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Two-color high-harmonic generation from relativistic plasma mirrors
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High-intensity laser solid interactions are capable of generating attosecond light bursts via high-harmonic
generation—most work focuses on single beam interactions. In this paper, we perform a numerical investigation
on the role of wavelength and polarization in relativistic, high-harmonic generation from normal-incidence,
two-beam interactions off plasma mirrors. We find that the two-beam harmonic-generation mechanism is a robust
process described by a set of well-defined selection rules. We demonstrate that the emitted harmonics from
normal-incidence interactions exhibit an intensity optimization when the incident fields are of equal intensity for
two-color circularly polarized fields.
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I. INTRODUCTION

Relativistic high order harmonic generation (HHG) driven
by the reflection of light off an overdense plasma mirror offers
a promising means of producing high-brightness, attosecond-
duration light in the extreme ultraviolet and soft x-ray regions
that has been shown to extend to hundreds of harmonic orders
[1–4]. Several mechanisms have been theoretically proposed
and experimentally identified for the HHG mechanism, in-
cluding the relativistic oscillating mirror (ROM) model [5–8],
coherent synchrotron emission (CSE) [9–11], and relativistic
electronic spring model [12,13].

As described in the ROM model, when an intense laser
is incident on a plasma surface, the electrons that are driven
into the plasma by the laser field experience a restoring
force from the nearly immobile ions. The electron motion
becomes relativistic when the laser normalized field strength
a0 = eE0/mecω0 � 1, where E0 is the laser electric field,
ω0 the laser frequency, me the rest mass of electron, and e
the fundamental electric charge. This leads to an oscillation
of relativistic electrons near the relativistic critical surface,
ne = γ nc, where γ is the relativistic factor of electrons and
nc = meε0ω

2
0/e2 is the nonrelativistic critical density. The re-

flected laser field experiences a nonlinear phase shift due to
the oscillating critical surface electrons, capable of producing
higher energy photons. For multicycle lasers, this phase shift
becomes periodic and leads to the generation of harmonics
of the fundamental laser frequency. As the radiation is being
emitted from one moving plasma surface, the process is inher-
ently phase-matched, enabling high single-shot flux.
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The harmonics produced by the ROM mechanism have
characteristic properties determined by the input laser and
plasma parameters [1]. For example, the allowed harmonic
orders and their individual polarization states are determined
by the interaction geometry and critical surface oscillation
modes [6]. A laser field reflecting off a surface at normal inci-
dence produces a single mirror oscillation mode at frequency
2ω. The reflected field will contain the odd harmonics of the
laser ωn = (2n + 1)ω. At oblique incidence, the symmetry of
the interaction is broken and the surface can now oscillate at
frequency ω. The reflected field will contain even harmonics
polarized along the electric field direction, and odd harmonics
polarized parallel or orthogonal to the electric field for p- and
s-polarized interactions, respectively.

Recently, there has been increased interest in investigating
the relativistic harmonic generation process through multi-
beam interactions with a primary focus on two-color collinear
studies. The introduction of the second harmonic to the driv-
ing field has been shown to provide benefits to relativistic
HHG, including the enhancement of harmonic conversion
efficiency and attosecond burst isolation [14–18]. The choice
of ω + 2ω collinear studies is one of practical convenience
due to the high conversion efficiencies of second-harmonic-
generation crystals available for experiments. While most
relativistic HHG studies have focused on the interaction of
two linearly polarized (LP) fields, there has also been in-
creased interest in efficiently generating circularly polarized
(CP) harmonics. A scheme involving the interaction of ellip-
tically polarized light at an oblique incidence has been shown
to produce CP harmonics [19]. Furthermore, theoretical and
computational work [20,21] has shown that high-brightness
CP harmonics can be generated in an analogous manner
to CP harmonics generated in the tunnel ionization regime
from counter-rotating, circular fields in collinear [22,23] and
noncollinear [24] geometries even though it is a physically
distinct regime.

Studies on two-beam interactions with plasma mirrors have
up to this point been separated into either linear or circular
polarization driven by ω + 2ω fields. However, multiwave-
length laser facilities are coming online that use unqiue laser
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technologies which allow arbitrary frequency combinations
[25,26]. The capability to combine multiple, noncommensu-
rate frequencies, i.e., fields with frequency ratio ω2/ω1 �= Z,
where ω2 and ω1 are the central frequencies of the funda-
mental fields, in a single interaction has not been examined
extensively in the field to date, and a multibeam framework
for arbitrary frequencies does not currently exist.

In this paper, we show through the use of normal incidence
particle-in-cell simulations that a set of two-color selection
rules can be derived using the ROM model of relativistic
harmonic generation, enabling control over the emission and
polarization of the harmonics. Using noncommensurate fre-
quencies enables a robust examination of the laser-plasma
coupling that results in unique and controllable harmonic
spectra. We show that the harmonic properties and intensity
optimization are governed by the relativistic critical surface
oscillations during the laser reflection. The generated two-
color harmonic spectra and polarization states are determined
by the frequency ratio and polarization states of the fundamen-
tal fields, respectively. Additionally, we show that the intensity
optimization of the two-color CP harmonic generation process
occurs at equal intensities of the fundamental fields, indepen-
dent of frequency ratio.

