
RESEARCH ARTICLE

Structure of the human ClC-1 chloride

channel

Kaituo WangID
1,2,3, Sarah Spruce PreislerID

4, Liying Zhang1, Yanxiang CuiID
2,3, Julie

Winkel Missel1, Christina GrønbergID
1, Kamil Gotfryd1, Erik LindahlID

5,

Magnus AnderssonID
6, Kirstine CalloeID

7, Pascal F. Egea8, Dan Arne Klaerke7,

Michael PuschID
9, Per Amstrup PedersenID

4*, Z. Hong ZhouID
2,3*, Pontus GourdonID

1,10*

1 Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark, 2 Department of

Microbiology, Immunology & Molecular Genetics, University of California at Los Angeles, Los Angeles,

California, 3 California NanoSystems Institute, University of California at Los Angeles, Los Angeles,

California, 4 Department of Biology, University of Copenhagen, Copenhagen, Denmark, 5 Department of

Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden, 6 Department of Chemistry, Umeå
University, Umeå, Sweden, 7 Department of Veterinary and Animal Sciences, University of Copenhagen,

Frederiksberg, Denmark, 8 Department of Biological Chemistry, University of California at Los Angeles, Los

Angeles, California, 9 Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy,

10 Department of Experimental Medical Science, Lund University, Lund, Sweden

* papedersen@bio.ku.dk (PAP); hong.zhou@ucla.edu (ZHZ); pontus@sund.ku.dk (PG)

Abstract

ClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes,

thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with

myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-elec-

tron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminis-

cent of that of bovine ClC-K and CLC transporters. The chloride conducting pathway

exhibits distinct features, including a central glutamate residue (“fast gate”) known to confer

voltage-dependence (a mechanistic feature not present in ClC-K), linked to a somewhat

rearranged central tyrosine and a narrower aperture of the pore toward the extracellular ves-

tibule. These characteristics agree with the lower chloride flux of ClC-1 compared with ClC-

K and enable us to propose a model for chloride passage in voltage-dependent CLC chan-

nels. Comparison of structures derived from protein studied in different experimental condi-

tions supports the notion that pH and adenine nucleotides regulate ClC-1 through

interactions between the so-called cystathionine-β-synthase (CBS) domains and the intra-

cellular vestibule (“slow gating”). The structure also provides a framework for analysis of

mutations causing myotonia congenita and reveals a striking correlation between mutated

residues and the phenotypic effect on voltage gating, opening avenues for rational design of

therapies against ClC-1–related diseases.

Author summary

Chloride transporting CLC proteins are expressed in a wide range of organisms, and the

family encompasses several members with numerous roles in human health and disease
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by allowing movement of chloride ions across the membranes that encapsulate cells and

cellular organelles. Structurally, CLCs form dimers possessing a separate ion translocation

pathway in each monomer, and they can operate as either channels or transporters that

exchange chloride for protons. The CLC channel ClC-1 is critical to skeletal muscle excit-

ability and has been proposed as a target to alleviate neuromuscular disorders. Here, we

have analyzed the structure of human ClC-1 and revealed the high similarity of its ion

conducting pathway to those observed in other CLC members, including prokaryotic and

algal transporters. Our data suggest how ClC-1 is regulated by environmental cues to

allow opening and closure, thereby permitting attenuation of muscle function. Our results

help with understanding the principal determinants that govern CLC proteins and may

guide downstream translational applications to combat muscle pathologies.

Introduction

CLC proteins comprise a large family of chloride (Cl−)-transporting integral membrane pro-

teins with diverse physiological functions [1–3]. The first identified human member, ClC-1, is

essential for maintaining the permeability of Cl− across the plasma membrane of skeletal mus-

cle fibers, gCl, accounting for approximately 80% of the resting membrane conductance and

assuring precise neuronal control of muscle contraction [3]. Mutations of the ClC-1 gene

cause myotonia congenita, a disease that allows a single nerve action potential to trigger a

series of muscle action potentials (myotonic runs), leading to prolonged muscle contraction

[4–7].

Despite distinct roles as passively conducting Cl− channels and stoichiometrically coupled

secondary active Cl−/H+ antiporters [2, 3], members of the CLC family share a common

homodimeric core architecture, with each subunit harboring an independent ion translocation

pathway [8, 9]. The molecular mechanisms of ion transport in CLC antiporters have been

extensively studied functionally and structurally [8, 10–15]. Yet it is poorly understood how

the antiporters and channels establish their separate functions. In addition, the complex gating

processes that regulate CLC channel activity remain elusive, with only a single available struc-

ture of a channel member, namely, that of bovine ClC-K [9]. Each CLC monomer has a gate

that operates independently from the other (also known as “protopore” or “fast gate”), struc-

turally attributed to a specific glutamate, “GluGATE” [10]. A slower gate controls both conduct-

ing pathways simultaneously (“common” or “slow gate”) [16], but the principles and

determinants of this regulation are enigmatic. Furthermore, activity of ClC-1 is modulated by

cellular cues such as phosphorylation [17], pH, and nucleotides [18, 19] in an unknown man-

ner. Such regulation is, however, physiologically essential because intense muscle exercise

leads to acidosis, resulting in an increased nucleotide sensitivity of ClC-1 and consequent

reduction of gCl, thereby assisting in preventing muscle fatigue [20, 21].

The recent ClC-K structure provided the first insights into the differences between CLC

channels and transporters; in particular, it revealed a pore widening on the intracellular side.

Yet there are surprisingly few known structural differences between the CLC channels and

transporters. However, ClC-K channels exhibit only limited gating as GluGATE is missing [2,

3], and their activity has not been reported to depend on nucleotide binding [22]. Therefore

key questions concerning CLC channel function and regulation remain unanswered. Further-

more, a deeper understanding on structure–phenotype relationships of myotonia-causing

mutations in ClC-1 is required to shed further light on how the muscle disease is manifested at

a molecular level.

Structure of ClC-1
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Results

Here, we have determined structures of full-length human ClC-1 using single-particle cryo-

electron microscopy (cryo-EM), exploiting a purified protein sample that displays Cl−-depen-

dent single-channel–derived ion conductance (S1 Fig and S1 Data). For structural characteri-

zation, sample in the presence of 100 mM Cl− at pH 7.5 and in the absence of nucleotides or

antibodies was initially employed (Fig 1). Three-dimensional (3D) classification of particles

resulted in several different groups, of which one yielded a 3.6 Å overall resolution density

map for the transmembrane domain, allowing confident model building (S2–S4 Figs). The

final model represents the membrane-spanning portion (note that the N terminus and intra-

cellular αA helix are lacking) as well as parts of two C terminal’s so-called cystathionine-β-

synthase (CBS) domains present per monomer (for which some cryo-EM density is left unmo-

deled) and includes several features that were not observed in the ClC-K structure (S5 Fig).

