From Plane Propellers to Helicopter Rotors

August 30, 2021|JILA, CU Boulder|

For laser science, one major goal is to achieve full control over the spatial, temporal and polarization properties of light, and to learn how to precisely manipulate these properties.  A  property of light is called the Orbital Angular Momentum (OAM), that depends on the spatial distribution of the phase (or crests) of a donut-shaped light beam. More recently, a new variant of OAM was discovered – called the spatial-temporal OAM (ST-OAM), with much more elusive properties, since the phase/crests of light evolve both temporally and spatially. In a collaboration led by senior scientist Dr. Chen-Ting Liao, working with graduate student Guan Gui and JILA Fellows Margaret Murnane and Henry Kapteyn, the team explored how such beams change after propagating through nonlinear crystals that can change their color…

Read More

Exploring X-ray and Laser Science from Imagination to Application

April 22, 2021|CU On the Air Podcast|

Welcome to the inaugural episode of the President’s Innovation Podcast, a special CU on the Air series. Host Emily Davies speaks with distinguished professor Margaret Murnane, a fellow at JILA, which is a joint institute of the University of Colorado Boulder and the National Institute of Standards and Technology. Dr. Murnane is also a faculty member in the department of physics and electrical and computer engineering at CU Boulder, and has earned numerous prestigious awards for her work in ultrafast laser and x-ray science.

Read More

Century-old problem solved with first-ever 3D atomic imaging of an amorphous solid

April 14, 2021|National Science Foundation|

Glass, rubber and plastics all belong to a class of matter called amorphous solids. In spite of how common they are in our everyday lives, amorphous solids have long posed a challenge to scientists.

Since the 1910s, scientists have been able to map in 3D the atomic structures of crystals, the other major class of solids, which has led to myriad advances in physics, chemistry, biology, materials science, geology, nanoscience, drug discovery and more. But because amorphous solids aren’t assembled in rigid, repetitive atomic structures, as crystals are, they have defied researchers’ ability to determine their atomic structure with the same level of precision.

Until now, that is.

UCLA-led research published in the journal Nature reports on the first-ever determination of the 3D atomic structure of an amorphous solid — in this case, a material called metallic glass…

Read More

Century-old problem solved with first-ever 3D atomic imaging of an amorphous solid

March 31, 2021|UCLA Newsroom|

UCLA-led study captures the structure of metallic glass. Glass, rubber and plastics all belong to a class of matter called amorphous solids. And in spite of how common they are in our everyday lives, amorphous solids have long posed a challenge to scientists. Since the 1910s, scientists have been able to map in 3D the atomic structures of crystals, the other major class of solids, which has led to myriad advances in physics, chemistry, biology, materials science, geology, nanoscience, drug discovery and more. But because amorphous solids aren’t assembled in rigid, repetitive atomic structures like crystals are, they have defied researchers’ ability to determine their atomic structure with the same level of precision. Until now, that is. A UCLA-led study in the journal Nature reports on the first-ever determination of the 3D atomic structure of an amorphous solid — in this case, a material called metallic glass.

Read More

Atomic structure of a glass imaged at last

March 31, 2021|Nature News and Views|

The positions of all the atoms in a sample of a metallic glass have been measured experimentally — fulfilling a decades-old dream for glass scientists, and raising the prospect of fresh insight into the structures of disordered solids. If the chemical element and 3D location of every atom in a material are known, then the material’s physical properties can, in principle at least, be predicted using the laws of physics. The atomic positions of crystals have long-range periodicity, which has enabled the development of powerful methods that combine diffraction experiments with the mathematics of symmetry to determine the precise atomic structure of these materials. Moreover, deviations from periodicity that create defects in crystals can be imaged with sub-ångström resolution. But these methods do not work for glasses, which lack long-range periodicity. Our knowledge of the atomic structure of glasses is therefore limited and acquired indirectly. Writing in Nature, Yang et al.1 report the experimental determination of the 3D positions of all the atoms in a nanometre-scale sample of a metallic glass.

Read More

Do You Know the Way to Berkelium, Californium?

March 24, 2021|Lawrence Berkeley National Laboratory News Center|

Heavy elements and a really powerful microscope help scientists map uncharted paths toward new materials and cancer therapies. Heavy elements known as the actinides are important materials for medicine, energy, and national defense. But even though the first actinides were discovered by scientists at Berkeley Lab more than 50 years ago, we still don’t know much about their chemical properties because only small amounts of these highly radioactive elements (or isotopes) are produced every year; they’re expensive; and their radioactivity makes them challenging to handle and store safely.

Read More

New Buff Innovator Insights podcast to spotlight faculty innovators

March 18, 2021|CU Boulder Research & Innovation Office|

The first episode of the inaugural season of Buff Innovator Insights, a new podcast from the Research & Innovation Office (RIO), will premiere on Thursday, March 18. The podcast will offer a behind-the-curtain look at some of the most ground-breaking innovations in the world—all emanating from the CU Boulder campus—along with the personal journeys that made those discoveries possible. Terri Fiez, Vice Chancellor for Research & Innovation, hosts this up-close and personal look at how researchers, scholars and artists become global pioneers, why they are so dedicated to discovery, and their visions of the future in the wide range of fields they explore.

Airing Thursday, March 18: Margaret Murnane–JILA; Physics; STROBE Science & Technology Center

In the first episode of Buff Innovator Insights, we meet Dr. Margaret Murnane, CU Boulder professor of physics and one of the world’s leading experts in ultrafast laser and x-ray science. Join us to learn about her improbable journey from growing up in the Irish countryside to developing the microscopes of the future and cultivating the world’s next generation of physicists.

Read More

Highlighting the Research Centers within JILA

March 18, 2021|JILA|

STROBE is one of the 12 nationwide NSF funded Science and Technology centers. According to Ellen Keister, the STROBE Director of Education: “STROBE research groups have common challenges associated with big data, detectors, as well as pushing the limits of x-ray, electron and visible nano-imaging. STROBE enables research groups to address common challenges, enhance tabletop and national facilities and use new capabilities to address current nano and bio materials challenges.”

While STROBE works on collaboration between investigators within its center, it also encourages collaboration from a younger generation. “STROBE encompasses K-12 outreach, undergraduate education, graduate education programming, essentially focusing on how to build and maintain a top STEM workforce,” Keister comments. “- and do it in a way that is inclusive, and that provides students and trainees with the technical and soft skills and tools they need to be prepared and successful when they go out into the 21st century workforce.”

Read More

A COSMIC Approach to Nanoscale Science

March 3, 2021|Lawrence Berkeley National Laboratory News Center|

COSMIC, a multipurpose X-ray instrument at Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Advanced Light Source (ALS), has made headway in the scientific community since its launch less than 2 years ago, with groundbreaking contributions in fields ranging from batteries to biominerals…

Read More

Family legacies that grew from FLC

February 17, 2021|FLC News|
The Sells-Wheeler Family By Natalia Sells

My name is Natalia Sells (Business Management, ‘18) and I am a second-generation Fort Lewis College alumna. My parents, Earlisa Sells (Student-Constructed Major, ‘06) and Leon Wheeler (Psychology, ‘06 and Student-Constructed Major, ‘07), started at FLC in 2004 when I was 10 years old.

Since we lived in Shiprock, New Mexico, my father commuted to Durango for his lecture classes every other day. Often, he would sleep in the family truck to save on gas and money. Sometimes he would take my siblings and me to the College, where he would reserve a corner window study hall room on the second floor of the Education Business Hall. I remember reading my book and looking out the window at the students changing classes. My younger sister, then three years old, sometimes sat with Dad in his lecture classes…

Read More
Go to Top