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Abstract

Recent work has revived interest in the scattering matrix formulation of electron scattering in transmission electron microscopy as a step-
ping stone toward atomic-resolution structure determination in the presence of multiple scattering. We discuss ways of visualizing the scat-
tering matrix that make its properties clear. Through a simulation-based case study incorporating shot noise, we shown how regularizing on
this continuity enables the scattering matrix to be reconstructed from 4D scanning transmission electron microscopy (STEM) measure-
ments from a single defocus value. Intriguingly, for crystalline samples, this process also yields the sample thickness to nanometer accuracy
with no a priori knowledge about the sample structure. The reconstruction quality is gauged by using the reconstructed scattering matrix to

simulate STEM images at defocus values different from that of the data from which it was reconstructed.
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Introduction

The recent development of fast-readout electron pixel detectors
suitable for scanning transmission electron microscopy (STEM)
has spurred the development and application of a range of
phase retrieval/structure determination methods, including pty-
chography (Yang et al.,, 2016; Gao et al., 2017; Jiang et al., 2018;
Chen et al., 2020; Schloz et al., 2020) and differential phase con-
trast (Miiller et al., 2014; Chen et al., 2016; Lazi¢ et al., 2016). At
atomic resolution, the phase object approximation on which
many such techniques are based starts to quantitatively break
down for samples with thickness greater than a few nanometers
(Close et al., 2015; Miiller-Caspary et al.,, 2017; Winkler et al,,
2020). Attention has thus turned to developing approaches to
handle multiple electron scattering in thicker samples, with meth-
ods including optical sectioning (Yang et al., 2016; Bosch & Lazi¢,
2019; Brown et al, 2020), 3D ptychography/inverse multislice
(Maiden et al., 2012; Van den Broek & Koch, 2012, 2013; Gao
et al., 2017; Chen et al., 2020; Schloz et al., 2020), and scattering
matrix inversion (Brown et al., 2018) all showing promise.

This paper concerns the scattering matrix approach and will
focus solely on reconstructing the scattering matrix from 4D
STEM measurements. Pixel detectors in 4D STEM imaging are
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sometimes referred to as universal detectors (Tate et al., 2016;
Hachtel et al., 2018) since post-experiment one can synthesize
any desired detector geometry (constrained by the extent of the
detector). Reconstructing the (complex) scattering matrix elements
allows a further degree of generalization: having reconstructed the
scattering matrix, it can be used to simulate completely different
imaging modes, constrained by the range of scattering matrix ele-
ments reconstructed and provided they result from elastic scatter-
ing. For instance, in STEM, one could synthesize images for a
different probe defocus (or indeed any other desired combination
of aberrations), or for an annular probe-forming aperture. A
more novel example is the parallax method of Ophus and cowork-
ers which probes the 3D structure via a kind of optical sectioning
(Ophus et al,, 2019; Brown et al., 2020).

Most recent discussions of reconstructing the scattering matrix
regard doing so as an intermediate step toward determining the
structure (specifically the specimen electrostatic potential)
(Brown et al., 2018; Donatelli & Spence, 2020; Pelz et al., 2020).
When that can be done' there would be little reason to synthesize
other imaging modes. However, at present, determining the struc-
ture from the scattering matrix from periodic samples may be
limited by residual aberrations and by so-called truncation effects
(Brown et al., 2018), and many questions remain about what

'Note that there are methods to determine the structure in the presence of multiple
scattering that do not involve determining the scattering matrix as an intermediate
step (Van den Broek & Koch, 2012, 2013; Chen et al., 2020; Ren et al., 2020; Schloz
et al., 2020).
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information can be obtained when the sample is nonperiodic,
particularly along the beam direction. In such cases, reconstruct-
ing the scattering matrix could, via synthesizing other imaging
modes—such as computationally correcting for aberrations after
the fact, or carrying out the parallax reconstruction to effect 3D
optical sectioning (Ophus et al., 2019; Brown et al, 2020)—
offer insights not readily visible in the measured data.

The previous, experimentally realized scattering matrix recon-
structions (Brown et al., 2018, 2020; Pelz et al., 2020) involved 4D
STEM datasets (2D diffraction patterns at each probe position in a
2D raster scan) from a few defocus values. Having more defocus val-
ues improves the reliability of phase retrieval, making it more robust
to noise in each 4D STEM dataset, but also increases the complexity
of the data acquisition, increases the potential for beam damage, and
necessitates careful alignment between datasets. Through simulation,
we demonstrate that 4D STEM data from a single defocus value is
sufficient to reconstruct a reasonable estimate of the scattering
matrix. Additionally, if the sample is crystalline—specifically, if it
has small periodicity along the beam direction—we show that its
thickness can be estimated to high accuracy with no additional
assumptions (i.e., beyond periodicity) about the structure.

This paper is structured as follows. The scattering matrix for-
mulation is first introduced, including an overview of methods for
calculating the scattering matrix and an explanation of the
so-called antidiagonal symmetry property it possesses when the
sample is periodic. Some ways of visualizing the scattering matrix
are then considered, establishing where the continuity resides.
This continuity is then used to regularize the reconstruction of
the scattering matrix from measurements at a single defocus
value, where the antidiagonal symmetry property is also shown
to determine the sample thickness. Discussion follows.

The Scattering Matrix Formulation in Electron Microscopy
Representations of the Scattering Matrix

The scattering matrix operator S is such that when applied to the
entrance-surface wavefield ;,, the result is the (elastically scat-
tered) exit-surface wavefield y,,, (Sturkey, 1962):

‘!lout = Sd’in‘ (1)

Having chosen the basis/bases in which to work, this can be con-
sidered as a matrix-vector product. In high-resolution S/TEM, the
most common choices of basis are:

o real space—discrete 2D array of spatial coordinates, for
instance, corresponding to detector pixel locations for a detec-
tor in the image plane and

o reciprocal space—discrete 2D array of spatial frequencies/
Fourier coefficients, for instance, corresponding to detector
pixel locations for a detector in the diffraction plane.