The homodimeric architecture of ClC-1 is reminiscent of that of bovine ClC-K and avail-

able structures of CLC proteins from lower organisms (Fig 2A). The monomers consist of

membrane-spanning helices and half-helices (αB to αR) with connecting loops (e.g., αB–C,

between αB and αC) as well as the CBS domains (Fig 1). Each protomer holds a separate

Fig 1. Structure of human ClC-1. (a) Overall topology of ClC-1 with 17 helices (αB to αR), 2 CBS domains, and key residues pinpointed. A single monomer is

displayed for clarity. Helices are labelled with white letters throughout. (b) The 3.6 Å cryo-EM map (Map 0) from pH 7.5 covering the membrane domain only

(contoured at σ = 13 in Pymol). Helix A (αA) and parts of the CBS domains were not resolved in the cryo-EM density maps. (c) Alternative cryo-EM map from

pH 7.5 (Map 1) with the membrane and cytoplasmic CBS domains colored in cyan and red, respectively, shown at different contour levels (σ = 15 and 22 in

Pymol, respectively). The map is filtered to 5 Å, representing the local resolution of the cytoplasmic domain (see also S2–S4 and S7 Figs). (d) Overall structure

(generated using Map 1) with one of the monomers in pale colors. CBS, cystathionine-β-synthase; CLC, chloride channel; cryo-EM, cryo-electron microscopy.

https://doi.org/10.1371/journal.pbio.3000218.g001
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Fig 2. The ion-conducting pathway. Ion transport in CLC proteins depends on extra- and intracellular vestibules and a

connecting pore. In CLC transporters, the pore is marked by chloride ion binding sites (sext, scen, sint; not directly observed

in this work) as well as specific glutamate (GluGATE, or E232; ClC-1 numbering throughout), tyrosine (TyrC, Y578), and

serine (SerC, S189) residues. Chloride conductance in voltage-dependent CLC channels such as ClC-1 may involve

shuttling (i) to protonated E232-Y578 (scen) from the vestibules - directly (or through a weak sint) from the intracellular

side and (ii) through K231/R421 to overcome the hydrophobic barrier (including M485) from the extracellular side. (a)

Comparison of the transmembrane domains of ClC-1 (colored as in Fig 1D) and ClC-K (gray), respectively. Helices are

labelled with white letters throughout. (b) Schematic overview of the chloride permeation pathway with key residues

pinpointed. Labels in the parentheses refer to the corresponding helices and the αC–D loop, respectively. (c–f) Side views

of the pore region of ClC-1 (panels c and e; colored as in Fig 1D) with equivalent views of ClC-K (panels d and f, shown in

Structure of ClC-1
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chloride conducting pathway across the membrane, established by a vestibule on either side of

the membrane, and an interconnecting narrow and short pore.

In CLC transporters, the Cl− conducting pore (Fig 2B) is marked by distinct Cl− binding

sites (denoted sext, scen, and sint, respectively, but no Cl− ions are resolved in the current struc-

ture), and the constricting Glu232 (of αF, also known as GluGATE; ClC-1 numbering through-

out) and Tyr578 (of αR, TyrC) [9]. Furthermore, Ser189 (of αC-D, SerC) is located in the

vicinity of the pore (Fig 2B, 2C and 2E and S5A Fig). In ClC-1, voltage-dependent gating is

established by GluGATE, which is perhaps being displaced by competing Cl− ions and/or pro-

tonation. In contrast, in voltage-independent ClC-K channels, GluGATE is replaced by a valine,

and, indeed, substitutions of GluGATE with uncharged residues render ClC-1 similarly voltage

independent [24]. Unfortunately, the GluGATE side chain is not visible in our cryo-EM density

maps (S4 Fig), but carboxylate groups of interacting acidic residues are known to be frequently

undetectable using cryo-EM due to radiation damage. A similar orientation of the side chain

as observed in ClC-K would be in agreement with Cl− passage through a maintained scen, as a

concomitant adaptation of αR significantly shifts the position of TyrC and thus maintains the

GluGATE-TyrC distance (Fig 2B–2F and S5G Fig). However, we cannot exclude that the side-

chain of GluGATE is buried deep into the hydrophobic pocket established by Phe279, Phe288,

and Phe484 (S5H Fig).

The pore aperture of the extracellular vestibule is constricted by a hydrophobic barrier with

Met485 (Met427 in ClC-K), but in contrast to ClC-K, the gate opening is also controlled by

Lys231 (of αE–F) and Arg421 (of αL) (Fig 2B–2F) that may orchestrate Cl− permeation to or

from the extracellular environment [25–27]. This difference can be attributed to αE–F, with its

GluGATE and Lys231 adopting a more CLC-transporter–like configuration because this loop is

considerably shorter than in ClC-K, alongside a side-chain reorientation of Arg421 (Fig 2C–

2F). We also observe a structural adjustment on the intracellular side of the pore, with αC–D

being displaced as compared to the corresponding loop in ClC-K. This rearrangement opens

the vestibule even deeper toward GluGATE (Fig 2C–2F), providing intracellular access beyond

the sint site present in CLC antiporters and suggesting that no tight Cl− binding occurs on the

intracellular side, in agreement with electrophysiological data [28]. The wider intracellular ves-

tibule of the CLC channels, as compared to the transporters, has been proposed to allow for

the higher Cl− conductance in channels, lowering the kinetic barrier between scen and the cyto-

sol [9]. We note that the vestibule width of ClC-1 is similar to that of ClC-K at SerC, with the

side chain of this residue being positioned away from the Cl− permeation pathway in both

channels, establishing the SerC location as another of the distinguishing features between CLC

channels and transporters.

