masonlw

Home \ Lauren Mason

About Lauren Mason

This author has not yet filled in any details.
So far Lauren Mason has created 152 blog entries.

Highlighting the Research Centers within JILA

STROBE is one of the 12 nationwide NSF funded Science and Technology centers. According to Ellen Keister, the STROBE Director of Education: “STROBE research groups have common challenges associated with big data, detectors, as well as pushing the limits of x-ray, electron and visible nano-imaging. STROBE enables research groups to address common challenges, enhance tabletop and national facilities and use new capabilities to address current nano and bio materials challenges.”

While STROBE works on collaboration between investigators within its center, it also encourages collaboration from a younger generation. “STROBE encompasses K-12 outreach, undergraduate education, graduate education programming, essentially focusing on how to build and maintain a top STEM workforce,” Keister comments. “- and do it in a way that is inclusive, and that provides students and trainees with the technical and soft skills and tools they need to be prepared and successful when they go out into the 21st century workforce.”

Exploring X-ray and Laser Science from Imagination to Application

Welcome to the inaugural episode of the President’s Innovation Podcast, a special CU on the Air series. Host Emily Davies speaks with distinguished professor Margaret Murnane, a fellow at JILA, which is a joint institute of the University of Colorado Boulder and the National Institute of Standards and Technology. Dr. Murnane is also a faculty member in the department of physics and electrical and computer engineering at CU Boulder, and has earned numerous prestigious awards for her work in ultrafast laser and x-ray science.

Congrats to Margaret Murnane for Receiving an Honorary Doctorate from the University of Limerick

JILA Fellow Margaret Murnane has been awarded an Honorary Doctorate from the University of Limerick this year – her 6th Honorary Doctorate.

“I hadn’t even known I was being considered for it,” Murnane says of the award. Murnane, a native of Ireland, is excited to add another excuse to return to the country. Growing up in the 1960s and 1970s in Ireland, only 10% of high school graduates at that time had the opportunity to attend university. It wasn’t until the 1980s and 1990s that Ireland had the resources to invest in higher education by expanding their university system, later followed by flourishing science research. Murnane grew up very close to the University of Limerick, which became a university in 1980. She is excited to hopefully be attending the awards ceremony in person in August of 2021. When speaking of her future trip, Murnane stated: “It’ll be great to be able to be with family and friends again.”

Murnane’s group at JILA focuses on ultrafast laser and X-ray science. This year Murnane was also awarded the Franklin Medal in Physics for her work. She shared the award with JILA Fellow Dr. Henry Kapteyn.

Congrats to Jianwei (John) Miao for Receiving the 2021 Innovation in Materials Characterization Award from the Materials Research Society

Congratulations to Jianwei (John) Miao for receiving the 2021 Innovation in Materials Characterization Award from the Materials Research Society for pioneering coherent diffractive imaging for a wide range of material systems and atomic electron tomography for determining atomic positions without assuming crystallinity.

Check out John’s MRS talk here.

Beyond Crystallography: Coherent Diffractive Imaging and Atomic Electron Tomography

Over the last century, crystallography has been fundamental to the development of many fields of science. However, many samples in materials science, physics, chemistry, nanoscience, geology, and biology are non-crystalline, and thus their 3D structures are not accessible by crystallography. Miao will present two methods that can go beyond crystallography: coherent diffractive imaging and atomic electron tomography. He will illustrate the basic principle and broad application of coherent diffractive imaging. He will also present atomic electron tomography for 3D structure determination of crystal defects and amorphous materials at the single atomic level.

Century-old problem solved with first-ever 3D atomic imaging of an amorphous solid

Glass, rubber and plastics all belong to a class of matter called amorphous solids. In spite of how common they are in our everyday lives, amorphous solids have long posed a challenge to scientists.

Since the 1910s, scientists have been able to map in 3D the atomic structures of crystals, the other major class of solids, which has led to myriad advances in physics, chemistry, biology, materials science, geology, nanoscience, drug discovery and more. But because amorphous solids aren’t assembled in rigid, repetitive atomic structures, as crystals are, they have defied researchers’ ability to determine their atomic structure with the same level of precision.

Until now, that is.

UCLA-led research published in the journal Nature reports on the first-ever determination of the 3D atomic structure of an amorphous solid — in this case, a material called metallic glass…

STROBE solved a century-old scientific problem: Determining the 3D atomic structure of amorphous solids

Amorphous solids such as glass, plastics and rubber are ubiquitous in our daily life and have broad applications ranging from telecommunications to electronics and solar cells. However, due to the lack of any crystal-like long-range order, the traditional X-ray crystallographic methods for extracting the three-dimensional (3D) atomic arrangement of amorphous solids simply do not work. STROBE advanced atomic electron tomography to determine the 3D atomic positions and chemical species of an amorphous solid for the first time – with a stunning precision of 21 picometer. We found that instead of long-range order characteristic of crystals such as diamond, this amorphous metallic glass had regions of short- and medium-range order. Moreover, although the 3D atomic packing is disordered, some regions connect with each other to form crystal-like networks, which exhibit translational but no orientational order. Looking forward, we anticipate this approach will open the door to determining the 3D atomic coordinates of a wide range of amorphous solids, whose impact on non-crystalline solids may be comparable to the first 3D crystal structure solved by x-ray crystallography over a century ago.

Go to Top