There being no intrinsic requirement for the entrance-surface
and exit-surface wavefields to be represented in the same basis, the
following matrix representations of the operator are both valid:

Yo (1) = Zsl‘,glpin(g)’ (2a)
g

You () = D Shghin(®), (2b)
g
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where r is a 2D real-space vector and h and g are 2D reciprocal
space vectors, all orthogonal to the optical axis. We will rely solely
on which vectors are invoked to indicate in which space(s) i,
Woun and S reside.” Transformation between these bases is accom-
plished by (discrete) Fourier transform:

Sr,g — Z Sh,g eZm’h-r' (3)
h

If the incident wave is a plane wave with transverse wavevector
g (i.e, ¥,(8) = 8gg ), then it follows from Eq. (2a) that Spq is
the complex amplitude of the exit-surface wavefield, and from
Eq. (2b) that Spg is the complex amplitude of the diffraction
beam h. The corresponding intensities are simply the modulus
square of these complex amplitudes.” Because experiments only
measure intensities, we cannot directly measure the complex ele-
ments of the S matrix—electron microscopy’s perennial phase prob-
lem. However, there are several proposals (Spence, 1998; Allen et al.,
2000; Findlay, 2005; Brown et al., 2018, 2020; Donatelli & Spence,
2020; Pelz et al.,, 2020), and some proof-of-principle experiments
(Brown et al,, 2018, 2020), on how to reconstruct the (complex) S
matrix elements from the measured data.

Simulating the Scattering Matrix via Multislice

Since Spg can be regarded as the exit-surface wavefield Yoy (r)
obtained when the incident wavefield is y;,(r) = e*™87, it can be
calculated via the multislice method for as many g values as
desired. Ophus and coworkers have shown that this approach is
particularly suitable for large, nonperiodic specimens (Ophus,
2017), and that there is some structure/predictability in the rate
at which S, varies with g that can be used to limit the number
of distinct g values for which the calculation need be performed
(Pelz et al., 2020).

Simulating the Scattering Matrix via Bloch Wave in Crystalline
Materials

In the paraxial approximation and the projected potential (zero-
order Laue zone) approximation, the S matrix is related to the
so-called structure matrix A via

S(t) = exp (% A), 4)

where ¢ is the sample thickness, K is the (relativistically corrected)
electron wavevector, and adopting the reciprocal space basis, the
elements of .4 may be written

—h*+iU, h=g,
Ah>g - { Uh—g + iU];_g h # g, (5)

in which Uy and Uy are the Fourier coefficients of the elastic and
absorptive scattering potential, and we have implicitly assumed a
coordinate system in which the optical axis coincides with the
zone axis.

2Equation (2) could be augmented by two further equations involving y;,(r), but we
seldom find cause to use them in the & matrix formulation of STEM.

*For simplicity of presentation, we assume a perfectly coherent and idealized imaging
model. In the discussion section, we note the potential short-comings of these assump-
tions when seeking to analyze experimental data.
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There are many ways of evaluating the matrix exponential in
Eq. (4) (Moler & Van Loan, 2003), but the most common in
the electron microscopy literature is via spectral decomposition
of the structure matrix:

A=CIN]p,C, (6)

where [A] ; is a diagonal matrix whose diagonal elements are the
eigenvalues A’ of A, and C is a matrix whose columns are the
eigenvectors of A. Since the latter eigenvectors represent the
Bloch states, we regard this as a variant of the Bloch wave method.
It follows from Eq. (4) that the spectral decomposition of the S
matrix is given by

.
S(t):C[ <’l)«>] c . 7
exp e X) | @)

The numerical evaluation of Eq. (7) by solving Eq. (6) as an eigen-
value/eigenvector problem requires using a square structure (A)
matrix of finite order. Unlike the multislice approach for evaluat-
ing S;g, where calculations are only needed for those g of interest
(e.g., within the probe-forming aperture in STEM), one generally
needs a larger range of spatial frequencies g in Egs. (6) and (7) for
a converged calculation. This ultimately makes the Bloch wave
approach poorly suited to nonperiodic structures and large fields
of view, but it is quite tractable for crystalline materials with rel-
atively small lattice parameters. Using a limited number of spatial
frequencies h and g introduces “truncation artifacts,” but fortu-
nately these are usually confined to the vicinity of the highest spa-
tial frequencies in the S matrix.
It follows from Eq. (5) that

Ah,g = A—g,—h- (8)

This property together with Eq. (4) ensures that the S matrix has
the same property,

Sh,g = 'S—g,—hx (9)

which we call antidiagonal symmetry, though using the row/col-
umn ordering which makes that description accurate (Allen
et al,, 2000) is not required for Egs. (8) and (9) to hold. We stress
that this property follows from the projected potential/zero-order
Laue zone approximation alone, which is known to be a good
approximation in high-energy electron microscopy for periodic
crystals in low-order zone axis orientations (provided that the
repeat distance along the zone axis is sub-nanometer); it does
not require the sample to possess any further symmetry proper-
ties. This is proven in the Appendix, where it is also shown
why this property ceases to hold in samples that do not satisfy
the projected potential approximation for their entire thickness.
If the specimen is crystalline, then (Findlay et al., 2003)

—(q+H)’+iU;, q,=4q, H=G,
Aql+H,qz+G = Un-g + iUI/—IfG’ q; = H # G, (10)
0, q; # Q.

which is in block-diagonal form, with the different blocks charac-
terized by different values of q; in the first Brillouin zone, and we
have used uppercase H, G to denote reciprocal lattice vectors.
Because the matrix exponential of a block-diagonal matrix is
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also block-diagonal, it follows that for periodic crystals Spg = 0
unless h — g is a reciprocal lattice vector. Thus, for periodic crys-
tals, we often write the (nonzero) S matrix elements as Sq1H,q+G-

Approximations and Limits

In the limit of zero potential (U= U =0 in Eq. (5)), the A and S
matrices are purely diagonal in the Fourier space form of Eq. (2b),
with the diagonal elements of the S matrix describing Fresnel
free-space propagation:

Shg(t) = Snge ™. (11)
If we instead neglect the — h* terms on the diagonal in Eq. (5),
then we obtain the so-called phase object approximation:*

Srg = Q(r) et (12a)

Shg = Q(h —g), (12b)
where Q(r) = eV +V' @It i¢ the transmission function, and Q(h)
its Fourier transform.

A variation that is accurate to second order in sample thick-
ness (Van Dyck, 1985; Plamann & Rodenburg, 1998) is to
apply the multiplicative phase object at the specimen mid-plane,
propagating a distance t/2 in free-space before and after:’

Seg = Pia[Q(r) ™8T 71 ™NE/2] (13a)

Sh,g _ e—iﬂ')\thz/ZQ(h _ g) e—im\tgz/Z’ (13b)

where 75t =F l:i)r{e’”’"\‘sz Kkl - ]} is the free-space propagation
operator for a real-space wavefield.