II. METHODS

Numerical simulations were performed using the fully
relativistic, particle-in-cell code OSIRIS 4.0 [27]. For these
two-color simulations, the physical quantities were normal-
ized to the central wavelength, λ1, and period, T1, of the
lower frequency laser. A series of 1D3V simulations were
performed in a simulation region that was X = 127 λ1 units
long with 128 particles per cell, using a grid size of 40 000
points. This results in a spatial resolution of �x = 3.2 ×
10−3 λ1. The simulations were run for a total time of T =
47.7 T1 with a time step of �t = 3.98 × 10−3 T1. The plasma
was initialized with bulk density ne = 100nc,1 and thick-
ness 7.96 λ1. An exponential density ramp of the form ne =
100nc exp (−x/Ls) was placed before the front surface of
the target to represent preplasma formed by a laser prepulse
before the high-intensity interaction [28], where Ls = λ1/2π

was used for the presented simulations, which is comparable
to optimal scale lengths from previous one-beam experimental
studies [29–31]. Because we are investigating the short-pulse
regime of laser-plasma interactions, which requires suitably
short plasma-scale lengths, we consider the ions to act as an
immobile background.

Two laser fields were initialized, each with a flat-top tem-
poral profile of τ = 9 T1. Flat-top temporal profiles were
used to simplify the plasma dynamics, but comparisons be-
tween lasers with flat-top and Gaussian temporal profiles were
performed to ensure the simulations gave consistent results
regardless of pulse profile (see Appendix Fig. 7). The choice
to use a relatively long pulse length of nine optical cycles was
to easily discriminate between the individual harmonic orders
produced during the interaction (see Appendix Fig. 8). The
laser fields were initialized with two fundamental frequencies
ω1 and ω2, normalized vector potentials a0,1 = eE1/mecω1

and a0,2 = eE2/mecω1, and either linear or circular polar-

FIG. 1. Harmonic spectra of two-color, linearly polarized (LP)
fields. (a) Reflected spectrum of LP pulses at normal incidence. The
parallel (red) and orthogonal (blue) fields contain additional har-
monic orders beyond the odd harmonic orders expected from a single
frequency interaction (yellow). (b) Zoom-in between ω/ω1 = 5 and
ω/ω1 = 11 with different harmonics denoted by vertical lines.

ization. Note the second field does not have an independent
normalization.

After the interaction, the light reflected back into free space
(x < 0). The electric field was then filtered to remove field
contributions due to the bulk plasma target, i.e., for E = 0
for x � 19.8λ1 while the laser pulse is entirely in the region
x < 19.8λ1. The electric field was then analyzed using fast
Fourier transforms (FFTs). A small fraction of hot electrons
in the vacuum were not filtered out since they overlap with
the laser field, which would introduce a negligible amount of
DC noise in the FFT. During the reflection, the relativistic
critical surface, γ nc(x, t ), was also tracked by taking into
account the local Lorentz factor of the plasma electrons ev-
ery ten simulation time steps. The resulting motion was then
Fourier transformed to extract the oscillation frequencies of
the plasma.

Unless otherwise specified, the presented frequency ratio
was ω2/ω1 = 1.65 and the total normalized vector potential
was held constant at a0 = 10. The choice of the presented
frequency ratio is from considerations of frequency ratios pro-
duced by Ti:sapphire-driven optical parametric amplification
(OPA) sources, and eliminates the redundancy of certain beat
frequencies produced by commensurate two-color fields. For
a total vector potential of a0 = 10 and central frequencies
of ω1 = 1 and ω2 = 1.65, the individual normalized vector
potential values were a0,1 = 6.2 and a0,2 = 3.8.

III. RESULTS

A. Linearly polarized two-color HHG

The reflected spectra of two LP laser fields with frequen-
cies ω1 = 1.0 and ω2 = 1.65 can be seen in Fig. 1(a). The
polarization angle of the higher frequency field is rotated
between 0o and 90o such that the field polarizations are paral-
lel (red) and orthogonal (blue). As a reference, the reflected
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FIG. 2. Harmonic spectra of two-color, circularly polarized (CP)
fields. (a) Reflected spectrum of CP pulses at normal incidence.
The two-color counter-rotating (red) and corotating (blue) fields.
(b) Zoom-in between ω/ω1 = 5 and ω/ω1 = 14 with different har-
monic channels denoted by vertical lines.

spectrum of a single color laser with central frequency ω1

is plotted in yellow. Because the peak field strength of the
orthogonal fields is reduced, the normalized vector poten-
tials of the individual fields were increased by a factor of
1.37 to produce the same peak field strength of the pulse
envelope as the parallel polarization case. To account for the
difference in total energy between the two interactions, the re-
flected spectra are normalized to the initial energy of the laser
fields. Both parallel and orthogonal cases contain multiple
harmonic channels that are separate from the odd harmonics
produced from a single frequency at either ω1 or ω2. Four such
channels, (n − 1)ωi + nω j and (n − 2)ωi + (n + 1)ω j , where
i, j = 1, 2 are plotted as vertical lines in Fig. 1(b). In general,
the observed two-color HHG harmonics are

	 = n1ω1 + n2ω2, (1)

where n1 + n2 = 2k − 1, and n1, n2, and k ∈ Z.
The harmonic emission of the two-color fields follows a

power-law decay of the form I (n) ∝ n−p, which is a well-
known scaling for single-color relativistic high harmonic
generation [4]. From previous single-color experiments, the
decay constant has ranged between 5 < p < 10 [30–33], with
the theoretical ultrarelativistic limit, i.e., a0 � 1, of the decay
from the ROM model given by p = 8/3 [34]. Other models
such as CSE have predicted decay constants less than p = 8/3
and can approach p = 4/3 in the ultrarelativistic limit [35].
The single color and two colors with parallel polarization have
comparable decay constants of p = 3.5, while the orthogonal
polarization case has a stronger power law decay with p =
4.25.

