
get, the “guiding” part, and often an uridylated
3′ end (3–5). In massively edited (pan-edited)
mRNAs, overlapping gRNAs sequentially bind
tomRNA as recoding progresses from the 3′ to
the 5′ end (6). Discoveries of RNA editing and

gRNAs in trypanosomeshave laid the foundation
for developing modern RNA-directed genome-
and transcriptome-altering technologies.
The partially defined T. brucei editosome in-

cludes RNA-editing substrate-binding com-
plex (RESC) and RNA-editing catalytic complex
(RECC) (7–9). Molecular studies have impli-
cated homologous binding partners RESC1
and RESC2, previously named GRBC1/2 (10) or
GAP2/1 (11), in gRNA stabilization and demon-
strated their presence in heterogeneous (0.3
to 1.2 MDa) ribonucleoproteins (RNPs) in-
volving up to 18 polypeptides [RESC protein
nomenclature is available in (8)] (10–12). The
RNPs that contain the RESC1/2 dimer incorpo-
rate editing substrates (gRNAs and pre-edited
mRNAs) and products (partially and fully
edited mRNAs) (7, 12–14). Conversely, the RECC
complex encloses enzymes performing gRNA-
programmed mRNA cleavage, U insertions or
deletions, and religation (15–17).
Efforts to understand editing mechanisms

at the structural level remain limited to crys-
tallographic studies of recombinantly produced
individual enzymes (18–20) and factors (21–23).
Previous electron microscopy (EM) attempts
yielded negative-stain structures of the cata-
lytic editing complex at ~30-Å resolution (24, 25).
In this study, we combined biochemical, mass
spectrometry, in vivo RNA profiling, and cryoID
(26) approaches to capture three states of the
RESC and reveal their atomic details by single-
particle cryo–electron microscopy (cryo-EM).

Results
Capturing three states of RESC: RESC-A,
RESC-B, and RESC-C

To produce isolates amenable to cryo-EM re-
constitutions at near-atomic resolution, we ini-

tially purified endogenous RESC2 (Fig. 1A and
fig. S1) and separated the associated complexes
by glycerol gradient and native polyacrylamide
gel electrophoresis (PAGE) to resolve the pre-
dominant ~280 kDa and less abundant ~0.5
to 1.2 MDa complexes (Fig. 1B). Although the
RESC1/2 dimer binds gRNAs in vitro (10, 27),
distribution along the gradient shows that the
most abundant ~280 kDa RESC1/2-containing
particles are devoid of gRNAs, which are se-
questered into complexes exceeding 400 kDa
(Fig. 1B, bottom). To capture these larger gRNA-
containing assemblies, we tested RESC2, RESC5,
RESC9, and RESC14 isolates for RESC com-
ponents and associated mRNA-processing com-
plexes (fig. S2 and table S1). The RESC2-purified
sample contained abundant RESC1/2 and KREH2
helicase, whereas both RESC9 and RESC14 iso-
lates lacked RESC1 to RESC4 and RESC15 to
RESC18, respectively. Compared with the others,
the RESC5 complex comprised a more uniform
set of RESC proteins and higher relative amount
of the catalytic RECC (fig. S2). Size separation
of RESC5 (Fig. 1C) demonstrated cosedimen-
tation with RESC4 (Fig. 1D), which is pre-
dicted to interact with RESC1/2 and RESC5
(7, 13). Likewise, native PAGE revealed RESC5
presence in distinct complexes (Fig. 1D), of
which RESC1/2 co-occupies the ~400-kDa par-
ticles and those exceeding 600 kDa (Fig. 1E).
Informed by these findings, we selected RESC5
for cryo-EM analysis. To mitigate sample het-
erogeneity, mitochondrial lysate was treated
with ribonucleases (RNases) before purification;
this step reduced copurification of RESC12/12A
mRNA-binding proteins (28, 29) and mRNA
editing (RECC and KREH2C) and processing
(KPAC and PPsome) complexes (8) (Fig. 1F and
table S2).
The RNase-treated RESC5 sample was evalu-

ated by means of negative-stain EM and cryo-
EM. The 2D averages of the cryo-EM particles
revealed multiple species with miscellaneous
shapes and dimensions (fig. S3, A and B). By
combining these 2D classes for in-depth 3D
analysis (fig. S4), we obtained a series of 3D
structures, among which three were identified
as RESC protein–containing complexes through
the cryoID approach (26), and their atomicmod-
els were built. We designated them as RESC-A
(3.7 Å), RESC-B (3.4 Å), and RESC-C (3.3 Å) (Fig.
1G, figs. S9 and S10, table S3, and movie S1).
RESC-A contains RESC1 to RESC6, including
the gRNA-stabilizing heterodimer RESC1/2.
RESC-B incorporatesRESC5 toRESC11, RESC13,
and RESC14, thus sharing the RESC5/6 hetero-
dimer with RESC-A and possessing the mRNA-
interacting RESC13 (28, 29). The smallest
complex, RESC-C, consists of RESC5 to RESC8,
RESC10, andRESC14; itmay represent aRESC-B
assembly intermediate or reflect RESC-B re-
modeling during editing (Fig. 1G and fig. S8).
Most RESC components are composed of re-
petitive arrays of short amphiphilic a helices
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called HEAT repeats (also known as a solenoid)
(fig. S11). HEAT repeats often form extended
superhelical structures and mediate protein-
protein interactions (30, 31), as observed here.
Apparent molecular masses of RESC5 com-