Visualizing the Scattering Matrix
Matrix as Array

Regarding a matrix as a 2D array, the S matrix could simply be
displayed as an image (up to choosing how to represent complex
numbers). Figure 1 shows an example for the reciprocal space
form Sp g, where color represents phase and lightness represents
the square root of the modulus (reducing the contrast range in
this way improves the visibility of smaller values). This calculation
included only 89 beams (i.e., unique values of g), ordered such

*A constructive derivation of Eq. (12a) starting from Eqs. (4) and (5) when the diag-
onals in the latter are neglected is not especially enlightening. The faster route is to rec-
ognize that Eq. (4) is the solution to the Schrédinger equation in the paraxial and
projected potential approximations [e.g., in the real-space formulation this is Eq. (35)
in Van Dyck (1985)], and that discarding the diagonals in Eq. (5) is equivalent to drop-
ping the kinetic energy term [given by Eq. (37) in Van Dyck (1985)] which effects prop-
agation. In the real-space formulation, Eq. (12a) follows immediately (as the exit-surface
wave in the phase object approximation when the entrance-surface wave is e*™7),
Equation (12b) is the Fourier transform thereof.

*For small, aperiodic structures, recent work suggests that this sort of approximation
can be improved by taking the superposition of the scattering from each atom as though
in isolation (i.e., propagating to its correct depth, applying a multiplicative transmission
function for that single atom, and propagating to the specimen exit plane), amounting to
neglecting multiple scattering between atoms and under which circumstances one can
solve for the 3D structure (Gureyev et al., 20204, 2020b).
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Fig. 1. Reciprocal space form of the scattering matrix Spg displayed with each matrix
element as a pixel in the image. The calculation used a 3 x 3 supercell of SrTiO3 in
[001] orientation, a thickness of 39 A, and an accelerating voltage of 300 kV. As per
the color wheel in the top right using the PAPUC color scheme of Waters et al.
(2020), complex numbers are displayed by using color to represent the phase (all
phases are displayed between —z and z) and lightness to represent the square
root (to improve visibility of smaller values) of the modulus. This calculation included
only 89 beams g, equivalent to a cut-off at 9 mrad, ordered such that the zero beam
is in the center, g and —g pairs are placed symmetrically about the center, and the
magnitude g of the beams increase away from the center.

that the zero beam is in the center, g and —g pairs are placed sym-
metrically about the center, and the magnitude of the beams
increase away from the center. This and all other calculations
presented account for thermal diffuse scattering via absorptive
scattering potential Fourier coefficients as per Eq. (10). The com-
bination of thin sample and compressed modulus scale means
that the diagonal elements appear with near-uniform lightness,
and their phases are a good approximation to those of the free-
space propagator. An off-diagonal structure is also discernible
and there is some geometric regularity in features. It is tempting
to think a more judicious ordering of beams might yield a clearer
pattern. However, there is no “optimum” index ordering of a set
of 2D vectors {g}, and as such we think representing the S matrix
in the manner of Figure 1 obscures the meaningful structure.
Recognizing that Spg is better regarded as a four-dimensional
quantity, let us explore more informative representations.

Real-Space Visualization

The real-space representation S;; amounts to representing the
exit-surface wavefield for an incident plane wave with transverse
wavevector g. Ophus and coworkers have discussed this approach
in detail (Brown et al., 2020; Pelz et al., 2020), but we briefly
review it here.

Figure 2a shows a tableau of “images” of S;g, with each tile
corresponding to a different parametric g value, for a 39 A
thick, [001]-oriented SrTiO; specimen assuming 300 keV elec-
trons. These complex quantities are displayed using color to rep-
resent the phase and lightness to represent the square root (to
improve visibility of smaller values) of the modulus, as per the
color wheel at the bottom right of Figure 2. Each tile corresponds
to a single unit cell, with Sr columns in the corner, the mixed tita-
nium-oxygen column in the center, and pure oxygen columns at
the middle of each edge. The atomistic structure is visible, but
somewhat obscured by the phase ramp structure on each tile.

147

Such phase ramps are predicted by the phase object approxi-
mation of Eq. (12a). Figure 2b shows that tableau with the
phase ramps divided out, that is, Sy, e 2™8*, making the atomis-
tic structure more clearly visible. The g=0 tile looks very much
like the projected potential of SrTiO;. The tiles adjacent to it
look very similar, but for g values further from the origin the
phase, and to a lesser extent structure, varies appreciably. This
is not consistent with Eq. (12a): even in this thin sample, the
phase object approximation is breaking down.

As per Eq. (13a), a better approximation should be to assume
the multiplicative phase object at the specimen mid-plane, with
free-space propagation before and after. Figure 2c shows the tab-
leau from Figure 2a transformed to remove both the phase ramp
and propagation factors in Eq. (13a). This succeeds in making the
tiles much more similar, suggesting Eq. (13a) is a better approx-
imation, although some slight asymmetry is perceptible at the tiles
for g values further from the origin that is not present in the g=0
tile. To underscore this, Figure 2d is the result for a 78 A thick
sample after removing both the phase ramp and propagation fac-
tors, showing more variation across the different tiles as evidence
of scattering effects not accounted for in Eq. (13a).