B. Circularly polarized two-color HHG

The reflected spectra of two CP laser fields with frequen-
cies ω1 and ω2 can be seen in Fig. 2(a). The polarization
of the second field at frequency ω2 is rotated such that the

FIG. 3. Harmonic spectra of two-color LP (red) and CP (blue)
fields for different frequency ratios of (a) ω2/ω1 = 1.35, (b) ω2/ω1 =
1.5, (c) ω2/ω1 = 1.65, and (d) ω2/ω1 = 2. The a0 ratio for all cases
were varied such that the field intensities were equal.

fields are counter-rotating (red) and corotating (blue). Ob-
servation of harmonics generated from two-color, CP fields
is remarkably different from the single-color circular case,
which does not produce harmonic emission from a normal
incidence reflection. Two harmonic channels in the form of
doublets are present in the counter-rotating case:

	+ = nω2 + (n − 1)ω1, (2)

	− = (n − 1)ω2 + nω1. (3)

Harmonics are also observed when the two fields are coro-
tating, which is in agreement with recent results by Li et al.
[36]. These harmonics are CP and corotating with the incident
fields with selection rules:

	 = nω2 − (n − 1)ω1. (4)

For a constant peak normalized vector potential of a0 =
10, the corotating harmonics have a much faster decay
when compared to either the counter-rotating fields or LP
fields.

C. Variation of frequency ratio

A direct comparison of the harmonics generated from
different frequency ratios is shown in Fig. 3. Harmonic spec-
tra of two-color LP (red) and CP (blue) fields for different
frequency ratios of (a) ω2/ω1 = 1.35, (b) ω2/ω1 = 1.5, (c)
ω2/ω1 = 1.65, and (d) ω2/ω1 = 2. The a0 ratio for all cases
were varied such that the field intensities were equal, and the
spectra have been normalized by the total energy of the in-
cident fields. The number of observed harmonic channels for
the LP case increases as the frequency ratio of the two fields
approaches unity. For the ω2/ω1 = 2 case, the observed LP
harmonics constitute the even and odd order harmonics of ω1.
Conversely, the CP harmonics produced by counter-rotating
fields are always observed as harmonic doublets, regardless
of frequency ratio. For the a0 ratio used, the peak doublets for
the CP fields correspond to the locally brightest harmonics in
the LP case, and their comparable intensity implies that the
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FIG. 4. Reconstructed 3D electric field wave forms of har-
monics produced by counter-rotating fields with ω2/ω1 = 1.65
and a0,1/a0 = 0.62. (a) Reflected harmonic spectrum composed of
counter-rotating doublets. (b) Wave form of the incident counter-
rotating fields (blue) with orthogonal Ex (orange) and Ey (green)
components. (c) Wave form of the harmonic pulse train (blue) after
spectral filtering between 10ω1 and 20ω1 with orthogonal Ex (or-
ange) and Ey (green) components. (d) Wave form of the 6ω1 + 5ω2

harmonic.

CP harmonics are generated with similar efficiency as the LP
harmonics.

D. 3D reconstructed electric field wave forms

We can further analyze the CP harmonics by considering
their individual polarization states. Figure 4(a) shows the
polarization states of the harmonics, which are produced as
counter-rotating doublets. Figure 4(b) shows the 3D elec-
tric field temporal wave form E = Ex + Ey of the incident
counter-rotating fields. The total field (blue) traces out a
trefoil-like pattern that rotates as a function of time. We ob-
serve a train of rotating attosecond pulses after applying a
spectral filter between 10ω1 and 20ω1, as shown in Fig. 4(c).
The generated harmonics are counter-rotating, and therefore
produce a complicated field structure that rotates as a function
of time. The harmonics within this frequency range reach
a peak amplitude of a0 = 2.1 with an assumed central fre-
quency of ω = 15ω1.