plexes agree with values calculated from struc-
tural models; RESC-A (~380 kDa) and RESC-B
(~600 kDa) likely populate the upper band,
with the lower band representing RESC-C
(~270 kDa) (Fig. 1D and fig. S8).

Depletion of RESC12 and RESC12A from
RESC5 isolates through RNase treatment (Fig.
1F) led us to inquire whether these paralogs
that share 77% protein sequence identity and
bind to pre-editedmRNA (28, 29) connect with
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Fig. 1. Overall architec-
ture of RESC-A, -B,
and -C complexes from
T. brucei. (A) Tandem
affinity–purified CTS-
tagged RESC2 separated
by means of SDS-PAGE
and stained with fluorescent
dye. Arrows indicate gRNA-
binding proteins RESC1
and RESC2 and DEAH/
RHA RNA helicase KREH2.
(B) RESC2-CTS isolate
separated by means of
native PAGE (left) or glycerol
gradient and then native
PAGE (right), and visual-
ized by immunoblot with a
tag-specific antibody.
Sedimentation rate values
(S) of thyroglobulin, and
small and large bacterial
ribosomal subunits align
with fractions probed for
RESC1/2 (top; immunoblot
with antibodies recognizing
both proteins) and gRNAs
CO3 (141 to 185) and
uS12m (43 to 78]) (bottom;
northern blot). Synthetic
radiolabeled tracer shows
uniformity of RNA isolation
from gradient fractions
(middle). (C) Tandem
affinity–purified CTS-
tagged RESC5 separated
by means of SDS-PAGE
and stained with fluores-
cent dye. (D) RESC5-CTS
isolate separated by
means of native PAGE
(left), or by glycerol gradient
and then native PAGE
(right) and visualized with
tag-specific antibody.
RESC4 and RESC5 were
detected in each fraction
by immunoblot. (E) Mem-
branes shown in (D)
probed with antibodies
against RESC1/2. (F) Rel-
ative abundances of RESC
proteins and RNA-editing
catalytic (RECC), mRNA
stabilizing (PPsome), polyadenylation (KPAC), and KREH2 RNA helicase (KREH2C) complexes in RESC5 isolates from mock- and RNase-treated extracts. Heatmap represents
log2-fold change values. RNase treatment of the extract prevented RESC5 co-isolation with RECC, PPsome, KPAC, and KREH2C; RESC12 and RESC12A paralogs also
declined. Supporting mass spectrometry data are provided in table S2. (G) Distinct views of RESC-A (left), RESC-B (middle), and RESC-C (right) cryo-EM density maps.
(Insets) Models overlayed on transparent cryo-EM density. Additional overlays are provided in fig. S9.
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RESC bymeans of anRNA component (Fig. 1F).
For RESC12 and RES12A isolations without
RNase treatment, paralog-specific peptide
spectra counting showed reciprocal RESC12
and RESC12A relative abundances and their
similar levels in RESC5 isolate (table S4). Over-
all, we conclude that RESC-A and RESC-B in-
teract with KREH2 helicase and pre-edited
mRNA binding factors, respectively, through
RNA. As detailed below, the atomic models of
RESC-A, RESC-B, and RESC-C reveal interac-
tions among their subunits, the mechanisms
of gRNA stabilization, and gRNA-mRNA recog-
nition. Our analyses also suggest themechanism
by which a ribonucleoprotein substrate for the
catalytic RECC assembles.

