Highlighting the Research Centers within JILA

March 18, 2021|JILA|

STROBE is one of the 12 nationwide NSF funded Science and Technology centers. According to Ellen Keister, the STROBE Director of Education: “STROBE research groups have common challenges associated with big data, detectors, as well as pushing the limits of x-ray, electron and visible nano-imaging. STROBE enables research groups to address common challenges, enhance tabletop and national facilities and use new capabilities to address current nano and bio materials challenges.”

While STROBE works on collaboration between investigators within its center, it also encourages collaboration from a younger generation. “STROBE encompasses K-12 outreach, undergraduate education, graduate education programming, essentially focusing on how to build and maintain a top STEM workforce,” Keister comments. “- and do it in a way that is inclusive, and that provides students and trainees with the technical and soft skills and tools they need to be prepared and successful when they go out into the 21st century workforce.”

Read More

A COSMIC Approach to Nanoscale Science

March 3, 2021|Lawrence Berkeley National Laboratory News Center|

COSMIC, a multipurpose X-ray instrument at Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Advanced Light Source (ALS), has made headway in the scientific community since its launch less than 2 years ago, with groundbreaking contributions in fields ranging from batteries to biominerals…

Read More

Family legacies that grew from FLC

February 17, 2021|FLC News|
The Sells-Wheeler Family By Natalia Sells

My name is Natalia Sells (Business Management, ‘18) and I am a second-generation Fort Lewis College alumna. My parents, Earlisa Sells (Student-Constructed Major, ‘06) and Leon Wheeler (Psychology, ‘06 and Student-Constructed Major, ‘07), started at FLC in 2004 when I was 10 years old.

Since we lived in Shiprock, New Mexico, my father commuted to Durango for his lecture classes every other day. Often, he would sleep in the family truck to save on gas and money. Sometimes he would take my siblings and me to the College, where he would reserve a corner window study hall room on the second floor of the Education Business Hall. I remember reading my book and looking out the window at the students changing classes. My younger sister, then three years old, sometimes sat with Dad in his lecture classes…

Read More

Margaret Murnane and Henry Kapteyn, who are also fellows in JILA, recognized for work in cutting-edge lasers

December 10, 2020|CU Boulder Today|

Two scientists who pioneered technologies for generating coherent X-rays, which helped propel research in dynamic processes in atoms, molecules and materials, have been named fellows of the National Academy of Inventors, the academy announced today. Margaret Murnane and Henry Kapteyn, physics professors at the University of Colorado Boulder, direct a laboratory in JILA, a joint institute of CU Boulder and the National Institute of Standards and Technology. They are among 175 inventors to be named 2020 National Academy of Inventors. Murnane and Kapteyn are co-inventors on 17 U.S. patents and have published more than 250 peer-reviewed journal articles. They are co-founders of KM Labs, a startup company that produces high-power, high-performance table-top laser systems.

Read More

Native American Heritage Month at UCI: Franklin Dollar

November 10, 2020|UCI School of Physical Sciences|

Native American Heritage Month at Physical Sciences: This month, you’ll be hearing about Native Americans at the School of Physical Sciences, and how they make the School what it is.

I’m Franklin Dollar, a member of the Dry Creek Band of Pomo Indians and an Associate Professor in the Department of Physics & Astronomy at UCI. I study ultrafast laser matter interactions, and how we can convert laser energy into beams of particles and X-rays for next-generation microscopes. I also try to understand how physics education can be improved, from mentorship, to curriculum, to environment.

PS: What advice do you have for Native American students who are considering a career in STEM?

The most important thing you learn with a degree like physics is how to solve problems in the real world. This is useful in nearly any career, and can provide the flexibility to try out different career paths. So though you may not know what you want to do today, as you work and learn you will be able to find your own path.

 

Read More

New electron microscope at CU Boulder enables groundbreaking research across disciplines—and from a distance

October 26, 2020|CU Boulder Research & Innovation Office|

Capable of achieving spatial resolutions of 70 pm—smaller than the size of an atom—the Thermo Scientific Titan Themis S/TEM, located in the newly-launched CU Facility for Electron Microscopy of Materials (CU FEMM), is now the highest-resolution electron microscope in Colorado.

Taller than a person and equipped with multiple cameras and detectors, this state-of-the-art, aberration-corrected electron microscopy platform makes groundbreaking research possible in a wide range of fields, including catalysis, advanced imaging, quantum information, energy conversion, biomaterials, battery research, geology, materials development and even archaeology. A team from the National Center for Atmospheric Research (NCAR) is even exploring a potential COVID-19 study using the microscope to inspect the salt from dried saliva droplets.

Read More

UCLA scientists create world’s smallest ‘refrigerator’

September 22, 2020|UCLA Newsroom|

How do you keep the world’s tiniest soda cold? UCLA scientists may have the answer.

A team led by UCLA physics professor Chris Regan has succeeded in creating thermoelectric coolers that are only 100 nanometers thick — roughly one ten-millionth of a meter — and have developed an innovative new technique for measuring their cooling performance.

“We have made the world’s smallest refrigerator,” said Regan, the lead author of a paper on the research published recently in the journal ACS Nano.

To be clear, these miniscule devices aren’t refrigerators in the everyday sense — there are no doors or crisper drawers. But at larger scales, the same technology is used to cool computers and other electronic devices, to regulate temperature in fiber-optic networks, and to reduce image “noise” in high-end telescopes and digital cameras.

Read More

Diffractive Imaging in a Flash

September 11, 2020|Science Editor's Choice|

Ultrashort light pulses on the time scale of attoseconds provide a window into some of the fastest electronic effects occurring in solid-state systems. Obtaining structural information through coherent diffractive imaging is usually done with monochromatic x-ray sources. However, ultrashort pulses are inherently broadband, and getting transient structural information on such short time scales is challenging. Rana et al. describe a method that works with the broadband nature of ultrashort pulses. They split the pulses into 17 different wavelengths and then used an algorithm to computationally stitch together the diffraction patterns from each wavelength to reveal the structural image optimized across all wavelengths. Demonstrating the technique at optical wavelengths illustrates the feasibility of applying the method to ultrafast x-ray pulses.

Phys. Rev. Lett. 125, 086101 (2020).

Read More

Ultrafast Imaging at All Frequencies

August 19, 2020|APS Physics|

A new algorithm could allow researchers to capture attosecond, multiwavelength images of an object. Illuminating a sample with attosecond x-ray pulses could let researchers image phenomena as fleeting as the rearrangement of electrons during chemical reactions. The uncertainty principle dictates that ultrashort pulses have a broad energy spectrum. However, because focusing different wavelengths typically requires multiple sets of optics, most attempts at attosecond imaging are spectroscopic, ignoring all but one radiation frequency. Now, Jianwei Miao at the University of California, Los Angeles, and colleagues have developed an innovative algorithm that can simultaneously reconstruct multiple images of an object at different wavelengths using attosecond pulses. The method offers a way to take spectroscopic images without the need for sophisticated instruments.

Read More

What to Know if You’re Teaching Physics Labs Remotely

August 5, 2020|JILA|

The coronavirus pandemic upended schools in the spring of 2020, sending students and faculty home. This rapidly changed how instructors handled laboratory physics courses. With a NSF RAPID grant, JILA Fellow Heather Lewandowski asked instructors what worked—and what didn’t—as they moved their lab courses online.

Read More
Go to Top