Reducing the band-pass spectral filter width to isolate a
single harmonic enables us to determine the harmonic ec-
centricity. The field eccentricity can be measured through
the polarization ellipticity ε = min(Ex, Ey)/ max(Ex, Ey) and
phase delay �φ. An LP field has no phase delay �φ = 0 be-
tween the fields, and a CP field has an ε = 1 and �φ = ±π/2.
When �φ = π/2 the field is right-CP, and when �φ = −π/2
the field is left-CP. A spectral filter of width 0.5ω1 between
14ω1 and 14.5ω1 is applied to isolate the 6ω1 + 5ω2 har-
monic. The ellipticity and phase delay at the optimized ratio of
a0,1/a0 = 0.62 are ε = 0.89 and �φ = 0.51π , respectively.
Figure 4(d) shows a field map of the 6ω1 + 5ω2 harmonic at

FIG. 5. Optimization of CP harmonics of counter-rotating fields.
(a) Integrated intensity of ω2/ω1 = 0.65 (magenta), 1.35 (red), 1.65
(blue), and 2.5 (black) obtained by applying a spectral filter between
10 � ω/ω1 � 40. (b) Ellipticity and phase of harmonics 6ω1 + 5ω2

(spectral filter between 14 � ω/ω1 � 14.5) and 5ω1 + 6ω2 (spectral
filter between 14.65 � ω/ω1 � 15.15) with varying a0,1/a0 for the
case of ω2/ω1 = 1.65. The harmonics exhibit nearly-perfectly circu-
lar polarization near the optimal condition of a0,1/a0 = 0.62.

a0,1/a0 = 0.62 showing the high degree of circularity in the
electric field.

E. Optimization of circularly polarized harmonics

The optimization of CP harmonics depends strongly on
the ratio of two-color field strengths. Figure 5(a) shows the
integrated intensity of the generated harmonics for various
frequency ratios ω2/ω1 = 0.65 (magenta), 1.35 (red), 1.65
(blue), and 2.5 (black) as a function of a0,1/a0 after apply-
ing a bandpass spectral filter between 10 � ω/ω1 � 40. The
peak of the harmonic emission in this spectral range shifts
according to the two-color frequency ratio. For example, for
the case of ω2/ω1 = 1.65 the optimization occurs at occurs at
a0,1//a0 = 0.62, or when the field intensities are equal. This
optimization of the CP harmonics is narrow, the integrated
intensity full width at half maximum is approximately equal to
a0,1/a0 ≈ 0.22 for the case of ω2/ω1 = 1.65, which requires
careful control of the incident field intensities. Changes in the
frequency ratio cause a shift in the optimal value of a0,1//a0,
with individual optima occurring near the points of equal
intensities for the two fields. The actual harmonic efficiency
depends on many parameters like scale length and plasma
density that were not adjusted.

For this case, ω2/ω1 = 1.65. Figure 5(b) shows an analy-
sis of the polarization states of the harmonics 6ω1 + 5ω2 =
14.25ω1 and 5ω1 + 6ω2 = 14.9ω1 as functions of a0,1/a0.
Spectral filters of widths 0.5ω1 between 14 � ω/ω1 � 14.5
and 14.65 � ω/ω1 � 15.15 are applied to isolate the 6ω1 +
5ω2 and 5ω1 + 6ω2 harmonics, respectively. As stated pre-
viously, the ellipticity of the 6ω1 + 5ω2 harmonic at the
optimized ratio of a0,1/a0 = 0.62 is ε(a0,1/a0 = 0.62) =
0.89. However, the ellipticity of the harmonic on either side
of this optimization point is ε(a0,1/a0 = 0.6) = 0.95 and
ε(a0,1/a0 = 0.65) = 0.96. Similarly, the phase delay between
the field components for all three cases is �φ = 0.51π . Mov-
ing away from the optimal ratio of a0,1/a0 the polarization
states become LP as �φ quickly approaches 0 as the harmonic
intensity decreases.

015201-4



TWO-COLOR HIGH-HARMONIC GENERATION FROM … PHYSICAL REVIEW E 108, 015201 (2023)

FIG. 6. Relativistic critical surface motion. (a) Parallel (red) and
orthogonal (blue) LP fields drive the electron surface with different
magnitudes and frequencies. (b) The oscillations from LP fields are
dominated by beat frequencies, ω2 ± ω1, in the parallel case, and 2ω2

and 2ω1, in the orthogonal case. (c) CP counter-rotating (red) and
corotating (blue) fields produce oscillations in contrast with a single
color interaction. (d) The CP fields produce oscillations dominated
by the beat frequencies.

F. Relativistic critical surface motion

The displacement of the plasma relativistic critical sur-
face �x(γ nc, t ) for the different polarization cases presented
above is plotted in Fig. 6. Figure 6(a) shows the position of
the electron critical surface during the reflection of two-color
laser fields with parallel (red) and orthogonal (blue) polariza-
tions. Electron oscillations in the parallel polarization case are
much stronger compared to the orthogonal polarization. Fig-
ure 6(b) shows the Fourier transform of the LP-driven surface
oscillations. The parallel polarization is dominated by beat
frequency oscillations of the two fields ω2 ± ω1, and twice the
fundamental frequencies, 2ω1 and 2ω2; the orthogonal polar-
ization contains only the modes from twice the fundamental
frequencies. Figure 6(c) shows the oscillation of the critical
surface for the two-color corotating and counter-rotating CP
cases. Figure 6(d) shows that the critical surface oscillations
of counter-rotating and corotating fields are dominated by the
sum frequency, ω2 + ω1, and difference frequency, ω2 − ω1,
of the fields, respectively.