Structure of RESC-A

RESC-A contains six proteins and has dimen-
sions of 180 by 115 by 95 Å (Figs. 1G and 2A).
The presence of the RNA triphosphate tunnel
metalloenzyme (TTM) domain (32) typifies
RESC1 and RESC2; the latter also has an N-
terminal armadillo (ARM) domain. RESC5
and RESC6 consist of b-propeller and super-
helical HEAT domains, respectively. RESC3
and RESC4 are characterized by superhelical
HEAT domains flanked by an N-terminal an-
chor and a C-terminal clip domain, respectively
(fig. S11). RESC1 and RESC2 share a protein
sequence identity of 31% and form a hetero-
dimer (Fig. 2B and fig. S13B). A hairpin loop
(amino acids 181 to 212) protruding from
RESC2’s TTM runs along the crevice outside
the triphosphate tunnel of RESC1, yielding
extensive hydrophobic interactions and main
chain–main chain hydrogen bonds (Fig. 2B,
middle and right). Hydrogen bonds between
RESC2’s ARM and RESC1’s TTM further en-
hance association (Fig. 2B, top left). Extensive
RESC1/2 contacts likely underlie their interde-
pendent persistence in the cell (11). The RESC1/2
heterodimer occupies the superhelical inner
surface of RESC6’s HEAT by means of the ex-
tended loop of RESC2’s ARM, forming hydrogen
bonds (Fig. 2C). RESC5 associates with RESC6
through hydrogen bonds and hydrophobic
contacts (Fig. 2D), generating a positively
charged crevice between RESC5 and RESC6
that is potentially receptive to RNA binding
(Fig. 2E). RESC3 and RESC4 stabilize the ori-
entations of RESC1/2 and RESC5/6 hetero-
dimers (Fig. 2A and fig. S12, A and B).

Guide RNA interactions in RESC-A

The RESC-A structure described above was
determined in the RNase-treated isolate (Figs.
1F and 2A, and figs. S4 and S5). Because mo-
lecular studies identified RESC1/2 as the key
gRNA-stabilizing element (10), we next iso-
lated RESC5 from mock-treated lysate and
determined RESC-A structure with gRNA at
3.7-Å resolution (Fig. 3A, figs. S6 and S7, and
movie S2). The overall structures are similar

(Fig. 3B, left), except that disordered loops
close to gRNA in RESC1 and RESC2 become
organized and visible in the presence of gRNA
(Fig. 3B, inset). The triphosphate binding tun-
nel of RESC2 engulfs the gRNA’s 5′ end while
the 3′ end docks into the crevice formed by
RESC5 and RESC6 (Fig. 3, A and C). Specifi-
cally, the gRNA’s 5′ triphosphate and conserved
transcription initiation sequence contact the
triphosphate binding tunnel, whereby the “an-
chor” and “guiding” regions hybridize into an
~18–base pair (bp) stem (Fig. 3D) reminiscent
of gRNA folding in solution (33, 34). The lock-
ing of anchor and guiding regions into a hairpin
suggests that gRNA must undergo a drastic
conformational change to recognize mRNA.
In addition to the 5 nt at the 3′ end lining up
the crevice between RESC5/6, a total of 47 nt
were modeled for gRNA in RESC-A (Fig. 3D).
Accounting for the unstructured loop region,
the RESC-bound gRNA matches the median
49-nt length of encoded gRNA sequences (35).
Our findings imply that a hairpin conformation
and 3′-end shielding by RESC5/6 render gRNA
refractory to 3′-to-5′ degradation (4, 36, 37).
We conclude that RESC-A, rather than solely
the RESC1/2 heterodimer (10, 11, 27), is the
gRNA-stabilizing particle.
gRNA is the only class of mitochondrial tran-

scripts that retains 5′ triphosphate character-
istic of transcription start site (3, 38), whereas
the nonencoded 3′ U tail is added by the pro-
cessome after precursor trimming (4, 5). To
investigate the functional importance of the
triphosphate binding by RESC2, we superim-
posed RESC1 and RESC2 TTM domains with
Cet1mRNA triphosphatase fromSaccharomyces
cerevisiae (32). Structural comparisons and se-
quence alignments of T. brucei and related
parasite Leishmaniamajor proteins show sub-
stitutions of two glutamic acids in the catalytic
metal binding triad (E305-E307-E496; Cet1
numbering) that typify RESC1 and RESC2 as
hydrolytically inactive pseudoenzymes (Fig. 3,
E to G). The lack of phosphatase activities in
RESC5 isolate and reconstituted RESC1/2 het-
erodimer support this conclusion (fig. S13).
However, in the gRNA-occupied RESC2 TTM
tunnel, positively charged residues (K311, R402,
and R424; RESC2 numbering) form hydrogen
bonds with the 5′ triphosphate moiety (Fig. 3,
D and F). In RESC1, substitutions of potential
triphosphate binding positions (R393 and
K456; Cet1 numbering) by acidic or polar side
chains (Fig. 3G) likely explain the lack of
gRNA occupancy (Fig. 3A). To test the essen-
tiality of triphosphate contacts, we constructed
cell lines for inducible overexpression of RESC2
mutants and tested their growth kinetics. Re-
placing E240A/N242A, residues in positions
structurally homologous to Cet1 catalyticmetal-
binding side chains E305/E307, exerted no
growth inhibition, which is consistent with the
lack of a Mg2+-binding site in RESC2 (Fig. 3, F