Reciprocal Space Visualization

Figure 1 shows that representing Sy ¢ as a two-dimensional image
based on the matrix element indexing was of limited use. It is pos-
sible to take the approach of Figure 2 and display a tableau of
“images” of Shg (with h describing the coordinate locations
within each tile and each tile corresponding to a different para-
metric g value): these would be the diffraction-plane wavefields
for incident plane waves with different transverse wavevectors.
As per Figure 2, we would expect a gradual variation with g,
but, because the sample considered is crystalline, the diffraction
wavefields would consist of discrete Bragg peaks with no real con-
tinuity from peak to peak. In mathematical terms, Sq11,q+c is not
continuously varying across (discrete) reciprocal lattice vectors H.
To better clarify the underlying continuity, we can instead
visualize Sp+Gn as a mosaic of tiles with each tile corresponding
to a different parametric G value and h describing the coordinate
locations within each tile. Thus, each tile corresponds to a rocking
curve for the Bragg diffracted beam G. Such visualizations are
shown in Figure 3 for three different sample thicknesses (rows
in the figure) of SrTiO; in [001] orientation. For clarity, we
now plot the modulus (left column, without the square root
used in Figs. 1 and 2) and phase (middle column) separately.
The modulus, or rather the intensity that is the square thereof, is
precisely what is measured in large-angle rocking-beam electron dif-
fraction, and the present simulations are reminiscent of experimen-
tal patterns reported by Koch and coworkers (Koch, 2011; Wang
et al., 2016). They are seen to be continuous and reasonably smooth,
though finer features become evident at higher thicknesses.
Moreover, the phase also varies in a smooth, continuous fash-
ion within each “disk.” The main features in the phase structure in
each “disk” seems to be near-circular phase contours, with value
decreasing from the center of each “disk.” The right column
shows the phase obtained after correcting for the propagation fac-
tors in Eq. (13b) (which correction does not change the modulus).
The central G =0 “disk” at each thickness then becomes almost
uniform in phase, which implies that when traversing the sample,
the phase accumulation of the forward-scattered beam is domi-
nated by free-space propagation. The other “disks” contain a
more detailed structure, though that too has been somewhat
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Fig. 2. Tableau for images (coordinate r for discrete parametric g values) of Syg-related quantities for [001]-oriented SrTiO; assuming 300 keV electrons. The cal-
culation included 197 reciprocal lattice vectors G (equivalent to a cut-off at 2.0 A™* or 40 mrad). For clarity, only the positive quadrant of parametric g values are
shown, the other quadrants being related by the cubic symmetry of SrTiOs. For a 39 A thick sample, we show (a) Srg, (b) a transformed version of (a) that removes
phase ramps of the form present in Eq. (12a), and (c) a transformed version of (a) that removes phase ramps and propagation factors of the form present in Eq. (13a),
with a structure schematic inset. (d) As per (c) but for a 78 A thick sample. Complex numbers are displayed using the PAPUC color scheme of Waters et al. (2020), where
color represents the phase and lightness represents the square root (to improve visibility of smaller values) of the modulus as per the color wheel.
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Fig. 3. Visualization of the S matrix elements Sh..n, in Which each “disk” in the tableau corresponds to a different value of G (with location conforming to the
geometry of those reciprocal space lattice points), while the structure internal to each “disk” shows continuous variation with coordinate h. The calculation used a
3 x 3 supercell of SrTiO3 in [001] orientation, an accelerating voltage of 300 kV, and included 709 beams h (81 reciprocal lattice vectors G), equivalent to a cut-off at
25 mrad. The three different rows correspond to different thicknesses as labeled. From left to right, the columns are: modulus (i.e., |Shie,nl), phase (i.e., arg [Sh+g,nl,
with colors as per the color wheel at the top right, using the CET-C6 color scheme of Kovesi, 2015a, 2015b), and “corrected” phase (i.e., arg [e"”“(“J’G’Z/ZSMG,h el mAth/2])
The off-roundness of the outermost “disks” is an artifact resulting from calculations with a maximum spatial frequency fi,.x: modulus and phase values of Sp.6n are
only included for which |h+ G| <fy,ax. All “disks” could be extended further by increasing the value of . used in the calculation.
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simplified after correcting for the propagation factors. When seek-
ing to reconstruct the (complex) S matrix elements from mea-
sured intensities, this expectation of continuity and smoothness
can be applied as a form of regularization.

Reconstructing the Scattering Matrix from 4D STEM
Measurements

Previous Approaches

Our discussions focus on STEM approaches, but in passing, we
note that there is a longer history of proposals for how S matrices
might be reconstructed from measurements in conventional TEM
at a careful series of incident beam tilts (see Allen et al., 2000;
Donatelli & Spence, 2020 and references therein), which has not
to our knowledge yet been experimentally achieved.

The intensity in a 4D STEM dataset from a crystalline material
is given by

2
I(q+H, R Af) = | > SqingrcTar(q+ G) e 2™HOR| | (14)
G

where Tar(q + G) is the lens transfer function, comprising both
the aperture pupil function and the lens aberration function,
though for simplicity we have only explicitly indicated depen-
dence on Af, the defocus. From intensity measurements I(h, R,
Af) across multiple defocus values, for each parametric value of
h=q+H (a detector pixel location in 4D STEM) through-focal
series phase retrieval allows the elements Sy g of the h row of
the S matrix to be determined. Using a suitable series of detector
pixel locations, one can retrieve all rows of an N-beam S matrix.
That the separate retrievals for different rows will not necessarily
be correctly phased with respect to one another can, for crystal
samples, be overcome by using the expected antidiagonal symme-
try of the S matrix, Eq. (9) [as proposed by Allen et al. (2000) in
the context of conventional TEM]. Experimental proof-of-princi-
ple was shown by Brown et al. (2018) using four defocus values.

To move beyond periodic samples, Pelz et al. (2020) solved for
the S matrix in the form S, via optimization based on the mea-
sured constraints of a 4D STEM dataset for multiple defocus val-
ues. Dealing with nonperiodic samples meant that the
antidiagonal symmetry constraint did not apply (see the
Appendix for a justification), but it was found that applying a
compact support constraint on the exit-surface wavefield pro-
duced reliable reconstructions.

Reconstructing the Scattering Matrix using 4D STEM
Measurements from a Single Defocus Value

Using joint optimization to solve for both the S matrix and the
probe wavefield, Pelz et al. (2020) showed that two defocus values
may suffice but that more defocus values improved the conver-
gence properties. Let us here relinquish the generality of seeking
to simultaneously solve for the probe wavefield (instead assuming
it to have been adequately characterized separately) and explore
whether it is possible to determine the & matrix from 4D
STEM data from a single defocus value.

Because STEM imaging involves a hard probe-forming aper-
ture, Eq. (14) has the form of a much studied phase retrieval prob-
lem: retrieving the phase of an object with known compact support
from a measurement of the intensity of the Fourier transform of
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the object (Fienup, 1987; Elser, 2003; McBride et al, 2004;
Marchesini, 2007; Morishita et al., 2008). Here, the compact sup-
port is being effected by the probe-forming aperture function
implicit in Ta{q+G). In 2D phase retrieval problems of this
kind, “nontrivial” ambiguities are known to be rare (Bendory
et al,, 2017). Therefore, provided both “trivial” ambiguities and
noise can be managed, if a solution can be found, we would
have confidence in its correctness.