IV. DISCUSSION

A. Harmonic selection rules

The harmonic frequencies generated during the reflec-
tion can be determined by the oscillation frequencies of the
electron critical surface [6]. As the plasma critical surface
oscillates along the laser axis, electrons located at the criti-
cal density surface are driven to relativistic velocities within
an optical cycle. The resulting driving force from the laser
coupled with the plasma pressure from the ions leads to a
nonlinear, oscillating reflection surface of the plasma which
changes as a function of time [34]. Therefore, a nonlinear

phase shift, φ(t ), is imparted by the oscillating mirror onto
the laser field. This phase shift is determined by the oscillation
modes, ωm, of the mirror surface:

φ(t ) =
∑

φ0 sin(ωmt ). (5)

The reflected electric field, Er , of the laser field is then given
by

Er ∝ exp (−iωt ) exp iφ(t )

= exp (−iωt )
n=∞∑

n=−∞
Jn exp (−inωmt ), (6)

where Jn are Bessel functions of the first kind [6]. When
the driving laser is a multicycle pulse, the oscillation modes
of the plasma surface are at frequencies linked to the laser
optical cycle and the reradiated field in the spectral do-
main contains the higher order harmonics of the incident
laser. At normal incidence, the only force capable of driv-
ing the mirror oscillations is the v × B component of the
Lorentz force at frequency 2ω producing the odd harmonics
ωn = (2n + 1)ω.

The two colors produce more complex surface oscillations
leading to emission, which contains multiple harmonic chan-
nels that are separate from the odd harmonics produced from
a single frequency at either ω1 or ω2. A two-color laser pulse
can be represented as a superposition of two single-color
laser pulses defined by amplitudes a0,1 and a0,2 and central
frequencies ω1 and ω2. An electromagnetic field with arbitrary
polarization propagating in the ẑ direction can be written in
terms of the vector potential,

Ai = δia0,i cos ωit x̂ + (
1 − δ2

i

)1/2
a0,i sin ωit ŷ, (7)

where δi is a polarization parameter defined such that δi =
±1, 0 for an LP laser and ±1/

√
2 for a CP laser. The total

vector potential of a general two-color laser field is then sim-
ply the summation of the two fields:

A = [δ1a0,1 cos ω1t + δ2a0,2 cos ω2t]x̂

+ [(
1 − δ2

1

)1/2
a0,1 sin ω1t + (

1 − δ2
2

)1/2
a0,2 sin ω2t

]
ŷ.

(8)

For LP fields with parallel polarizations along the x̂ di-
rection, the total vector potential corresponds to the case of
δ1 = δ2 = 1:

A = [a0,1 cos ω1t + a0,2 cos ω2t]x̂. (9)

For an electron initially at rest in a normal incidence geometry,
the canonical momentum in the transverse direction is a con-
served quantity, p⊥ = A, where p⊥ and A are the transverse
electron momentum and laser vector potential, respectively.
The longitudinal momentum, pz, of the electron can be shown
[37] to equal pz = (1 − p2

⊥)/2.
According to the theory of relativistic harmonic genera-

tion described by Baeva et al. [34], the harmonic emission
occurs when the magnitude of the transverse momentum of
the critical surface electrons p⊥ reaches a minimum or van-
ishes. The transverse electron momenta is px = a0,1 cos ω1t +
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a0,2 cos ω2t with amplitude:

|px| = (
a2

0,1 cos2 ω1t + a2
0,2 cos2 ω2t

+ 2a0,1a0,2 cos (ω2 + ω1)t

+ 2a0,1a0,2 cos (ω2 − ω1)t
)1/2

. (10)

The electron surface oscillations contain four individual
frequencies which are twice the fundamental frequencies 2ω1

and 2ω2 and the beat frequencies of ω2 ± ω1, which are also
seen in the critical surface motion of Fig. 6(b). The reflected
field will therefore contain harmonic frequencies of the form
	 = ω1,2 + 2n1ω1 + 2n2ω2 + n3(ω1 + ω2) + n4(ω1 − ω2) in
agreement with the theoretical model of Ref. [14]. The gener-
ated harmonic frequencies can be rewritten in the form

	 = (2n1 + n3 + n4 + 1)ω1 + (2n2 + n3 − n4)ω2, (11)

	 = (2n1 + n3 + n4)ω1 + (2n2 + n3 − n4 + 1)ω2. (12)

The individual terms of Eqs. (11) and (12) always have
opposite parity, and it is possible to recast these selection
rules for the parallel field polarization in the same form as
Eq. (1). For orthogonal fields, the electron surface oscillations
are dominated by twice the fundamental frequencies of the
incident fields, 2ω1 and 2ω2. The reflected field in this case
yields harmonic frequencies of the form

	 = (2n1 + 1)ω1 + 2n2ω2, (13)

	 = 2n1ω1 + (2n2 + 1)ω2, (14)

which similarly can be written in the form of Eq. (1).
The general form of Eq. (1) suggests that the ROM har-

monic generation process is consistent with the quantum
mechanical description of harmonic generation processes,
wherein individual photons are summed together to generate
one higher order photon. A restriction imposed by the symme-
try of the normal-incidence interactions is that the oscillation
modes limit the generated harmonics to those composed of
an odd number of photons. These selection rules also indicate
why the parallel polarization produces brighter harmonics for
similar field strengths. Equations (11) and (12) contain two
additional channels, n3 and n4, due to the presence of beat
frequency oscillations that are lacking in the orthogonal HHG
case, which increases the likelihood of their generation and
the apparent brightness when compared to orthogonally po-
larized fields.