andG).Bycomparison,mutationsof triphosphate-
binding amino acids caused growth-inhibition
phenotypes ranging from mild (K311A) to mod-
erate (R402A/K406A) to severe (R424A) (Fig.
3H). As a control, R408A mutation in RESC1
(corresponding to R424A in RESC2) produced
no discernible growth defect (fig. S14).
The long-debated U-tail function (3, 5, 39, 40)

compelled a closer scrutiny of the 3′-end bind-
ing in the RESC5/6 crevice (Figs. 2E and 3, C
and D). Ultraviolet (UV) irradiation of live par-
asites and sequencing of RNAs cross-linked
to RESC1/2 and RESC5/6 (table S5) demon-
strate that RESC-A shields the entire gRNA
and indicate that RESC5 binds longer gRNA
fragments thanRESC2 (Fig. 3I). The difference
emanates from RESC5-bound gRNAs possess-
ing extended U tails (Fig. 3J). Consistent with
uridylation patterns of predicted gRNAs versus
gRNA-like molecules encoded by pseudo-gRNA
genes (35), we found that RESC5 functionally
selects gRNAs with longer U tails (Fig. 3K).
Conversely, the lack of U-enriched motifs in
RESC5-bound fragments stipulates a “molec-
ular ruler”mechanism of gRNA selection: The
length, rather than the sequence of nonen-
coded additions, delivers the 3′ end into the
crevice between RESC5 and RESC6 (Fig. 3C).
Taken together, our structural and functional
data show that RESC-A selects gRNA by rec-
ognizing the 5′ triphosphate and accommo-
dating a defined length and the capacity to
fold into a hairpin-like conformation.

mRNA recognition in RESC-B

We also determined structures of RESC-B from
RNase- and mock-treated RESC5 isolates. Al-
though the latter has extended RNA densities
and additional protein components, their over-
all structures are similar. The following descrip-
tion refers to their common features unless
otherwise stated: RESC-B shares RESC5/6 het-
erodimer with RESC-A and contains addi-
tional components RESC7 to RESC14 [Figs.
1G (RNase-treated) and 4A (mock-treated) and
movie S3]. Multiple helix-loop-helix structural
motifs populate subunits RESC7-12 (fig. S11),
withRESC8 toRESC12 forming extended super-
helical HEAT domains. RESC13’s N-terminal
RGG and C-terminal RRM motifs, both impli-
cated in mRNA binding (41), are present in the
structure of mock-treated RESC-B; only the RGG
domain is visible in RNase-treated RESC-B. The
RESC14 phytanoyl-CoA dioxygenase pseudo-
enzyme’s phyH domain is wedged between
RESC6, RESC8, and RESC10 (Fig. 4A and fig.
S12, C and D).
Two RNA strands are embedded in RESC-B.

The shorter fragment contacts RESC5, RESC6,
and RESC10 (Fig. 4, A and B, and fig. S12C),
with nucleotides –16 to –12 (we designate po-
sition –1 as the 3′ end of visible RNA) being
stacked between RESC5 and RESC6 (Fig. 4D),
which mimics gRNA binding in RESC-A (Fig.
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3, C and D). Therefore, this nucleotide strand
was tentatively designated gRNA. In contrast
to RESC-A, the 5′ gRNA nucleotides exiting
fromRESC5/6 are not visible in RNase-treated
RESC-B, whereas the 3′ nucleotides extend fur-
ther and interact with RESC10 (Fig. 4, A and
D). Comparison of RESC-A and RESC-B sug-
gests gRNA transition from a hairpin in RESC-A
(Fig. 3, B to D) into single-stranded conforma-
tion in RESC-B (Fig. 4, A, B, and D). The en-
during gRNA attachment to RESC5/6 during

remodeling renders the stability of this inter-
action as a quality checkpoint for tunneling of
properly 3′-processed molecules into the edit-
ing cascade.
RNA strand modeling and in vivo RNA-

protein cross-linking data suggest that mRNA
fragments account for the longer nucleotide
segment traversing the entire RESC-B and
interacting with all proteins (Fig. 4, A, C, E, H,
and I, and fig. S12, D to F). The unmodeled 5′
moiety runs through the interval between the

RGG and RRM domain of RESC13 and further
associates with the inner surface of RESC11’s
HEAT superhelix (Fig. 4, F and G). Heading
toward the 3′ end, the mRNA is sequentially
shielded by the superhelical inner surface of
theHEAT repeats ofRESC9,RESC8, andRESC6.
This shielding is consistent with residual RNA
moiety in the RNase-treated RESC-B (Fig.
1G, middle). In RESC-B, the mRNA’s 3′ region
is positioned in proximity (~30 Å) to the 5′
end of the single-stranded gRNA fragment
unwound by RESC5, RESC6, and RESC10 (Fig.
4B). This mutual orientation potentially al-
lows gRNA and mRNA to hybridize beyond
the RESC-B surface.

