The next generation of semiconducting materials that will facilitate energy transport and storage in the technologies around us is becoming increasingly complex. The ability of energy carriers to move between atoms and molecules underlies biochemical and material function. Understanding and controlling energy flow, however, requires observing it on ultrasmall and ultrafast spatio-temporal scales, where energetic and structural roadblocks dictate the fate of energy carriers.

A STROBE team led by Naomi Ginsberg (UCB) developed a novel time-resolved interferometric scattering microscope to visualize how energy navigates the intrinsically disordered landscapes in these materials on the nanoscale. With this high-throughput technique, they collected non-invasive stroboscopic movies in a variety of organic, inorganic, and hybrid materials to demonstrate its powerful versatility. Applied to other cutting-edge materials, we hope to inform the design of new functional devices for the semiconductor industry of tomorrow.