KMLabs QM Quantum Microscope an R&D 100 Awards winner

October 29, 2019|KMLabs|

Winners of the R&D 100 Awards have been announced by R&D World magazine and its new parent company, WTWH Media, LLC.

We are proud to announce that the QM Quantum Microscope™ is one of this year’s winners.  The QM Quantum Microscope builds on the company’s world leading technology in high harmonic generation to enable a range of techniques including coherent diffraction imaging, photoemission, pump-probe spectroscopy, and EUV metrology.

Primary Contributors to the project include:

JILA: Michael Tanksalvala, Yuka Esashi, Christina Porter, Michael Gerrity, Ting Liao, Margaret Murnane

KMLabs: Seth Cousin, Daisy Raymondson, Brennan Peterson, Henry Kapteyn

“Microscopes illuminated by coherent extreme UV beams are extremely sensitive to structure, composition and function at the nanoscale. They represent an entirely new class of lab scale microscope, with unique capabilities that are critical for future semiconductor, energy, solid state chemistry, and quantum devices.’ Henry Kapteyn, CTO.

About KMLabs: KMLabs is the only commercial provider for comprehensive, end-to-end research systems that leverage ultrafast pulses of extreme UV and soft X-ray light for a variety of experiments. The QM Quantum Microscope™ builds on the company’s world leading technology in high harmonic generation to enable a range of techniques including coherent diffraction imaging, photoemission, pump-probe spectroscopy, and EUV metrology. In addition, KMLabs continues to pioneer the development and engineering of standalone short wavelength sources including the Y-Fi VUV laboratory-based vacuum ultraviolet femtosecond laser source, and the Pantheon™ platform, a pulsed EUV source-beamline to generate and deliver EUV photons to user-supplied experimental stations.

Read More

Real-time imaging for use in medicine

September 17, 2019|Phys.org|

A new paper in Nature Photonics from researchers at CU Boulder details impressive improvements in the ability to control the propagation and interaction of light in complex media such as tissue—an area with many potential applications in the medical field. Published Monday, the paper is titled “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2-D transform.” The work was carried out in Professor Rafael Piestun’s lab in the Electrical, Energy and Computing Engineering Department. The team included CU Boulder post-doctoral researchers Omer Tzang and Simon Labouesse, researcher Eyal Niv and CU Boulder graduate student Sakshi Singh. Greg Myatt from Silicon Light Machines, a collaborating company in this project, also worked with the group.

Read More

First 4D look at crystallising atoms contradicts textbook nucleation theory

June 27, 2019|Chemistry World|

For the first time scientists have watched iron and platinum atoms crystallise in 4D – not only observing their arrangement in space but tracking them over time. Their observations clash with classical nucleation theory, which describes the early stages of a phase transition, adding to growing evidence that the textbook theory is outdated and imprecise.

Read More

Watching crystal nucleation happen at atomic scale

June 27, 2019|C&EN: Chemical & Engineering News|

Crystals form in storm clouds, metals, drug molecules, and even in diseased tissues. Despite their ubiquity, scientists still don’t fully understand what happens when a liquid solution first starts to form a solid crystal, a step called nucleation. Now researchers have gotten their first glimpse of the details of the process, imaging individual atoms during nucleation in metal nanoparticles (Nature 2019, DOI: 10.1038/s41586-019-1317-x).

Read More

Atomic motion is captured in 4D for the first time

June 26, 2019|UCLA Newsroom, CNSI News|

Results of UCLA-led study contradict a long-held classical theory.

Everyday transitions from one state of matter to another — such as freezing, melting or evaporation — start with a process called “nucleation,” in which tiny clusters of atoms or molecules (called “nuclei”) begin to coalesce. Nucleation plays a critical role in circumstances as diverse as the formation of clouds and the onset of neurodegenerative disease.

A UCLA-led team has gained a never-before-seen view of nucleation — capturing how the atoms rearrange at 4D atomic resolution (that is, in three dimensions of space and across time). The findings, published in the journal Nature, differ from predictions based on the classical theory of nucleation that has long appeared in textbooks.

Read More

Bruker acquires nanoIR company Anasys Instruments

April 18, 2019|Anasys Instruments|

Bruker today announced that it has acquired Anasys Instruments Corp., a privately held company that develops and manufactures nanoscale infrared spectroscopy and thermal measurement instruments. This acquisition adds to Bruker’s portfolio of Raman and FTIR spectrometers, as well as to its nanoscale surface science instruments, such as atomic force microscopy and white-light interferometric 3D microscopy. Financial details of the transaction were not disclosed. Headquartered in Santa Barbara, California, Anasys Instruments Corp. has pioneered the field of nanoprobe-based thermal and infrared measurements. Its industry-leading nanoIR™ products are used by premier academic and industrial scientists and engineers in soft-matter and hard-matter materials science, and in life science applications. Recently Anasys introduced even higher performance with 10 nanometer resolution nanoIR imaging.

Read More

UCLA mathematics professor developed key numerical algorithm used to reconstruct image of black hole

April 15, 2019|UCLA Newsroom, College of Mathematics|

UCLA mathematics professor Stan Osher, Cognitech Inc CEO Leonid Rudin and then PhD student Emad Fatemi, now sadly deceased, created a numerical algorithm that was instrumental in reconstructing the cleaned up image of the black hole captured in April 2017. Their work has been cited as the key regularization function in sparse modeling that has been applied to astronomical imaging (Akiyama et al. 2017) .

Read More

Study reveals key details about bacterium that increases risk for stomach cancer

March 25, 2019|UCLA Newsroom, CNSI News|

More than half of the people in the world host colonies of a bacterium called Helicobacter pylori in their stomachs.

Although it’s harmless to many, H. pylori can cause stomach cancer as well as ulcers and other gastric conditions. Doctors tend to prescribe multiple antibiotics to defeat the microbe, but that strategy can lead to antibiotic-resistant superbugs.

Now, a finding by UCLA scientists may lead to a better approach. The researchers have determined the molecular structure of a protein that enables H. pylori to stay alive in the stomach, and elucidated the mechanism by which that protein works.

Z. Hong Zhou, the study’s corresponding author and a UCLA professor of microbiology, immunology and molecular genetics, said the findings answer questions that have been sought ever since 2005, when two Australian scientists won a Nobel Prize for their discovery of H. pylori and its role in gastritis and peptic ulcer disease.

Read More

Imec to install high NA EUV imaging and attosecond analytical lab to probe lithography down to 8nm pitch

February 26, 2019|IMEC|

Today, imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, and KMLabs, pioneers and world leaders in ultrafast laser and EUV technology, announce a joint development to create a real-time functional imaging and interference lithography laboratory. This lab will enable imaging in resist on 300mm wafers down to an unprecedented 8nm pitch. Additionally, it will enable time-resolved nanoscale characterization of complex materials and processes, such as photoresist radiation chemistry, two-dimensional materials, nanostructured systems and devices, emergent quantum materials.

Read More

Double Helix Optics Wins Prestigious SPIE’s 2019 Prism Award

February 11, 2019|Cision|

Double Helix Optics was just declared the winner of SPIE’s 2019 Prism Award in the Diagnostics and Therapeutics category. SPIE, the international society for optics and photonics, presents this prestigious award to exceptionally innovative organizations for the best new optics and photonics products brought to the market. Double Helix Optics’ award-winning SPINDLE® module and patented Light Engineering™ point spread function (PSF) technology deliver unparalleled 3D imaging and tracking with precision-depth capability.

Read More
Go to Top