Two-color CP fields are capable of driving electron surface
oscillations due to having minima in the transverse electric
field [34]. For example, in the case of counter-rotating fields,
the field vector traces out a trefoil-type pattern when the
intensities are equal, whose number of lobes depend upon the
frequency ratio and contains a zero in the transverse electric
field [20,21,38,39]. Two CP fields with opposite helicities
correspond to Eq. (8) with δ1 = 1/

√
2 and δ2 = −1/

√
2:

A =
[

a0,1√
2

cos ω1t − a0,2√
2

cos ω2t

]
x̂

+
[

a0,1√
2

sin ω1t + a0,2√
2

sin ω2t

]
ŷ. (15)

The transverse electron momenta is then given by

px = a0,1√
2

cos ω1t − a0,2√
2

cos ω2t, (16)

py = a0,1√
2

sin ω1t + a0,2√
2

sin ω2t, (17)

and the amplitude of the transverse momenta is given by

|p⊥| =
√

a2
0,1 + a2

0,2 − 2a0,1a0,2 cos (ω2 + ω1)t . (18)

The resulting mirror motion contains the single oscillation
frequency at ω2 + ω1, also seen in Fig. 6(d). Therefore, the
generated harmonics orders of the form 	+ = nω2 + (n −
1)ω1 and 	− = (n − 1)ω2 + nω1 are expected, which is con-
sistent with the selection rules from Eqs. (2) and (3).

The observation of corotating harmonics from these simu-
lations indicates that the corotating fields are driving electron
oscillations at normal incidence. The field map of corotating
fields contains one lob in the field structure and an associated
zero point [38]. The amplitude of the transverse electron mo-
tion in this case is given by

|p⊥| =
√

a2
0,1 + a2

0,2 + 2a0,1a0,2 cos (ω2 − ω1)t . (19)

The corotating fields produce electron surface oscillations
at frequency ω2 − ω1, which generates harmonic orders of
the form 	 = ω1 + n(ω2 − ω1) = nω2 − (n − 1)ω1, in agree-
ment with Eq. (4). While other schemes have shown CP
harmonics can be produced from elliptically polarized laser
fields [19], these schemes require oblique angles of incidence
to drive electron surface oscillations.

Furthermore, for interactions with intensity profiles much
longer than the carrier wavelength, carrier envelope phase
(CEP) stabilization is not a requirement for efficient CP har-
monic generation from normal incidence interactions as it
would be in two-beam LP interactions. For two-color CP
interactions, varying the CEP is analogous to introducing a
phase delay, which simply rotates the field structure of two-
color CP pulses (see Appendix Fig. 9). However, for few-cycle
pulses with Gaussian or other temporally varying profiles, a
change in CEP would change the locations of the electric
field extrema and therefore impact the efficiency of the HHG
process.

Incidentally, the presence of harmonic doublets in the
counter-rotating case is consistent with the quantum model
of the conservation of spin-angular momentum, where the
final photon generated from the interaction must have photon
spin σ = ±1. In this model, the counter-rotating harmonic
doublets are being generated from the linear addition of pho-
tons from each field such that each harmonic in the doublet
has one extra photon from either field in order to preserve
σ = ±1. The presence of a single harmonic channel for the
corotating fields as opposed to two harmonic channels for
the counter-rotating case is also consistent with the spin-
angular momentum conservation, where the final harmonic
must be generated with the same spin as the incident fields.
Furthermore, due to the inherent phase matching of ROM, the
corotating fields can produce harmonics while in the tunnel
ionization regime they are forbidden.

The normal incidence selection rules for two-color LP and
CP fields are summarized in Table I. The harmonic polariza-
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TABLE I. Normal incidence harmonic selection rules for linear and circularly polarized two-color fields.

Field types ω1 Pol. ω2 Pol. Selection rules Harmonic polarization

LP Ex Ex 	 = n1ω1 + n2ω2 Ex

LP Ex Ey 	 = n1ω1 + n2ω2 45o between Ex and Ey

CP RHC LHC 	+,− = nω2,1 + (n − 1)ω1,2 LHC, RHC
CP RHC RHC 	 = nω2 − (n − 1)ω1 RHC

tion of LP parallel fields are along the same polarization axis
as the fundamental fields. Orthogonally polarized fields with
one color polarized along Ex and the other polarized along
Ey produced harmonics with polarization at 45o between the
incidence fields. Counter-rotating CP fields produce harmonic
doublets with counter-rotating polarization and corotating CP
fields produce rapidly decaying harmonics that are the same
helicity as the incident fields.

B. Optimization of two-color harmonic generation

As discussed in Sec. III E,there is an optimization of har-
monic emission in terms of a0,1/a0 that changes as a function
frequency ratio ω2/ω1. This can be understood for the CP
cases by considering how the total electric field strength varies
for a two-color field. The electric field of two-color CP fields
can be calculated by E = −∂A/∂t . The magnitude of the
electric field is given by

|E | = 1√
2

√
a2

0,1ω
2
1 + a2

0,2ω
2
2 + 2a0,1a0,2ω1ω2 cos(ω2 ± ω1)t,

(20)

where oscillatory frequency sign corresponds to + for
counter-rotating fields, and − for corotating fields.