It remains obscure whether the channel has been captured in the open configuration, a pri-

ori induced by the experimental conditions (0 mV, 100 mM Cl−). Molecular dynamics simula-

tions of the ClC-1 structure suggest that Cl− from the intracellular side spontaneously interacts

with GluGATE upon protonation of its side chain but that free energy is required to complete

the passage across the membrane (S6 Fig). We anticipate that GluGATE and the Lys231–Arg421

constricting interactions attenuate chloride flux, in agreement with the smaller conductance of

ClC-1 versus ClC-K [2, 3], and we cannot exclude that Cl− shuttling occurs directly between

gray) [9]. The chloride binding sites are positioned based on the Escherichia coli and Cyanidioschyzon merolae transporter

structures (and are not located in ClC-1 or ClC-K) [8, 14]. The vestibules were calculated using HOLLOW [23] with a

probe radius of 1.7 Å and are shown in purple surface. (g–h) Surface electrostatics from the extracellular side of ClC-1

(panel g) and ClC-K (panel h). Red and blue colors represent electronegative and electropositive surfaces, respectively.

The chloride binding sites (in CLC transporters) are positioned as in panels c–f. The aperture of the vestibule is narrower

in ClC-1 (without visible chloride binding site).

https://doi.org/10.1371/journal.pbio.3000218.g002
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protonated GluGATE and Lys231 across the Met485 barrier (GluGATE overlays sext in some CLC

transporters [8, 14, 29]); chloride interaction with the latter may be unfavorable, however.

The molecular mechanisms that govern slow gating in CLC proteins remain elusive. It is

known that CBS nucleotide binding and low pH inhibit ClC-1 activity by favoring closure of

the common gate [19, 29]. Assessment of the 3 major cryo-EM maps obtained in our structural

classification (see also S2 Fig and Methods) reveals different arrangements of the CBS

domains, suggesting intrinsic domain flexibility at pH 7.5 (Fig 3A and 3B and S7 and S8 Figs).

To test this, we determined the structure of ClC-1 also at lower pH (6.2) in the presence of 0.3

mM of the nucleotide nicotinamide adenine dinucleotide (NAD) to unravel the regulation

mechanism (S2, S3 and S8 Figs). In these conditions, the CBS domains appear significantly more

rigid (in comparison to pH 7.5; Fig 3A and 3B and S7 and S8 Figs). This observation is also sup-

ported by ClC-1 size-exclusion chromatography profiles (S9 Fig), with samples at low pH being

shifted toward lower molecular weight (more compact). Therefore, the CBS arrangements seem

to correlate with slow gating, being rigid at low pH in the presence of nucleotides and more flexi-

ble at higher pH in the absence of nucleotides, bringing to mind a mechanism that has been pro-

posed based on electrophysiological data [29]. The complete effects of such putative

rearrangements are, however, not demonstrated experimentally by our structures, because they

remain closed also at the higher pH (determined from particles in detergent environment).

How then can the Cl− conductance of 2 separate pores be affected by structural shifts of the

CBS domains? Examination of the interface between the CBS and the transmembrane domain

suggests that CBS2 interacts with αD–E, a loop previously shown to affect slow gating (Fig 3C

and 3D) [25, 31]. Nucleotides may also interact directly with the transmembrane domain

when bound in the cleft between CBS1 and CBS2 (the latter observed in structures of isolated

CBS domains [13]; Fig 3E). It is conceivable that these structural arrangements and the direct

physical connection between CBS and αR—all structural elements leading to the GluGATE con-

strictions site—allow structural adjustment of the transport pathway and thus chloride con-

ductance regulation (Fig 3C). Such structural effects will be propagated between the

monomers via the CBS domains, in agreement with concurrent modulation of the 2 conduct-

ing pathways in the dimer [16]. We note that the CBS portions that interact with the trans-

membrane and the CBS domain of the adjacent monomer are structurally (and at interaction

sites also sequencewise; S10 Fig) conserved (Fig 3E), and therefore this may represent a unify-

ing mechanism of slow gating for CLC proteins.

ClC-1 defects cause recessive (Becker type) or dominant (Thomsen type) myotonia conge-

nita, typically associated with complete disruption of channel function or with a dominant

negative effect in heterodimeric wild-type (WT)-mutant complexes [7], respectively. Our

structure now allows mapping of such (or other experimental) ClC-1 substitutions for evalua-

tion of structure–function–disease and -phenotype relationships (Fig 4). Several dominant

and recessive mutations induce an alteration of the overall gating from depolarization to

hyperpolarization activated, yielding a similar intracellular Cl−-sensitive gating as described

for ClC-2 [32]. Therefore, the different gating profiles of ClC-1 and ClC-2 likely do not neces-

sitate major structural differences. These residues are generally surface exposed and localized

to the extracellular half, including the vestibule and the pore-constricting residues Lys231 and

Arg421 (Fig 4B) [26, 27, 32–35]. In contrast, many dominant mutations exert a “shift” of the

common gate to open probability to positive voltages, leading to significant reduction of gCl at

the physiological membrane potential [36]. Such mutations cluster primarily at the dimer

interface and in the intracellular vestibule and pore region (Fig 4C, and 4D and S5D Fig). One

is located in CBS2, close to the membrane domain, in agreement with the above-mentioned

mechanism of slow-gating regulation exerted via CBS2. Residues that affect binding of one of

the most commonly used ClC-1 inhibitors, the lipophilic 9-anthracene-carboxylic acid

Structure of ClC-1
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(9-AC), are all buried into a CAVER [37]-computed membrane-embedded cavity on the intra-

cellular side that stretches to GluGATE, in agreement with the intracellular mechanism of action

proposed for this compound (Fig 4E and 4F and S11 Fig) [24]. Because this pocket is lined by

multiple hydrophobic and a few negatively charged residues, it is unlikely to allow chloride

conductance (proton access is possible) but rather 9-AC–induced interference of flux across

GluGATE and may thus represent a suitable site for future drug-discovery efforts.

Discussion

In summary, we report the molecular structure of Cl−-conducting human ClC-1, sharing an

overall fold similar to other CLC proteins, with a narrow connecting pore and positively charged

vestibules attracting Cl- ions similar to CFTR [38]. The structure exhibits several unique features,

including shifts in the central GluGATE-TyrC pair, a more closed extracellular vestibule, and a

wider penetration profile from the intracellular side, the latter representing a distinct feature of

CLC channels separating them from transporters. We propose a model for adenine nucleotide

and pH regulation of the common gate via CBS2 and the intracellular loops congruent with pre-

vious functional data. Overall, these findings significantly increase our understanding of Cl− con-

ductance in physiology and open new opportunities for biomedicine. For example, the positively

charged constriction of the extracellular vestibule and the putative 9-AC pocket may serve as

favorable target sites for stimulators or inhibitors from outside or inside the cell, respectively.