gRNA-mRNA duplex scaffolding by RESC-B

Our cryo-EM structures show gRNA binding
by RESC1/2 and RESC5/6 in RESC-A, and a
continued gRNA engagement with RESC5/6
and additional interactions with RESC10 in
RESC-B, all subunits of which also contact
mRNA. However, sequence diversity of the en-
dogenous transcripts impeded identification
by cryo-EMof RNAs bound to each protein. To
directly identify RNAs bound by individual
RESC components, we carried out UV cross-
linking of live parasites and purification of
RNA-protein cross-links, RNA fragmentation,
and sequencing (figs. S1 and S15A and table S5)
(42). Consistent with our structures, RESC1
and RESC2 (RESC-A) display strong prefer-
ence for gRNAs; RESC5, RESC6 (RESC-A and
RESC-B), and RESC10 (RESC-B) cluster in the
intermediate range commensurate with dual
gRNA-mRNAbindingmodality; RESC-B–specific
RESC7 to RESC14 predominantly cross-link to
mRNAs (Fig. 4H). These data confirm the iden-
tity of the nucleotide strand held by RESC5/6/10
as gRNA (Fig. 4D) and the strand traversing the
entire RESC-B as mRNA (Fig. 4A).
By forming an~11-bp “anchor”duplex, which

lengthens as U insertions and deletions extend
complementarity with mRNA, gRNA initially
recognizes cognate mRNA. Considering the
lack of gRNA-mRNA pairing within RESC-B,
we next assessed editing prevalence inmRNA
fragments cross-linked to RESC-B proteins.
The ratios of fully edited sequences to all reads
derived from pan-edited mRNAs meeting cov-
erage thresholds, uS12m (Fig. 4I), A6, and CO3,
and from moderately edited CYB mRNA (fig.
S15B and table S5), demonstrate that RESC12/
12A paralogs and RESC13 display strongest
preference for pre-edited mRNAs. The extent
of editing increases in RESC14, whose sup-
pression spares initiation but blocks editing
progression (43, 44). As expected from our
structures, edited sequences are most repre-
sented among RNAs cross-linked to gRNA-
mRNA–binding RESC5, RESC6, and RESC10
(Fig. 4I). Longitudinal mapping of RESC5
and RESC12 (Fig. 4J) and other RESC-B pro-
teins (fig. S16) in vivo occupancies of uS12m
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triphosphate–binding side chains that are divergent in RESC1. Cet1 residues
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catalytic metal-binding triad. (H) Growth kinetics of parasite cell lines that
conditionally express mutated RESC2 proteins. (Insets) RESC2 expression in
mock (–tet) cells and cells that were tetracycline-induced for 72 hours (+tet).
KRET1, loading control. (I) Size distribution of gRNA fragments cross-linked
to RESC1, RESC2, RESC5, and RESC6. ****q < 0.0001, Welch’s t test followed
by Benjamini–Hochberg (BH) false discovery rate (FDR) correction.
(J) Distribution of average U-tail length in gRNAs fragments cross-linked to
RESC1, RESC2, RESC5, and RESC6. ****q < 0.0001; ns, not significant. Mann-
Whitney U test, followed by BH FDR correction. (K) Ratios of gRNAs versus
minicircle-encoded gRNA-like molecules cross-linked to RESC-A subunits. Single-
letter abbreviations for the amino acid residues are as follows: A, Ala; E, Glu;
K, Lys; R, Arg; N, Asn.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of C
olorado B

oulder on July 11, 2023



Liu et al., Science 381, eadg4725 (2023) 7 July 2023 6 of 10

A

RESC5
RESC6

RESC8RESC10

RESC9

RESC14

RESC11

RESC5
RESC6

RESC8

RESC9

RESC14
RESC7

180°

gRNA

mRNA

3'

5'

3'

RESC13

R441

P411

K183

R
131

101

P
P

P
P

P
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

R
31

0

S
30

9
H

34
0 F

268

M
407

K
374

R370

R
233

R
237

K
27

0 Y
37

K40
N259

N229

E260

E79
K75

K
19

4

N187
Y442

R107

N
37

4

R
64

R
337

N
33

8

K30
0

M304

R295

E160
Q84

Q45

L
87

Y
44

R834

L794

S755D
75

8

L757

N89

R93

121 120

119
118

117
116

115

114

11
3

112

111
110

109

108

107106

105

104

103

102

RESC10

RESC11

RESC5

RESC6

RESC8

RESC9

RESC14

RESC7

D

E

mRNA

gRNA

mRNA

R
344

3'

3'