In electron microscopy, previous work on retrieving the phase
of an object with known support from the intensity of the object’s
Fourier transform had the support in the real-space image plane
and the measured intensity in the Fourier-space diffraction plane:
the coherent diffractive imaging problem (Zuo et al, 2003;
Morishita et al., 2008; Dronyak et al, 2009; Yamasaki et al.,
2019).° In contrast, Eq. (14) has the measurements in the real-
space synthesized STEM images and compact support in the
Fourier space of the coordinates of scattering matrix Spg. This
reversal has significant consequences. In coherent diffractive
imaging, the unknown wavefield within the compact support
can be assumed continuous and smooth, whereas in the problem
of Eq. (14) for parametrically fixed q and H, the function
Sq+Hq+G Within the compact support is neither continuous nor
smooth. In coherent diffractive imaging, the measured diffraction
pattern intensity generally drops off with an increasing scattering
angle and sufficiently over-determining the problem is a matter of
sampling the diffraction pattern sufficiently finely. But in the
problem of Eq. (14), the measured STEM image intensity for
any given parametric value of q+H is both periodic (assuming
a crystalline sample) and bandwidth limited (by the physics of
STEM imaging to twice the radius of the probe-forming aperture;
Dwryer, 2010), and so contains only a fixed amount of information
no matter how finely it is sampled. Specifically, the over-sampling
ratio, a measure of the degree of over-determination, is effectively
capped at about four.” While comfortably above the minimum
over-sampling ratio of two needed for a well-determined problem,
this is still relatively modest. In addition, one of the “trivial” ambi-
guities in phase problems of the form of Eq. (14) is that when q =
0, the complex conjugate with G — —G of the desired solution is
also a solution (Fienup, 1987). This is known to complicate phase
retrieval, especially when the compact support is symmetric,
which the circular probe-forming aperture is.

It is instructive at this point to make conceptual comparison
with ptychography on 4D STEM datasets. For concreteness we
envisage the ptychographical iterative engine (PIE) approach
and its variants, as pioneered by Rodenburg and coworkers
(Faulkner & Rodenburg, 2004; Maiden & Rodenburg, 2009).
PIE does not require datasets from multiple defocus values, and
its robustness is attributed to the requirement of consistency
between overlapping probe positions being effective for avoiding
the ambiguities that often stymie coherent diffractive imaging
from a single probe position (Rodenburg & Maiden, 2019). It is
important to appreciate that most ptychographic methods
(though not all—see Maiden et al, 2012; Chen et al, 2020;
Schloz et al., 2020) assume the phase object approximation,

°A related approach is the near-field ptychography work of Maiden and coworkers
(Maiden et al., 2015; Allars et al., 2021), which also has the support in real space but
the measured intensity in the near-field rather than the diffraction plane.

“Four being about the ratio of number of variables in the measured intensity band-
width limited at twice the probe-forming aperture to the number of unknown elements
Sq+mq+G Within the aperture implicit in Taf{q + G) in Eq. (14) for any given parametric
value of q + H, the qualifier “about” being necessary because the periodicity means the
lattice vectors G are discrete.

Downloaded from https://www.cambridge.org/core. University of Colorado Boulder, on 18 Aug 2021 at 16:08:26, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51431927621000490



750

which we wish to move beyond. However, let us for a moment
consider Eq. (14) if we make the phase object approximation of
Eq. (12b), giving®

2

I(q+H,R) = | > QH — G)A(q+ G) e 2™t (15)
G

where, for simplicity, we have dropped the lens aberrations and
replaced the lens transfer function T with the aperture function
A. Each point q + H gives rise to a 2D STEM image which can
be regarded as a compact-support-type phase retrieval problem.
The problems are distinct in so much as the STEM images
I(q+H, R) for each different q + H value involve distinct pixels
on the detector, but interrelated in so much as they all draw on
the same Fourier frequencies Q(H) (or at least varying subsets
thereof, since which frequencies are included inside the aperture
varies between the different q + H). Suppose we regard them as
independent problems and try to solve them separately via stan-
dard techniques. Suppose that for some q + H problems, the solu-
tions are fairly reliable, while for others, they are poor. Because
these separately treated problems are seeking to determine the
same underlying set of Fourier frequencies Q(H), we could then
average the corresponding frequencies from the different recon-
structions, perhaps preferentially weighting those solutions for
which the error metric relative to measured intensities was
smaller. The result could then be taken as a new starting guess
and the process repeated. Though methodologically different to
PIE, this approach seems to be comparably effective at avoiding
ambiguities (simulations not shown—they are effectively a
limiting case of more general results shown below).

Let us move beyond the phase object approximation to return
to the question of determining the S matrix via phase retrieval
applied to Eq. (14). This is potentially a harder problem since
the Fourier frequencies Sqiy,q+¢ for different q + H are no longer
the same. If they could be arbitrarily different, then for different
values of q+H, Eq. (14) would be a set of strictly independent
phase retrieval problems. However, as per the discussion of
Figure 3, we expect Sptgh to vary smoothly with h. Provided
the separate phase retrievals carried out on STEM images corre-
sponding to different values of q + H are more successful than
not, we propose to use the smoothness of Spygp as a regulariza-
tion constraint to generate improved starting guesses for refining
the phase retrievals and to ameliorate the effects of noise on the
reconstructions.

Case Study

We take as test case SrTiO; in [001] orientation, assuming an
accelerating voltage of 300kV. We simulated S matrices with
197 reciprocal lattice vectors (implying a maximum spatial fre-
quency of 2.0 A7 or, expressed as a scattering angle, 40 mrad)
and a 10 x 10 sampling of points q within the Brillouin zone
(i.e., a diffraction plane sampling of 0.5 mrad per pixel) for a
range of thicknesses. The STEM probe-forming aperture was set
to 20 mrad, and the probe assumed to be aberration-free (imply-
ing that it is focused on the specimen entrance surface, a reason-
able approximation to the focal condition for maximum contrast

5Though phase retrieval strategies have been based on Eq. (15) (Chapman, 1997), it
does not describe PIE per se, which is generally formulated with the transmission func-
tion Q in real space.
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Algorithm 1. S Matrix Determination from a Single Defocus Value.