During the course of the preparation of this manuscript, the structure of human ClC-1 was

reported by another group [39]. The ClC-1 structures display only limited differences despite

that different overproduction hosts were exploited. The authors detected a similar putative

9-AC binding pocket (the alternative pathway) and conformational flexibility in the CBS region

(determined at pH 7.4), in agreement with our findings. We anticipate that the pH-dependent

conformational changes reported here—in conjunction with mutational efforts using, e.g., sin-

gle-channel recordings, as for the first time demonstrated in this work, will allow for more

refined studies to further resolve the mechanism of slow-gating in CLC proteins.

Methods

Recombinant expression construct

Yeast codon-optimized cDNA encoding human ClC-1 (UniProt accession P35523) was pur-

chased from Genscript (Genscript, USA). cDNA was inserted into pEMBLyex4 [40] along

Fig 3. Slow gating of ClC-1 is regulated by pH and nucleotide binding through the CBS domains. (a, b) CBS

domain flexibility observed at pH 7.5 but not pH 6.2 in different cryo-EM maps. The most different ones represent

Map 2 and Map 3, which were calculated from the pH 7.5 data set (panel b represents a close view; see also S7 and S8

Figs). The inset of panel a represents size-exclusion chromatography profiles of ClC-1 at pH 7.5 and 6.2. The protein

peak at pH 6.2 is shifted toward a higher retention volume indicating a more compact ClC-1 (see also S9 Fig). (c)

Arrangement of important structural elements in the ClC-1 structure, including αD, αF, αR, and αD−E loop as well as

the linker after αR, α1, and α2 in the CBS2 domain. The colors are as in Fig 1D. The ATP molecule (black) is

positioned based on the location in ClC-5 (pdb-id 2J9L) [13], and the NAD (gray) placed by exploiting the same base

moiety as for ATP. Note that no nucleotide is visible in our structural data, and therefore the observed structural shifts

may relate to the lower pH only (the nucleotide is placed based on structures of isolated CBS domains; see panel e).

Dotted areas represent putative sites for communication between CBS domains of different monomers and with the

transmembrane domain. Details of the interaction network between the CBS domains and the transmembrane domain

remain elusive, due to the intermediate resolution of the maps. Helices are labelled with white letters throughout. (d)

Reduced sequence alignment of selected putative communication regions between the CBS and transmembrane

domains (see S10 Fig for complete alignment). (e) Maintained overall fold of experimentally structurally determined

CBS domains of different CLC members, including ClC-K (pdb-id 5TQQ) [9], CLC-0 (pdb-id 2D4Z) [30], CLC-5

(pdb-id 2J9L) [13], and CmClC (pdb-id 3ORG) [14]. ClC-1 is colored in red, the other structures are all in gray. CBS,

cystathionine-β-synthase; cryo-EM, cryo-electron microscopy; NAD, nicotinamide adenine dinucleotide; pdb-id,

Protein Data Bank ID.

https://doi.org/10.1371/journal.pbio.3000218.g003
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Fig 4. Myotonia-causing mutations and the putative binding pocket of the 9-AC inhibitor. (a–d) Disease-causing

and experimental missense mutations in ClC-1. Substitutions that invert (from depolarization to hyperpolarization

activated) or shift the voltage dependence are shown in pink (located to the extracellular side) and blue (intracellular

vestibule) or green (subunit interface), respectively. Bright colors represent disease-causing (recessive, with a stronger

phenotype, but not dominant mutations are underscored), whereas experimental mutations are shown in pale colors.

ClC-1 is shown in white and the Cl− vestibules in purple (calculated using HOLLOW as for Fig 2). (a) Overall view

with all known disease and selected experimental mutations. We note that mutations of 5 residues that cause recessive

myotonia and inward rectification are facing the extracellular vestibule; 3 located in a row on the same face of on helix

B (M128, S132, D136) and 2 being the pore-constricting residues (K231, R421). Therefore, the phenotype may reflect a

decreased chloride affinity of an extracellularly accessible site. (b) Close view of mutations that invert voltage
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with yeast-enhanced GFP by homologous recombination to encode ClC-1, followed by a

Tobacco Etch Virus (TEV) cleavage site, GFP, and a His10 tag. The correct nucleotide sequence

of the expression construct was verified by DNA sequencing (Eurofins MWG Operon,

Germany).

ClC-1 expression and purification

Human ClC-1 was produced in the PAP1500 strain [41] grown in computer controlled 15-L

bioreactors as previously reported but without addition of any chloride salts (such as NaCl)

[42]. Yeast cells were harvested approximately 90 hours after induction of ClC-1 expression.

For crude membrane preparations, approximately 25 g of yeast cells were resuspended in

25 mL lysis buffer (25 mM imidazole [pH 7.5], 1 mM EGTA, 1 mM EDTA, 10% glycerol, 5

mM β-mercaptoethanol) supplemented with protease inhibitors (1 μg/mL leupeptin, pepstatin,

and chymostatin, and 1 mM PMFS). Cells were disrupted by addition of glass beads (0.4–0.8

mm) and vortexed in 50-mL Falcon tubes 8 times for 1 minute. The supernatant was collected,

and glass beads were washed several times in ice-cold lysis buffer. The cell lysate was centri-

fuged at 1,000g for 10 minutes to remove cell debris. Crude membranes were pelleted from the

supernatant by ultracentrifugation at 160,000g for 90 minutes; resuspended in a buffer con-

taining 50 mM Tris (pH 7.5), 300 mM NaCl, 10% glycerol, 1 mM PMSF, and EDTA-free pro-

tease inhibitors (Sigma); and homogenized in a Potter-Elvehjem homogenizer. Subsequently,

membranes were solubilized by adding dodecyl-β-maltoside (DDM) and cholesteryl semi suc-

cinate (CHS; from Anatrace) at final concentrations of 1% and 0.33%, respectively, and incu-

bated at 4˚C for 3 hours under gentle stirring. Nonsolubilized material was removed by

ultracentrifugation at 30,000 rpm for 30 minutes in a Beckman Ti 60 rotor. Ni-beads from 5

mL of slurry (Thermofisher) were incubated with the supernatant for 2 hours under gentle

stirring. To prevent unspecific binding, 30 mM imidazole was added. Resin was transferred to

a 5-mL Econo column (Bio-Rad) and washed with 10 column volumes of high-salt buffer (50

mM Tris [pH 7.5], 800 mM NaCl, 5% glycerol, 0.4 mg/mL DDM, and 0.04 mg/mL CHS) fol-

lowed by 10 column volumes of low-salt buffer (50 mM Tris [pH 7.5], 300 mM NaCl, 5% glyc-

erol, 0.4 mg/mL DDM, and 0.04 mg/mL CHS). ClC-1 protein was liberated from the beads by

overnight incubating in 10 mL low-salt buffer containing 0.2 mg of TEV protease. Ni-beads

were washed twice with 5 mL of low-salt buffer, and all collections were pooled and concen-

trated to approximately 1 mL using a 100,000 kDa cutoff concentrator device (Sartorius).