RESC10—RESC6/5 RESC8/14—RESC5/6

3'

3'

5'

mRNA

B
45°

90°

N

N
N

NCC

C

C

C

F83

K90

M292

V225

RESC13

-5

-9

-10

-1

-3 -4 -6
-8

-11
-12

-14

-15

-16

-13

-7

P

P

P

P

P

P

P

P

P
P

P

P
P P

P

R195

R196

Y199

K
280

S
283

G326

K28
8

R291

F287 Q329

H358

H394

H365

K369
R368

R
404

R208R374

H19

F24
0

Q211

Y20

R21

R247

RESC5

RESC6

RESC10

gRNA

Q409

3'

-2

P

R215

RESC6 RESC5

RESC10

180°

nt -13

nt -9

nt -16

nt -12

E260

259
N229

Y37

K40

R442

Y441

R107

K183 K75

E79

K194

N187

nt 113

nt 117

nt 101

nt 103
N89

K90

R93
D758

L757

S755R131

mRNA-binding in RESC13/11 mRNA-binding in RESC13/11

mRNA

RESC11

35°

VAr VF

RESC13
RRM

RESC13
RGG

g
R

N
A

/m
R

N
A

 r
at

io

R
ES

C
5

R
ES

C
6

R
ES

C
10

R
ES

C
11

R
ES

C
9

R
ES

C
8

R
ES

C
7

R
ES

C
14

R
ES

C
12

R
ES

C
13

R
ES

C
12

A

0

5

10

15

20

25

30

fu
lly

 e
d

it
ed

 r
at

io
, %

   
   

uS12m (RPS12) mRNA
RESC5

RESC12

T-less position 

ae
R

s
d

 

unedited
U-insertion
U-deletion

0 20 40 60 80 100 120 140 160

0

500

0

5000

10000

15000

20000

R
ea

s
d

 

1000

1500

2000

2500

3000

25000

30000

5'

uS12m (RPS12) mRNA

R
ES

C
1

R
ES

C
5

R
ES

C
10

R
ES

C
6

R
ES

C
2

R
ES

C
11

R
ES

C
12

A
R

ES
C

12
R

ES
C

13

R
ES

C
14

R
ES

C
7

R
ES

C
9

R
ES

C
8

-3

-2

-1

0

1

5

4

3

2

RESC13
RGG

RESC13
RRM

mRNA

RESC11
H1

H2

H1

H3
H4

H5
H6H7

H8H9H10

CTD
unmodeled

mRNA

C

GF

IH J

Fig. 4. gRNA and mRNA trajectories in RESC-B complex. (A) Overall
RESC-B structure. (Left) gRNA-interacting proteins RESC5, RESC6, and RESC10
and gRNA moiety. (Right) mRNA-binding proteins RESC5, RESC6, RESC7,
RESC8, RESC9, and RESC11 and the mRNA reconstitution. (B) Binding of gRNA
and mRNA fragments by RESC5, RESC6, and RESC10. (C) Binding of the
mRNA’s 3′ region by RESC5, RESC6, RESC8, and RESC14. (D) Electrostatic
interactions between gRNA and RESC5, RESC6, and RESC10. Blue surfaces show
positively charged grooves. (E) Interactions between mRNA and RESC-B
residues. Close-up views show the detailed interaction of RESC7, RESC9,
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RESC14 with positions 113 to 117. (F and G) Potential architecture of mRNA
5′-end binding site shaped by RESC11 and RESC13. (F) RESC11 is shown as
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RESC13 are shown as ribbon, whereas unmodeled mRNA is shown as
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surface area. (H) In vivo gRNA-mRNA binding preferences of RESC proteins.
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RESC5 and RESC12 in-vivo binding sites in uS12m (RPS12) mRNA. The x axis
represents 5′-to-3′ mRNA coordinates after removing encoded Us and those
inserted by editing (T-less). The y axis shows the total read depth for pre-edited
(blue), U-insertions (orange), and U deletions (green) per nucleotide.
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mRNA further corroborates their aggregate
binding preferences ranging from mostly
pre-edited (RESC11/12/13) to partially edited
(RESC5/6/10) sequences.
A gRNA-mRNA duplex protruding from the