The optimal conditions for harmonic generation are when
the transverse electron momentum vanishes, i.e., when the
transverse electric field goes to zero according to Baeva
et al. [34]. The optimization condition for the two-color
counter-rotating fields can be found by determining when the
minimum of Eq. (20) equals zero:

a0,1ω1 = a0,2ω2. (21)

Written in terms of laser intensity, the minimization occurs
when the two fields are of equal intensity I1 = I2, regardless
of frequency ratio and for both counter-rotating and corotating
fields.

This optimization point for CP harmonic generation can be
understood through an analogous quantum mechanical picture
of conservation of spin-angular momentum in the CP case,
which needs on average an equal number of photons from
each field, i.e., equal field intensities, for CP harmonics to be
generated efficiently.

C. Robustness of two-beam harmonic generation

The presented results were all from a select few parameters
of laser and plasma conditions that can be experimentally
achieved by current laser systems. In addition, parameter
scans were conducted to determine the effects of phase de-
lay between 0 < �φ < 2π , temporal delay between 0 <

t/T1 < 1, ratio of the normalized vector potentials between

0 < a0,1/(a0,1 + a0,2) < 1, total vector potential 0.1 < a0 =
a0,1 + a0,2 < 100, laser pulse duration, laser pulse profile,
preplasma scale length 0.002 < Ls/λ1 < 1, and bulk plasma
density between 1 < ne/nc < 1000. We found that general
trends of these parameter scans were consistent with the pre-
sented results. As described in Secs. III C, III E, and IV B, the
generated harmonic frequencies and their optimization point
depend upon the input frequency ratio of the two beams. Fur-
thermore, we found that the two-color HHG mechanism and
derived selection rules are robust to changes in pulse shape,
intensity, and preplasma scale length (see Appendix).

V. CONCLUSION

In this paper, we have studied the interaction of relativis-
tically intense, two-color laser fields with overdense plasmas.
By combining noncommensurate fields with frequencies ω1

and ω2, we have shown that the relativistic harmonic genera-
tion process is a robust mechanism to control the polarization
and frequency of emitted photons by tuning the incident
field properties such as polarization and frequency ratio. The
benefit of driving two-color harmonic generation enables the
possibility of generating frequency-tunable harmonics with
controllable polarization states. We have found that the two-
color harmonic generation optimization occurs for a similar
intensity ratio of the two driving fields, regardless of the
incident polarization states.

While not discussed in this paper, there are interesting phe-
nomena that are exclusive to mult-dimensional effects, e.g.,
oblique angles of incidence that are already being explored
from single-color interactions that may have significant effects
from two-color interactions. For example, the interaction of an
elliptically polarized laser at an oblique incidence has been
shown to produce CP harmonics with high efficiency [19].
The influence of the spectral phase, which has already been
shown to produce isolated attosecond pulses from gas target
harmonic generation [40,41], may impact spatial and temporal
varying frequency generation in the relativistic regime [42].

Future two-color experiments can be designed to exploit
optimizations discussed in this paper. Experiments which have
polarization and intensity control of their incident fields can
optimize harmonic generation through varying the individual
field intensities during LP interactions before rotating their
individual polarizations to produce CP harmonics.

Advancing table-top laser technology has enabled high
repetition rate systems with smaller beam diameters to
produce intensities sufficient to study these relativistic inter-
actions. Combined with higher stability systems, wavelength-
tunable relativistic harmonic generation experiments are
now possible through the manipulation of the fundamental
laser wavelength through nonlinear optical processes such
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as frequency-doubling [43] and OPA [44,45]. High-power
OPA systems such as the L1 Allegra at ELI Beamlines
and the proposed EP OPAL system at the Laboratory for
Laser Energetics [25] are ideal systems to perform two-color,
relativistic harmonic generation through tunable, noncom-
mensurate wavelengths.
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APPENDIX: SUPPLEMENTAL INFORMATION

1. Pulse profile comparison

The flattop temporal profile used in these simulations is
an idealized version of the temporal profile of a laser pulse
and does not represent the real temporal profile of high-power
laser systems, particularly those with pulse durations on the
order of tens of femtoseconds. To ensure that the physics
discussed in this paper is applicable both in this idealized
case and with real Gaussian laser pulses, we have performed
a comparison of two-beam simulations of both flattop and
Gaussian temporal profiles as presented in Fig. 7. The selected
frequency ratio was ω2/ω1 = 1.65 and the total normalized
vector potential was a0 = 10. Two polarization states are pre-
sented, LP with parallel polarization and counter-rotating CP.
The incident electric fields for the LP and CP cases are shown
in Figs. 7(a) and 7(b) for the flattop (red) and Gaussian (blue)
pulse profiles. The reflected harmonic spectra are shown in
Figs. 7(c) and 7(d) for the LP and CP cases, respectively.

FIG. 7. Comparison of two-beam HHG driven by flattop (red)
and Gaussian (blue) pulse profiles. Incident fields, (a), and reflected
harmonic spectra, (c), for linearly polarized fields with parallel po-
larization. Incident fields, (b), and reflected harmonic spectra, (d), for
circularly polarized fields with counter-rotating polarization.