Amphipol PMAL-C8 (Anatrace) was added to the purified protein at a mass ratio of 1:5 and

incubated overnight. To remove DDM, protein was dialyzed overnight against final buffer (20

mM Tris [pH 7.5], 100 mM NaCl, 0.2 mM TCEP) supplemented with 100 mg of SM-2 Bio-

Beads (Bio-Rad). The protein-amphipol complex was applied to a Superdex-200 column equil-

ibrated with final buffer. Peak fractions were collected and concentrated to approximately 0.5

mg/mL. For the low pH samples, the purification procedure was identical except for using 20

mM BisTris (pH 6.2) (instead of Tris [pH 7.5]) in the final buffer (final protein concentration

only reached approximately 0.3 mg/mL due to precipitation).

dependence. Helices are labelled with white letters throughout. (c) Close view of mutations that shift voltage

dependence (located at the intracellular vestibule). (d) Close view of mutations that shift voltage dependence (located

at the monomer:monomer interface). (e−f) A putative binding pocket of 9-AC. Residues known to affect binding of

9-AC are highlighted as spheres (red for strong effect and pink for minor) and overlay a CAVER calculated pathway

(shown in yellow) that stretches from the intracellular membrane interface to GluGATE. The clustering hints at a

suitable target point for future rational drug-design efforts (see also alternative view in S11 Fig). CBS, cystathionine-β-

synthase; 9-AC, 9-anthracene-carboxylic acid.

https://doi.org/10.1371/journal.pbio.3000218.g004
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Single-channel ion conductance

Single-channel ion current was recorded using 2 separate methods, as follows:

1. The Nanion Orbit Mini bilayer system. Lipid bilayers were formed using 10 mM

1.2-diphytanoyl-sn-glycero-3-phosphocoline (DPhPc) and 1 mM cholesterol in n-nonane

(Avanti Polar Lipids), and single channels were inserted by addition of purified protein

(0.2 μL of 0.59 μg/μl ClC-1 in DDM) to recording solution at the cis side of the bilayer

(150 μL). Current was recorded at ±150 mV in symmetrical solutions containing 1 M KCl

and 10 mM HEPES (pH 6.2 with KOH). Recordings were digitized at 1.25 kHz, low-pass fil-

tered at 160 Hz, and analyzed using Clampfit 10 after 100 Hz digital filtering.

2. The Nanion Port-a-Patch system. Giant unilamellar vesicles (GUVs) were made from 5

mM DPhPc and 0.5 mM cholesterol in chloroform by electroformation in 1 M sorbitol

using the Vesicle Prep Pro (Nanion Technologies). Purified ClC-1 protein in DDM was

mixed with GUVs to a final concentration of approximately 50 ng/mL and incubated over-

night at 4˚C with SM-2 Bio-Beads (Bio-Rad). Lipid bilayers were formed from the GUVs,

and single-channel current was recorded in symmetrical solutions containing 1 M NaCl

and 10 mM HEPES (pH 6.2 with NaOH) at ±150 mV for 1 second. Recordings were digi-

tized at 50 kHz, low-pass filtered at 200 Hz, and analyzed using Clampfit 10.7 software

(Molecular Devices, San Jose, CA).

Cryo-EM sample preparation and data collection

Cryo-EM grids were prepared with the Vitrobot Mark IV (FEI) operated at 100% humidity at

4˚C. Immediately prior to sample vitrification, Quantifoil 1.2/1.3-μm holy carbon grids were

glow-discharged with Easyglow (TedPella), and fluorinated fos-choline-8 (Anatrace) was

added to the protein sample to a final concentration of 3 mM, which was an essential step for

producing good quality thin ice. For each grid, an aliquot of 3.5 μL was applied and incubated

for 20 seconds inside the Vitrobot. Blotting time was set to 2.5 seconds with 2 seconds of drain

time. The low pH sample was treated identically, except for incubation with 0.3 mM NAD

before freezing (and that no fluorinated fos-choline-8 was added to obtain one of the pH 6.2

data sets). Cryo-EM data sets were collected on a Titan Krios electron microscope (FEI) oper-

ating at 300 keV with a Gatan K2 Summit direct electron detector attached to a Gatan imaging

filter (GIF). Movies were recorded under super-resolution counting mode at a pixel size of

0.535 Å and a dose rate of 0.876 e/pixel/frame for a total of 60 frames. The total electron dose

was 45 electrons per Å2 per movie for 9 seconds.

Image processing and 3D reconstruction

Cryo-EM movies were first gain-corrected and 2× binned to a final pixel size of 1.07 Å. Dose-

weighted and nondose-weighted summed micrographs were generated with MotionCorr2

[43] using all frames except the first one. Defocus values were calculated with the nondose-

weighted micrographs using Gctf [44]. Next, image processing was conducted using dose-

weighted micrographs with the predetermined defocus. Template-free particle picking was

done using Kai Zhang’s Gautomatch software (https://www.mrc-lmb.cam.ac.uk/kzhang/

Gautomatch). All following processing steps were done in Relion 2.0 [45] using a box size of

288 pixels.

For the pH 7.5 data set, a total of 594,609 auto-picked particles from 4,475 micrographs

with a defocus range of −1.0 to −3.0 μm were subjected to several rounds of reference-free 2D

classification to remove defective particles. The selected 477,729 particles were sorted using 3D
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classification. Selected classes were refined using masks, either with the complete protein

excluding the amphipol belt or with the membrane domain only. Multiple cryo-EM density

maps were calculated demonstrating structural heterogeneity of the protein.