RESC5/6/10 cluster would be expected from
structural and RNA profiling data. Local 3D
classification of RESC-B particles indeed shows
an extended gRNA-mRNA duplex (Fig. 5 and
fig. S10J). The resultant reconstitutions traced
a nearly complete 43-nt gRNA exiting from
RESC-B and forming a 24-bp duplex with the
3′ part of the contiguous 51-nt mRNA fragment
(Fig. 5A).
In typical gRNA, the guiding part is sepa-

rated from the U tail by a few nucleotides that
cannot pair with mRNA (35). Mechanistically,
sequestering gRNA’s “information-poor” 3′
end by RESC5/6/10 allows guiding and anchor
parts to hybridize withmRNA beyond RESC-B
surface, hence, accessible to RECC (Fig. 5C). It
follows that RESC5/6/10 likely retains the U
tail and adjacent nonguiding nucleotides as
editing events take place between the 5′ an-
chor and gRNA’s 3′ end. Because the mRNA is
cleaved at each editing site, RESC-B contacts
with single-stranded gRNA 3′ and mRNA 5′
regions likely tether mRNA cleavage fragments
to gRNA. As documented by “precleaved” edit-
ing assays, such tethering stimulates U inser-
tion, U deletion, and RNA ligation activities

(45–47). Collectively, our findings introduce
RESC-B as the probable substrate for the cat-
alytic RECC complex. Upon completion of edit-
ing directed by a single gRNA, RESC-Bmay also
expose the double-stranded region formed by
gRNA and fully edited mRNA to postediting
transactions.

Discussion

By using the cryoID approach, we have iden-
tified and built atomic models of three RNA-
editing substrate-binding complexes—RESC-A,
RESC-B, andRESC-C—from T. bruceimitochon-
drion. Information stored in minicircle and
maxicircle genomes conflates during U in-
sertion and deletion editing, whereby gRNAs
produced from the former direct posttranscrip-
tional recoding of cryptic transcripts encoded
in the latter. The RESC molecular machines
pairing hundreds of gRNAs with their targets
are key to this broadly important process. In
RESC-A composed of RESC1 to RESC6, RESC2
pseudotriphosphatase sequesters gRNA’s 5′
end into the triphosphate binding tunnel. Ho-
mologous binding partner RESC1 attaches
RESC2 to RESC-A, wherein RESC5 and RESC6
affix gRNA’s 3′ end by selectingmoleculeswith
longer U tails. The ensuing hairpin formation
and protein contacts protect gRNA against 3′-
to-5′ degradation in a plausibly inactive con-
formationwhereby the anchor hybridizes with

the guiding region. Such “closed” conforma-
tion implies that gRNA remodeling precedes
mRNA recognition. In RESC-B, composed of
RESC5 to RESC14, we observed anmRNA frag-
ment traversing the entire complex. An exten-
sive hydrogen-bonding network fastens mRNA
to every protein and positions its 3′ part close
to a single-stranded gRNA segment unwound
by interactionswithRESC5,RESC6, andRESC10.
Smaller RESC-C also contains gRNA andmRNA;
whether this abundant particle represents a sta-
ble intermediate in the transition from RESC-A
to RESC-B, or reflects RESC-B disassembly dur-
ing postediting remodeling—e.g., pre-edited
mRNA moving out of RESC12/12A—remains
to be established.
Consistent with our atomic models, in vivo

RNA-occupancy profiling discernedRESC com-
ponents into preferential gRNA (RESC1/2),
dual gRNA-mRNA(RESC5,RESC6, andRESC10),
and pre-edited mRNA (RESC7 to RESC9 and
RESC11 to RESC14) binding factors (Fig. 4H).
We observed the least editing in mRNA frag-
ments bound to RESC12 and RESC13, which are
distal to gRNA in the RESC-B structure, and the
most in those cross-linked to gRNA-proximal
RESC5, RESC6, and RESC10 (Fig. 4I). The ex-
tent of U insertions and deletions gradually
increases from the 5′ mRNA section seques-
tered by the RESC12/13 “entry” cluster toward
the RESC5/6/10 “exit”module. Apparently, the
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RESC-B complex tethers gRNA’s 3′ end and
pre-edited transcript to facilitate mRNA rec-
ognition by the anchor. The resultant im-
perfect mRNA-gRNA duplex protrudes from
RESC-B surface (Fig. 5), exposing editing sites
defined by a single gRNA to transiently bind-
ing and dissociating insertion- and deletion-
specific RECC complexes (48, 49) and, possibly,
to postediting transactions. For example, dur-
ing pan-editing that involves multiple over-
lapping gRNAs, the initiating gRNA directs
sequence changes that create a binding site
for the next one (6). However, initiating gRNA
must be dislodged from the edited mRNA be-
fore the next one anneals, and thismay involve
RESC-A and RESC-B cycling or RESC-B re-
duction into RESC-C. It is also plausible that
translation initiation would require gRNA

clearing from the initiation codon created by
editing (50, 51).
Because RNA processing complexes typical-

