The demand for faster, more efficient, and more compact nanoelectronic devices, like smartphone chips, requires engineers to develop increasingly complex designs. To achieve this, engineers use layer upon layer of very thin films – as thin as only a couple strands of DNA – with impurities added, to tailor the function. However, the presence of these necessary impurities and extreme thinness degrades the material strength, reducing its performance and making it more likely to fail. To date, it was simply not possible to test the stiffness or compressibility of the thinnest of these ultra-thin films. Now, by using laser-like beams at very short wavelengths – beyond the ultraviolet region of the spectrum – scientists were finally able to measure the mechanical properties of these films. What they learned was surprising: as the layers thinned, the mechanical properties dramatically deteriorated, becoming nearly 10 times flimsier than expected. Additionally, the presence of impurities can be more detrimental to the film’s strength than the effect of its thinning. These findings will influence the design of next generation electronic and other nanoscale devices.