3D classification of particles into 5 classes provided the best class consisting of 176,871 par-

ticles (representing more than 37% of all particles). A soft mask covering the entire protein

without amphipol belt yielded a map with an overall resolution of 4.00 Å, and a tighter mask

only containing the membrane domain resulted in map with resolution of 3.63 Å. To further

investigate the structure heterogeneity in the cytoplasmic domain, the 2D selected particles

were first refined, and then the refined per-particle parameters were applied for 3D classifica-

tion, only performing local angular searches within ±10 degrees. This local 3D classification

resulted in 9 classes, and the 2 major classes differed primarily in the cytoplasmic domain.

Refinement of these 2 classes, each representing approximately 15% of all selected particles,

yielded overall map resolutions of 4.34 Å and 4.28 Å, respectively.

For the pH 6.2 data set collected with fluorinated fos-choline-8, 552,914 particles were auto-

selected from 4,119 motion-corrected micrographs, and 300,572 particles were selected after

2D classification for further processing; 3D classification into 5 classes generated the best class,

which eventually was refined to a final resolution of 4.47 Å. Combination of the data collected

at pH 6.2 with and without fluorinated fos-choline-8, and a similar local angular search strat-

egy as for the pH 7.5 data set, generated a final map of 4.2 Å of the best class (based on approxi-

mately 30% of the total particles).

C2 symmetry was applied for all classification procedures, and all maps were sharpened

with a B-factor of −100 Å2. Local resolution was calculated using the postprocessed map, and

the map was filtered according to the local resolution and used for model building.

Model building and refinement

The initial model was generated using the SWISS-MODEL online server and the ClC-K struc-

ture [9] (PDB-ID 5TQQ) as a template. The model was first fitted into the cryo-EM density

map and later manually built in COOT [46]. The 3.6 Å membrane domain density map was

sufficient for building the entire membrane domain (residues 115 to 589) with only 1 loop

missing (residues 254–261). The built model was refined using phenix.real_space_refine of the

Phenix software package [47]. C2 symmetry was imposed during the refinement by using

strong non-crystallographic symmetry (NCS) restraints. Secondary structure restraints and

Ramachandran restraints were also imposed during refinement.

The resolution and connectivity of the cytoplasmic domain was insufficient for de novo

model building. Instead, a homology model based on the available structure of the CBS

domains of ClC-0 (PDB-ID 2D4Z [30]) was generated and docked into different maps. The

refinement of the cytoplasmic domain was conducted by local grid minimization, model

morphing, and simulated annealing implemented in the phenix.real_space_refine software

[47]. To prevent overfitting, the map resolution was restricted to 5 Å, the local resolution of

the cytoplasmic domains as determined by Relion postprocessing. After model building, the

models were trimmed to only include the minimal CBS architecture, consisting of 2 helices

and a β-sheet. The quality of the models were validated assessed using Molprobity [48] (see S1

Table for statistics). All figures except for Fig 3A and 3B were generated using the model based

on the 4.0 Å (Map 1).

MD simulations

The ClC-1 dimer with Glu232 either protonated or deprotonated was inserted into a palmitoy-

loleoylphosphocholine (POPC) membrane, and CHARMM36 force field parameters [49, 50]
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were generated using CHARMM-GUI [51]. The simulations were performed using the GRO-

MACS 2016.4 simulation software [52]. Each system was energy minimized and equilibrated

in a stepwise manner using 25-ps NVT simulations with decreasing restraints on the protein

and lipid heavy atoms. In these simulations, a 1-fs time step was used and the temperature was

maintained at 310 K with a Berendsen temperature-coupling scheme [53]. The following set of

NPT simulations further released heavy-atom restraints for 0.1 ns, 10 ns, and 10 ns, respec-

tively. Here, a 2-fs time step was used and the pressure was kept constant at 1 bar using a

Berendsen pressure barostat [53]. In a 100 ns production simulation, all atoms were unre-

strained, and the temperature and pressure coupling schemes were Nose-Hoover [54, 55] and

Parrinello-Rahman [56, 57], respectively. The GROMACS pull code with a force constant of

1,000 kJ mol−1 nm−2 was applied for 300 ps to the Cl− ion in closest vicinity of Glu232 in 1

monomer. The pull rate was 0.1 Å per ps, and the pull force was directed along the vertical axis

of the membrane. The potential of mean force (PMF) was calculated using umbrella sampling

from 1 Å windows along the ion path. The figures were generated using VMD software[58].

Supporting information

S1 Fig. Single-channel recordings of purified ClC-1 channels. (a) DDM-solubilized protein

was incorporated into planar lipid bilayers consisting of 10 mM DPhPc and 1 mM cholesterol

dissolved in n-nonane. Single-channel activity was measured using symmetrical solutions con-

taining 1 M KCl and 10 mM HEPES (pH 6.2) at holding potentials of ±150 mV in the Orbit

Mini system (Nanion Technologies). Openings and closings of the incorporated channels are

marked, and zero current is indicated by blue lines. (b) DDM-solubilized protein was incorpo-

rated into GUVs consisting of 10 mM DPhPc and 1 mM cholesterol, and planar lipid bilayers

were formed on an NPC-1 chip using symmetrical solution containing 1 M NaCl and 10 mM

HEPES (pH 6.2). Single channel currents were recorded at ±150 mV using Port-a-Patch sys-

tem (Nanion Technologies). Openings and closings of the incorporated channels are marked,

and zero current is indicated by blue lines. (c) Amplitude histogram of single channel record-

ings obtained at −150 mV under same conditions as in panel b. The distribution of amplitudes

was fitted with the sum of 3 Gaussian distributions. Single-channel conductance was calculated

to 4.0 ± 0.2 pS (n = 21) for recordings obtained in 1 M NaCl and to 3.5 ± 0.1 pS (n = 90) for

recordings obtained in 1 M KCl. The calculations were based on>3 independent experiments.

(d) Single-channel recordings obtained at +200 mV using similar experimental conditions as

in panel b, but in the absence and presence of 100 μM the chloride channel inhibitor 9-AC.

The channel activity could be recovered after washout of 9-AC. The shown traces are represen-

tative of 3 independent experiments. It should be noted that reconstituted ion channels may

incorporate with random orientation into the membrane. Therefore, the applied voltage is not

necessarily reflecting the direction of the physiological membrane potential, and single-chan-

nel rectification properties of ClC-1 may not be correctly reproduced. The large chloride con-

centration employed (1 M) likely leads to complete opening of the fast gate, explaining why

the double-barrelled appearance of ClC-1 is not apparent. Taken together, the measurements

in the presence of NaCl or KCl suggest a Cl−-dependent single-channel activity resulting from

ClC-1. This is further supported by the fact that the current could be totally inhibited by 9-AC.