Input:
4D STEM dataset /(q+H, R)
STEM probe-lens transfer function TxAq+ G)

Hyperparameters for the hybrid input-output algorithm with randomized
overrelaxation, and for TGV regularization

Initialize:
Sq+Hat+6 < OHG
Nigops < 5
Run:
for i <1 to nyyops do
for each q +H in bright-field disk do

From input I(q +H, R) solve Eq. (14) for Sqing+e Via the
hybrid input-output algorithm with randomized
overrelaxation

end

Rearrange Sqing+6 into Shien format, apply TGV regularization,
then rearrange back again

end
Define function of t: Mqug(t) = e~ "™HatH S o g
Now apply antidiagonal symmetry:

t < "8 S | Maugelt) — M_qc-n(t)|’
q,H,G

Output:

Sqrtq+6 = Mang(t)

in annular dark-field imaging). STEM images were then generated
for square synthetic detectors of side length 2.5 mrad” within the
bright-field region at centers corresponding to the 2.5 mrad half-
spacing between reciprocal lattice points (there are 56 distinct
reciprocal lattice vectors H for which q + H falls in the bright-field
region), amounting to a 2x2 sampling of the Brillouin zone.
STEM images were sampled at 32 x 32 pixels per unit cell over
a 2 x 2 unit cell field of view. Shot noise was simulated assuming
a Poisson distribution based on 930 electrons per probe position,
implying a dose of 100 C/cm? (or 6.3 x 10* e/A?), a typical “high-
dose” condition (Yang et al., 2015). Algorithm 1 summarizes the
analysis process, which will now be described in detail.

If the sample thickness were known in advance, a natural
choice for initializing the phase retrieval for each synthesized q
+H STEM image would be to set it to the free-space propagation
limit of Eq. (11). Since, in practice, we do not expect to have reli-
able foreknowledge of the sample thickness, we instead initialize
to Eq. (11) sans the propagation factor, that is, initialize
Sq+Hq+G t0 dyg. We shall presently see that to an excellent
approximation we can deduce the thickness from the phase
retrieval results and the expected antidiagonal symmetry [Eq. (9)].

For each synthesized q + H STEM image, phase retrieval was
carried out using the hybrid input-output algorithm with

Using extended detectors rather than “point” detectors improves signal-to-noise
within each synthesized STEM image, but, amounting to an integration over q + H in
Eq. (14), potentially introduces inconsistency into the phase retrieval problems if the dif-
fraction pattern intensity is nonuniform across the extent of the detector. However, for
the case study presented here, noise proves to be the greater limitation.
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randomized overrelaxation of Kohl et al. (2012), with modifica-
tions following Martin et al. (2012) to improve robustness to
noise. We set = 0.8 for hybrid input-output and v = 0.5 for over-
relaxation following Ko6hl et al. (2012) (see that reference for fur-
ther details about these hyperparameters). The compact support
applied was based on the aperture cut-off alone, that is, we did
not enforce the periodicity expected of the 2x2 unit cell field
of view. Each phase retrieval cycle comprised two lots of 10 iter-
ations of hybrid input-output with overrelaxation followed by 8
iterations of error reduction [fewer per cycle than Kohl et al.
(2012) but we use more cycles; the general reliability of the recon-
struction was not very sensitive to the particular values chosen].
We ran five such cycles in total, there being little further improve-
ment beyond that point. After each cycle, we recast the current
estimate for the wavefields into Spygpn form (similar to Fig. 3)
and applied a smoothness regularization. Specifically, we applied
second-order total generalized variation (TGV; Bredies et al.,
2010) (as implemented in the CCPi-regularization toolkit;
Kazantsev et al, 2019), which approximates the “disks” via
piecewise-affine functions—a reasonable assumption given the
resolution of the structure in the “disks” and one that avoids
the staircasing artifacts common in first-order total variation.
We set o =0.05 and o = 0.1 following Bredies et al. (2010) and
found that A =0.15 and 120 Primal-Dual iterations gave smoothing
that was perceptible but not overly aggressive, that is, gave minimal
signal spread outside the “disk” regions (see Bredies et al., 2010;
Kazantsev et al., 2019 for further details about these hyperpara-
meters). We note in passing that good results were also obtained
when using a 2D Savitsky-Golay filter (Krumm, 2001) (which
can be efficiently implemented as a convolution but has the effect
of replacing each point with the value predicted by a low-order
polynomial fitted across a local region of pixels) as a simpler alter-
native to TGV regularization. We present the TGV results since they
gives slightly better clarity in the weaker-intensity “disks.”

Figure 4 shows the results of these reconstructions for the four
sample thicknesses 39, 78, 156, and 234 A. Results are shown in
two representations. The first is as a tableau in real space after
removing the phase ramps, that is, 2™ RS ¢ (reminiscent
of Fig. 2, though note that the indices are reversed such that these
are STEM “images” rather than conventional TEM exit-surface
wavefields). The second is via the Sy, p representation in recipro-
cal space (similar to Fig. 3, though now with modulus and phase
information represented in a single image). The images in the left
column are split into left and right half-panes, where the former
shows results after one cycle and prior to TGV regularization,
while the latter shows results after five cycles and TGV regulari-
zation. In the real-space case, the entire central column of tiles
is included in both half-panes to allow direct comparison. Close
inspection shows that in the real-space representation the central
(q + H =0) tile is not sensibly reconstructed after one cycle for the
thinner samples, and that the nearby tiles also show the most pro-
nounced asymmetries due to noise and under-convergence of the
phase retrieval. At the same point in the reconstruction, the
results for the thicker samples show a clearer structure, the greater
contrast in those STEM images having made the phase retrieval
more effective. In the reciprocal space representation, the conse-
quences of noise are most evident in the weaker-intensity
“disks.” The results after five cycles (the right half-panes in the
left column of images) show a perceptible improvement, espe-
cially in the central tiles of the real-space images, though some
irregularities resulting from noise remain evident in the reciprocal
space representation.
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The left half-pane of the left column is particularly significant.
To that point in the phase retrieval, the STEM images for different
q+H values were treated as completely independent phase
retrieval problems. Since one trivial ambiguity of such phase
problems is that phase is only defined up to an additive constant
(in the real-space representation), had we seeded the reconstruc-
tions with random starting phases we might expect no clear phase
relation between different tiles in the real-space representation (or
points within each “disk” in the reciprocal space representation).
Instead, we have the strong visual impression of a phase relation:
the mean phase in all real-space tiles appears very similar (implied
by the images all having very similar colors) and the central “disk”
in the reciprocal space representation has nearly constant phase
(uniform color). The latter is consistent with minimal variation
of the central “disk” away from the Sqinq+c = Onc initializa-
tion. This overall smoothness of the Sy,gn representation gives
confidence that TGV regularization is appropriate, that localized
imperfections primarily reflect noise and inadequate convergence
in the phase retrieval to that point.