FIG. 8. Comparison of two-beam HHG driven by different full-
width at half-maximum pulse durations of 11.2 (red), 3.7 (blue), and
11.2 (black) optical cycles.

The harmonic spectra in both the LP and CP cases contain
the same harmonic orders regardless of pulse shape. The
consistent harmonic orders observed allows us to simplify the
analysis of the critical surface motion and provides a better
representation of the data to the reader.

2. Pulse duration comparison

As a laser pulse shortens in time and approaches the few
cycle limit, the generated harmonics from high-harmonic-
generation interactions necessarily broaden in the frequency
domain. The choice to use a relatively long pulse length of
nine optical cycles was to easily discriminate between the in-
dividual harmonic orders produced during the interaction. To
highlight this point, we investigated the few-cycle regime of
the interaction between two-color laser pulses with frequency
ratio ω2/ω1 = 1.3 with counter-rotating circular polariza-
tions. These simulations were performed using a Gaussian
pulse shape of varying full width at half maximum of 1.9, 3.7,
and 11.2 optical cycles (5 fs, 10 fs, and 30 fs for an 800 nm
laser). For these interactions, the normalized vector potential
was not varied to account for a difference in pulse duration,
and therefore the total energy of the interactions are not con-
stant. The resulting CP harmonics can be seen in Fig. 8. For
the long pulse duration case (11.2 cycles) a counter-rotating
harmonic doublet can be clearly resolved. However, as the
laser pulse duration shortens, this doublet merges into what
appears as a single broader harmonic.

3. Carrier envelope phase and temporal delay

We investigated the role of a shift in the CEP and temporal
delay between the two color pulses during the interaction.
The simulations were initialized with the same conditions as
discussed in the Methods, but with a variable CEP or temporal
delay of one of the pulses. We investigated three cases: two
LP fields with the same frequency, ω1, which was used as a
reference, two LP fields with frequency ratio ω2/ω1 = 1.5,
and two CP fields with frequency ratio ω2/ω1 = 1.5. For all
three cases the two field intensities were set to be equal. The
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FIG. 9. Integrated harmonic intensity of single-beam (blue),
two-color linearly polarized (red), and two-color circularly polarized
(black) interactions with varying (a) carrier envelope phase delay (b)
temporal delay.

integrated harmonic intensity between 10 � ω/ω1 � 40 were
then normalized to the intensity of the zero delay cases.

Figure 9(a) shows the impact of CEP on the harmonic
efficiency, and is most apparent in the single frequency case,
where a phase delay of 180◦ leads to a perfect destructive in-
terference and no harmonic emission. The LP two-color case
produces a small enhancement (<20%) of the integrated har-
monic intensity. The CP two-color case does not significantly
change the efficiency of the harmonic emission, which is con-
sistent with the discussion above. Therefore, in experiments
that have CEP control, introducing slight shifts in the CEP of
one with respect to the other may lead to an enhancement of
the harmonic emission.

Figure 9(b) shows impact of the time delay on the harmonic
efficiency, and again is most apparent in the single frequency
case, where a phase delay of half an optical cycle leads to al-
most perfect destructive interference and very little harmonic
emission. The linearly-polarized two-color case produces a
small enhancement (∼20%) of the integrated harmonic inten-
sity, which is similar to the CEP case above. The circularly
polarized two-color case does not significantly change the ef-
ficiency of the harmonic emission. Therefore, in experiments
that have temporal control on the order of the optical period,
introducing slight shifts of one with respect to the other may
lead to an enhancement of the harmonic emission.

4. Normalized vector potential

Figure 10 shows that two-color HHG occurs occurs for a0

values of 1, 10, and 100 with varying efficiencies for the fre-
quency ratio of ω2/ω1 = 1.65. In both parallel LP [Fig. 10(a)]
and counter-rotating CP [Fig. 10(b)], the efficiency of the

FIG. 10. Reflected harmonic spectra for frequency ratio
ω2/ω1 = 1.65 and a0 = 1 (red), 10 (blue), and 100 (black).
(a) Linearly polarized, parellel fields. (b) Circularly polarized,
counter-rotating fields.

interaction increases with a0. The results presented in the
main body are at a total normalized vector potential a0 = 10.
This intensity was chosen as it can consistently be achieved
in many current or upcoming petawatt-class facilities world-
wide. To drive relativistic harmonic generations, the vector
potential requirement of the lasers needs to be a0 � 1, which
is well-known from single-beam studies.

5. Preplasma scale length

Figure 11 shows the impact of preplasma scale length
on the generation of two-color harmonics. The presented
harmonics are from the interaction of two beams with fre-
quency ratio ω2/ω1 = 1.65 and a0 = 10, and are circularly
polarized in counter-rotating directions. The efficiency of
harmonic generation in this case strongly depends upon the
preplasma scale length, which has an optimal value near
Ls = 0.318λ1.

FIG. 11. Reflected harmonic spectra from two beams with fre-
quency ratio ω2/ω1 = 1.65 and a0 = 10 for various preplasma scale
lengths Ls.
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