ly undergo transient rearrangements imple-
mented bymolecular motors, the structures of
stable particles suggest that RESC-A remodel-
ing into RESC-B extracts gRNA’s 5′ end from
the RESC2 triphosphate tunnel and ejects sub-
units RESC1-4 to unfold the gRNA hairpin. To
transform RESC-A to RESC-B, the following
displacements ought to occur on the basis of the
structural comparison by shared components
RESC5 and RESC6 (Fig. 6A, left): RESC10 and
RESC14 will roughly occupy the position of
RESC2 and RESC1, respectively (Fig. 6A, mid-
dle); RESC7 and RESC8 will replace RESC3
and RESC4 (Fig. 6A, right); and RESC2 dis-
placement yields the superhelical inner surface

of RESC6, which binds to mRNA’s 5′ segment
in RESC-B (Fig. 6B).
Integration of biochemical data and struc-

tural analyses enables understanding of RESC
assembly and rearrangements during the edit-
ing process (Fig. 6C). Separation of RESC2-
associated complexes detects heterogeneous
species with apparent molecular masses from
~280 kDa to ~1.2 MDa (Fig. 1) and demon-
strates that the most abundant ~280 kDa par-
ticle lacks gRNAs. This correlates with the
RESC-A cryo-EM structure, indicating that
gRNA is sequestered into RESC-A during as-
sembly from RESC1/2, RESC5/6, and RESC3
and RESC4 (Fig. 6C, left middle). Our results
demonstrate a prominent RNA-dependent
interaction between RESC-A and KREH2 RNA
helicase, implicating this molecular motor in
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RESC-A assembly (Fig. 1, A to F). Conversely,
undetectable KREH2 levels in RESC9 and
RESC14 complexes suggest that the helicase
dissociates from RESC-A during remodeling
into RESC-B (table S1). In RESC-A, gRNA an-
chor and guiding regions fold into a hairpin,
whereas the uridylated 3′ end is affixed in the
crevice between RESC5 and RESC6 (Fig. 6C,
left middle). A single-stranded 3′ end is re-
quired for recognition by KREH2, which is
capable of unwinding double-stranded RNA
(52, 53) and may unfold the hairpin to ini-
tiate RESC-A remodeling into RESC-B (Fig.
6C, right middle). In this scenario, recognition
by KREH2 may select RESC5/6-bound gRNAs
with longer U tails (Fig. 3J) as a quality check-
point of RESC-A assembly. Collectively, our
findings highlight KREH2 helicase as the prob-
able remodeler facilitating the transition from
RESC-A to RESC-B. We postulate that RESC-B
is the editing-competent substrate of the RECC
catalytic complex, for which our structures re-
veal an unobstructed approach path to the
gRNA-mRNA hybrid.

Materials and methods summary
Purification of the T. brucei RESC complex

For protein affinity purification and enhanced
in vivo UV cross-linking/affinity purification/
RNA sequencing (eCLAP), we introduced a CTS
tag (combinatorial affinity tag consisting of 10
histidines, protein C peptide epitope, and Twin-
Strep peptide) (fig. S1A) at the C-termini of
established RESC proteins (8). Protein-RNA ad-
ducts were purified by means of sequential
streptavidin and metal affinity pulldowns and
SDS-PAGE. RNA fragments were released
through protease digestion and sequenced, as
described in supplementarymaterials. Protein
complexes were purified with tandem affinity
chromatography from enrichedmitochondrial
fraction of procyclic (insect) form of T. brucei
Lister 427 strain and analyzed as described in
the supplementary materials.

EM grid preparation, imaging, data processing,
and modeling

Cryo-EM grids of both RNase-treated and
mock-treated samples were plunge-frozen into
precooled, liquefied ethane using Vitrobot
Mark IV, screened with FEI TF20, and imaged
by using an FEI Titan Krios electron micro-
scope. Data processing of the RNase-treated
dataset yielded three final maps with av-
erage resolution (FSC 0.143) of 3.4, 3.7, and
3.3 Å, respectively. These maps were identi-
fied through the CryoID approach and mod-
eled as RESC1-6–containing RESC-A (3.7 Å),
RESC5-14–containing RESC-B (3.4 Å), and
RESC5-8,10,14–containing RESC-C (3.3 Å). In
combination with the mock-treated RESC-A/
B/C, we were able to identify a “closed” gRNA
in RESC-A and gRNA-mRNA duplex in RESC-
B/C. Details of EM grid preparation, imaging,

data processing, and modeling are described
in the supplementary materials.
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Editor’s summary
In the parasitic protozoan Trypanosoma brucei, most mitochondrial genes are corrupted, and their transcripts must
be repaired to restore coding capacity. Directed by guide RNAs (gRNAs), a structure called the editosome executes
a cascade of messenger RNA (mRNA) cleavage, uridine insertions and deletions, and religation. Using cryo–electron
microscopy and molecular approaches, Liu et al. visualized states of the substrate-binding complex responsible for
gRNA stabilization and gRNA-mRNA duplex formation. This work provides a detailed framework for understanding
mRNA editing by the editosome. —DJ
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