Having largely treated the phase retrievals for different q + H
in Eq. (14) as distinct problems, the different rows of the retrieved
S matrix will not necessarily be correctly phased with respect to
one another. As mentioned earlier, for crystal samples, this can
be overcome by using the expected antidiagonal symmetry of
the S matrix, Eq. (9) (Allen et al, 2000). One possibility is to
fit for arbitrary phase factors between the rows to best satisfy
Eq. (9) (Brown et al.,, 2018), but we will take a slightly different
approach. The Sgimq+G = Ouc initialization corresponds, in
the Sh+gn visualization, to a single central “disk” with uniform
amplitude and phase. The reconstructions in the left column in
Figure 4 introduce additional “disks” but largely maintain the
uniformity of the central “disk.” By contrast, in discussing the
Shi+h Visualization in Figure 3 we found that for the (correctly
phased) S matrix, the central “disk” closely resembled that
expected for free-space propagation through the thickness of
the sample. Consequently, in seeking to enforce Eq. (9), we will
optimize for the single parameter t assuming a missing phase fac-
tor of the form e "™@’ across all the different q + H images,
precisely that omitted from our initialization of the phase
retrievals.

Table 1 compares the values of ¢ that optimize the S matrices
having antidiagonal symmetry to the reference sample thicknesses
input to generate the simulated data. The agreement is striking,
with all reconstructed values agreeing with the true values to
within a nanometer or two. (These results are for one noise real-
ization; the specific reconstructed thickness values vary somewhat
with noise realization, but the similarity to the reference thickness
values remains.) We emphasize that the only assumption about
the structure that has gone into retrieving the sample thickness
has been the assumption of crystallinity required for the antidiag-
onal symmetry to hold (as Eq. (9) only follows from Eq. (8) when
Eq. (4) correctly describes scattering through the full sample).
Everything else came from the iterative phase retrieval applied
to the 4D STEM intensity. This accuracy of thickness determina-
tion is comparable to that obtained from position-averaged con-
vergent beam electron diffraction (LeBeau et al., 2010) but does
not require a known structure with which to perform reference
simulations.

The right column in Figure 4 compares the final reconstruc-
tion (i.e., after having enforced the antidiagonal symmetry con-
straint) with the expected results (i.e., the Spg used in Eq. (14)
to produce the simulated 4D STEM dataset on which this phase
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Fig. 4. S matrix reconstructions from simulated 4D STEM data including shot noise. Results are shown for the four different sample thicknesses 39, 78, 156, and 234
A, both as a tableau in real space (after removing the phase ramps) and in Sp.n representation in reciprocal space. The left column compares results after one
cycle (but prior to TGV regularization) with results after five cycles (post-TGV regularization) in a half-pane format. The right column compares the final reconstruc-
tion (“Recon.”; after enforcing the antidiagonal symmetry constraint) with the expected result (“Ref.”; that on which the 4D STEM simulations were based), again in
a half-pane format. In the real-space case, the entire central column of tiles is included in both half-panes to allow direct comparison. As per the color wheel using
the PAPUC color scheme of Waters et al. (2020), complex numbers are displayed by using color to represent the phase and lightness to represent the modulus for
the real-space representation and the square root of the modulus for the reciprocal space representation, the latter to render the fainter “disks” more visible.
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Fig. 4. Continued.

retrieval was based). A close agreement between the left and right
half-panes in the right column of Figure 4 would indicate a
successful reconstruction. The agreement is fairly good, especially
for the thinner samples. A closer inspection shows some differ-
ences. For the thinner samples, these include distortions in the
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near-center tiles in the real-space representation and some asym-
metric features within the “disks” in the reciprocal space represen-
tation. For the larger thicknesses, especially 234 A, there are more
perceptible differences in both the structure and phase values,
though the overall pattern remains quite similar.
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Table 1. Comparison (in angstrom units) of the Reference Sample Thickness
Input to the Simulation with That Obtained through Optimization for the
Antidiagonal Symmetry Constraint on the S Matrices Determined from Phase

Retrieval.
Reference 39 78 117 156 195 234
Reconstructed 39 74 112 149 188 246
Discussion

The comparisons in Figure 4 of the reconstructed S matrix
against its expected value appear favorable for the most part,
but such visual comparison does not convey the consequences
of the perceptible errors. To that end, Figure 5 compares a defocus
series of annular bright-field (detector spanning 10-20 mrad) and
central bright-field (detector spanning 0-10 mrad) STEM images
simulated from the reconstructed S matrices for the 39 and 156 A
thick samples against those of the reference S matrix (i.e., those
on which the 4D STEM simulations were based). We stress
that the 4D STEM dataset used for the reconstructions was
purely for zero defocus. Simulating STEM images at different
defocus values is not possible by applying sythetic detectors to
the original dataset but only as a consequence of having recon-
structed the & matrix.

For the 39 A thick sample, the qualitative appearance of the
simulated images at different defocus values are in excellent
agreement with the reference simulations, though quantitatively
the average intensities in the images synthesized from the
reconstructed S matrix are systematically slightly lower than the
reference simulations. We attribute this primarily to noise impact-
ing both the phase and amplitude of the higher spatial frequen-
cies, which then causes some cancelation in the averaging-like
regularization process. The finite detector size used in processing
the 4D STEM data may also be a contributing factor, especially
for ABF since the detector extent encompassing some of the
dark-field region for points near the edge of the bright-field
disk effectively reduced the intensity at the outer edges of the
bright-field disk.