We also note that the ClC-1 overproducing yeast cells were unable to thrive in standard media

containing 1.7 mM NaCl and that minimal media without chloride was required for yeast

growth and protein production. The underlying data for S1C can be found in S1 Data. CLC,

chloride channelGUV, giant unilamellar vesicle; 9-AC, 9-anthracene-carboxylic acid.

(TIF)
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S2 Fig. Cryo-EM image processing for the pH 7.5 and 6.2 data sets. (a) The 4 maps (Maps

0–3, respectively) generated using the pH 7.5. Maps 1–3 represent the overall structure refined

by applying a mask that only covers the protein part without the amphipol belt but with differ-

ences in the cytoplasmic CBS domains. Map 0 represents the membrane domain map derived

from focused refinement covering the membrane domain only. Map 1 with overall resolution

4.0 Å was generated by applying a mask covering the entire protein excluding the amphipol

belt. After 3D refinement with a membrane domain mask, Map 0 with a resolution of 3.63 Å
was obtained. Maps 2 and 3 were produced by 3D refinement of 2 major classes obtained from

3D classification using a local angular search strategy based on the model generated from

477,729 particles by 3D refinement directly (see Methods for further details). (b) pH 6.2 is sub-

optimal for ClC-1, leading to partial aggregation during purification and freezing. Hence, the

collected data set at pH 6.2 is of less quality than that collected at pH 7.5. To obtain the pH 6.2

structure, we combined 2 data sets: (i) a data set collected with fluorinated fos-choline-8 (as

the pH 7.5 data set) processed to an overall resolution of 4.47 Å (derived from 34.2% of the

particles following 3D classification into 5 classes; we did not identify secondary structure fea-

tures for the remaining 4 classes, suggesting that there is a large fraction of low-quality particles

in the data), and (ii) a second data set without fluorinated fos-choline-8. The second pH 6.2

dataset yielded nonoptimal ice thickness but provided views that were not observed in the first

one. The final map derived from combination of these two data sets, following 3D classifica-

tion with a local angular search strategy as for the pH 7.5 data set, produced 5 classes, of which

the best was refined to an overall resolution of 4.2 Å. This class represents 30.6% of the parti-

cles, of which 76,881 particles were from the first data set and 49,221 particles were from the

second data set. New orientation that was not observed in the first data set is highlighted with

a red square in the lowest image. The density of the cytoplasmic CBS domains are better

resolved at pH 6.2 compared to the pH 7.5 data set (see also S7 Fig). The maps are all con-

toured at level σ = 0.013 in Chimera. CBS, cystathionine-β-synthase; cryo-EM, cryo-electron

microscopy.

(TIF)

S3 Fig. Evaluation of the local resolution of the cryo-EM maps. From top to bottom: (a)

Map 0, (b) Map 1, (c) Map 2, (d) Map 3 (all of the pH 7.5 data set), and (e) the final map from

the pH 6.2 data sets. See S2 Fig for further information regarding the generated maps. From

left to right, Euler angle distribution, FSC, masks exploited for the refinement evaluations, and

color-coded local resolution distribution calculated by Relion in two different views (the maps

are contoured at level σ = 0.03 in Chimera, except for Map 0, which is at level σ = 0.044). The

angular distribution plots suggest a high degree of anisotropy. Note that more density features

and better connectivity are observed for the CBS domains in the low pH structure. CBS,

cystathionine-β-synthase; cryo-EM, cryo-electron microscopy; FSC, Fourier shell correlation.

(TIF)

S4 Fig. Cryo-EM density of selected parts of the ClC-1 membrane region. The helices are

colored as in Fig 1D with the maps contoured at level σ = 0.03 in Chimera using Map 0. The

modelled GluGATE (E232) is colored blue and an alternative (but not modeled) orientation is

shown in gray. Numbers in parentheses indicate shown residues. cryo-EM, cryo-electron

microscopy.

(TIF)

S5 Fig. Novel structural features revealed by the ClC-1 structure. Depicted as in Fig 1D and

with ClC-K in gray, the new features are highlighted with arrows. (a–f) The αC–D, αE–F, αH–

I, αI–J, αL–M, and αN–O loops, respectively. Helices are labeled with white letters throughout.
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(d) Details of the extracellular αI–J loop, which is targeted by several dominant disease muta-

tions (see also Fig 4). This loop was not observed in the ClC-K and CmClC (PDB-ID 3ORG)

[14] structures. Note the short distance between the αI–J loop and R421 of the vestibule, hint-

ing at a role for αI–J in controlling chloride passage. Residue T335 (which was differently

placed in a recent homology model [59]) in the αI–J loop is within reach of Q552 in the αO–P

loop, possibly providing a communication bridge of extracellular cues to conformational

changes at the dimer interface or in the pore region (mutations of both T335 and Q552 cause

inward rectification [35]). In ClC-K channels, 2 symmetrically localized inter-subunit regula-

tory Ca2+ binding sites are formed by αI–J loop residues [60, 61]. The corresponding residues

in ClC-1 are not oriented in a manner consistent with Ca2+ binding. (g, h) Details of E232

(GluGATE) and a possible (not modeled) alternative orientation of its side chain in panel h (see

also S4 Fig).PDB-ID, Protein Data Bank ID.

(TIF)

S6 Fig. Molecular dynamics simulations suggest that protonated GluGATE (E232) primes

ClC-1 with Cl− for ion conductance, but Cl− transfer across GluGATE is nonspontaneous.

Simulations were performed in the presence of a POPC membrane and 100 mM NaCl (no gra-

dient). (a–c) Protonated E232 primes ClC-1 with Cl− for conductance without applied force.