The qualitative appearance of the simulated images for the
156 A thick sample is less good than for the 39 A sample: still
fair for most defocus values, but becoming notably poorer for
the largest underfocus values. Results for the 234 A case (not
shown) show more pronounced adverse consequences of the
larger reconstruction errors for that thicker sample. This suggests
that the apparent success of the S-matrix reconstructions in
Figure 4 for thicknesses significantly beyond the domain of valid-
ity of the phase object approximation (which, as per Fig. 2c,
shows evidence of breaking down by a thickness of 39 A in
SrTiOs3) is not unqualified. It should be noted that accurately syn-
thesizing STEM images at large defocus values requires high accu-
racy in the reconstructions: the phase gradient across y;,(g) being
steep makes the sensitivity to phase errors in the reconstructed S
matrix high. The precise reasons some phase retrievals are more
or less successful than others are not easy to diagnose, and our
experience is that for particular tiles in the real-space tableau in
Figure 4, the quality of the reconstruction is not a monotonic
function of thickness, but broadly the reliability of the reconstruc-
tion does seem to degrade with increasing thickness. We attribute
this to the increasing fineness of features in the STEM diffraction
patterns which makes them increasingly sensitive to shot noise.
This suggests that increasing dose—which for assumedly crystal-
line samples could be accomplished by repeat unit averaging over
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Fig. 5. Comparison of the reconstructed (Recon.) and reference (Ref.) S matrix sim-
ulations of annular bright-field images (detector spanning 10-20 mrad) and central
bright-field images (detector spanning 0-10 mrad) for the 39 A thick sample (upper
portion) and 156 A thick sample (lower portion) each for a range of defocus values
(overfocus being positive). The agreement is good for the 39 A thick sample. For
the 156 A sample, the agreement is fair for the defocus values near zero, but discrep-
ancies become increasingly evident for increasingly large underfocus values. There is
also a systematic slight underestimate of intensity in all images from the recon-
structed S matrix.

a larger field of view rather than increasing the dose within any
given unit cell—would improve the reconstructions. However,
other factors not yet considered may also impact the reliability
of reconstruction from thicker samples.

One is sample alignment. In Eq. (5), it was implicitly assumed
that the zone axis and optical axis coincided, but in practice, some
misalignment of the order of milliradians is likely. In 4D-STEM,
the optical axis (by which we effectively mean the center of the
probe-forming aperture) can be precisely determined on the
detector by recording an image in the absence of the sample.
Equation (14) still holds, but the scattering matrix (referenced
to the zone axis) elements therein become Sgysq+H,q+5q+Gs
where 8q describes the misalignment between the sample zone
axis and the optical axis. The phase retrieval problem remains
one with measured intensities and known compact support in
the Fourier space thereof. Applying antidiagonal symmetry to
Sq+sq+Hg+sq+G on the false assumption one is dealing with
Sq+Hq+G would erode the reliability of the reconstruction, and
more so at larger thicknesses (due to the thickness dependence
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of the correcting phase factor e imM(q+H)’ applied). Including the
misalignment vector along with thickness when seeking to impose
the antidiagonal symmetry should ameliorate this, but further
investigation is required.

The simulations in this paper have included shot noise and
finite detector size, the former being the dominant effect of the
parameters chosen. On “perfect” (i.e., simulated) data without
these effects, near-perfect reconstruction is possible, so ameliorat-
ing these effects—for instance, by using higher dose if the sample
tolerates it, or using a larger field of view if the sample is crystal-
line—should improve the reconstruction. Effects such as residual
probe aberrations, spatial and temporal incoherence, scan distor-
tion, phonon and plasmon scattering backgrounds and amor-
phous surface scattering have not been considered. All would be
expected to erode the quality of the data, and therefore, the reli-
ability of the reconstruction, though several can be ameliorated
by careful instrument characterization and preprocessing. That
said, previous successful proof-of-principle S-matrix reconstruc-
tions from experimental 4D STEM datasets at multiple defocus
values also neglected many of these effects. Pelz et al. (2020)
did not incorporate incoherence or scan distortion. Brown et al.
(2018, 2020) did not incorporate residual probe aberrations, and
while they did incorporate spatial incoherence it was by decon-
volving an assumed effective source size from the experimental
data before phase retrieval, a preprocessing step independent of
the approach to phase retrieval or number of defocus values.
None of those works considered phonon and plasmon scattering
backgrounds or amorphous surface scattering. That those recon-
structions were nevertheless fairly successful suggests that neglect-
ing those effects does not prevent reconstruction, though it may
limit the reconstruction quality. Further work is needed to estab-
lish whether this is equally true of S matrix reconstruction using
4D STEM measurements from a single defocus value, of whether
this strategy requires a higher quality of the experimental data and
degree of instrument characterization to be successfully realized in
practice. The same may be said of the accuracy of the thickness
determination offered by this method.

Conclusion

Through simulation, we have shown that an atomic resolution
4D STEM dataset from a single defocus value suffices to recon-
struct the scattering matrix when regularized by the continuity
expected therein. Shot noise and finite detector size effects
included in the simulated 4D STEM datasets limit the accuracy
of the reconstructed scattering matrices, which, for instance,
limit the reliability with which they could be used to simulate
annular bright-field STEM images at defocus values significantly
different (tens of nanometers) from that at which the data were
generated.

For periodic crystals, a particularly significant by-product of
reconstructing the scattering matrix is an accurate (to within a
nanometer or two) determination of the sample thickness, with-
out requiring any reference to simulation or any other assump-
tions about the sample structure.
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Appendix. Antidiagonal Symmetry of the S Matrix:
Mathematical Derivation

In indexing the elements of the structure matrix Apg suppose we choose an
ordering such that g =0 is in the middle, and for which, for g # 0, vectors g
and —g are symmetrically spaced about that middle. Under this ordering,
the symmetry properties of Eq. (8) can be written in integer-index labeling
as per Allen et al. (2000)

Aij = AN_jriN—it1- (A1)
This corresponds to symmetry across the antidiagonal of the matrix.

Mathematicians call such matrices persymmetric, and this property can be
written as

AT =JAT, (A2)
where J is an N x N exchange matrix:
1, j=N—-i+1,
Ty=10 1 o (A3)

0, jAN—i+1

Note that 72" = T (i.e., the identity matrix) for integer 7.
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The product of persymmetric matrices is persymmetric if and only if they
commute. Eq. (5) by definition means that

St) = exp<i%tA> = ZE (’%) A" (A4)

n=0 """

Consequently, since the S matrix comprises a sum of powers of persymmetric
structure matrices (which necessarily commute with themselves), the S matrix
is also persymmetric,

Sij = SN—j+1N—i+1> (A.5)

which upon rewriting using vector subscript notation yields Eq. (9).

This derivation further makes clear why this property is largely restricted
to perfect crystals (more specifically to samples for which the projected poten-
tial approximation holds for the entire thickness): in a case where the S matrix
for the sample needs to be expressed as the product of the S matrices for each
of a series of structurally distinct slices, though the individual S matrices are
persymmetric their product is not since the S matrices from structurally dis-
tinct slices will generally not commute.
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