Observed ion positions (gray spheres) during the course of the simulations with E232 being (a)

protonated and (b) deprotonated. Notably, Cl− ions reach R421 from the extracellular side and

GluGATE from the intracellular side. For clarity, only GluGATE, TyrC, and R421 are visualized

(as sticks). (c) The number of Cl− ions within 5 Å of GluGATE in both ClC-1 monomers in sim-

ulations with protonated GluGATE (red) and deprotonated GluGATE (black). Protonated Glu-

GATE typically coordinates a single Cl− in the latter half of the simulation. In contrast, Cl−

comes into proximity only transiently and is repelled by the negative charge of deprotonated

GluGATE. (d–e) Cl− movement across ClC-1 with a protonated E232 from the primed Cl− posi-

tion at the GluGATE-TyrC pair (observed in panel a) appears nonspontaneous. (d) Free energy

associated with moving (by applying force) Cl− from the primed position to the extracellular

side. Positive free energy barriers in the range of 3 kcal/mol indicate that movement along the

sampled reaction coordinate is a nonspontaneous process. The distance moved is relative to

the TyrC (Y578) hydroxyl oxygen. (e) The observed (not necessarily native) Cl− (gray spheres)

transport pathway exploited for calculating panel d is shown on the overall structure. For clar-

ity, only GluGATE, TyrC, and R421 are pinpointed (sticks). Collectively, these MD simulations

suggest that although the determined structure may be closed, Cl− ions may spontaneously

penetrate deep into the vestibules from both sides of the membrane. MD, Molecular Dynam-

ics.

(TIF)

S7 Fig. Maps of the overall structures and CBS domains, respectively. The maps of the over-

all structures are shown at level σ = 0.03 in Chimera, whereas those of the CBS domains only

are shown at level σ = 0.035. Maps 1–3 of the pH 7.5 data and map of the pH 6.2 data are

shown. (a) The overall structures. (b) The CBS domains. CBS, cystathionine-β-synthase.

(TIF)

S8 Fig. Details of the CBS shifts. Alternative views of Fig 3 (colored identically). (a) Alterna-

tive view of Fig 3B. (b–d) Identical view as in panel a with comparisons of the structures

derived from Maps 1–3 (pH 7.5) and the pH 6.2 map (aligned as in Fig 3A), respectively. (e)

Identical view as Fig 3C, including the structure determined at pH 6.2. Helices are labeled with

white letters throughout. CBS, cystathionine-β-synthase.

(TIF)
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S9 Fig. Comparison of ClC-1 samples at pH 7.5 and 6.2. (a) Size-exclusion chromatography

profiles of ClC-1 at pH 7.5 and 6.2. The protein peak at pH 6.2 is shifted toward a higher reten-

tion volume indicating a more compact ClC-1. The peak appearing at 0.7 CV represents the

signal from free PMAL-C8 amphipol. (b) Micrographs for the pH 7.5 (left) and 6.2 (middle

and right) data sets (with and without F-FC-8, respectively), indicating worse behavior of the

pH 6.2 sample. CV, Column volume; F-FC-8, fluorinated fos-choline-8.

(TIF)

S10 Fig. Sequence alignment of selected CLC proteins. All human CLC members and struc-

turally determined CLC proteins are displayed. Secondary structure elements are pinpointed,

and conserved residues are highlighted in red and green, the latter representing residues rele-

vant for the function of ClC-1 discussed in this work. CLC, chloride channel.

(TIF)

S11 Fig. Details of the putative 9-AC pocket. Alternative views of Fig 4E and 4F (colored

identically). 9-AC, 9-anthracene-carboxylic acid.

(TIF)

S1 Table. Cryo-EM data validation statistics. cryo-EM, cryo-electron micrscopy.

(XLSX)

S1 Data. Calculation of single-channel recordings of purified ClC-1. Single-channel con-

ductance was determined based on single-channel current recordings and calculated to

4.0 ± 0.2 pS (n = 21) for recordings obtained in 1 M NaCl and to 3.5 ± 0.1 pS (n = 90) for

recordings obtained in 1 M KCl. Recording solution, command voltage, and current ampli-

tude of the individual recordings are listed.

(XLSX)
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52. Abraham M, Murtola T, Schulz R, Páll S, Smith J, Hess B, et al. GROMACS: High performance molecu-

lar simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–

2:19–25. citeulike-article-id:13681010 https://doi.org/10.1016/j.softx.2015.06.001

53. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR. Molecular dynamics with cou-

pling to an external bath. Journal of Chemical Physics. 1984; 81(8):3684–90. citeulike-article-

id:505947.
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56. Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Molecular Physics.

1983; 50(5):1055–76. citeulike-article-id:9639135 https://doi.org/10.1080/00268978300102851

57. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method.

Journal of Applied Physics. 1981; 52(12):7182–90. citeulike-article-id:2497263 https://doi.org/10.1063/

1.328693

58. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of molecular graphics.

1996; 14(1):33–8, 27–8. PMID: 8744570.

59. Imbrici P, Altamura C, Camerino GM, Mangiatordi GF, Conte E, Maggi L, et al. Multidisciplinary study of

a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopa-

thies. FASEB J. 2016; 30(10):3285–95. https://doi.org/10.1096/fj.201500079R PMID: 27324117;

PubMed Central PMCID: PMC5024700.

60. Gradogna A, Babini E, Picollo A, Pusch M. A regulatory calcium-binding site at the subunit interface of

CLC-K kidney chloride channels. J Gen Physiol. 2010; 136(3):311–23. https://doi.org/10.1085/jgp.

201010455 PMID: 20805576.

61. Gradogna A, Fenollar-Ferrer C, Forrest LR, Pusch M. Dissecting a regulatory calcium-binding site of

CLC-K kidney chloride channels. J Gen Physiol. 2012; 140(6):681–96. https://doi.org/10.1085/jgp.

201210878 PMID: 23148261.

Structure of ClC-1

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000218 April 25, 2019 20 / 20

https://doi.org/10.1021/acs.jctc.5b00935
https://doi.org/10.1021/acs.jctc.5b00935
http://www.ncbi.nlm.nih.gov/pubmed/26631602
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1063/1.447334
https://doi.org/10.1103/physreva.31.1695
https://doi.org/10.1080/00268978300102851
https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.328693
http://www.ncbi.nlm.nih.gov/pubmed/8744570
https://doi.org/10.1096/fj.201500079R
http://www.ncbi.nlm.nih.gov/pubmed/27324117
https://doi.org/10.1085/jgp.201010455
https://doi.org/10.1085/jgp.201010455
http://www.ncbi.nlm.nih.gov/pubmed/20805576
https://doi.org/10.1085/jgp.201210878
https://doi.org/10.1085/jgp.201210878
http://www.ncbi.nlm.nih.gov/pubmed/23148261
https://doi.org/10.1371/journal.pbio.3000218

