News

Home \ News

‘Doughnut’ beams help physicists see incredibly small objects

In a new study, researchers at CU Boulder have used doughnut-shaped beams of light to take detailed images of objects too tiny to view with traditional microscopes.

The new technique could help scientists improve the inner workings of a range of “nanoelectronics,” including the miniature semiconductors in computer chips. The discovery was highlighted Dec. 1 in a special issue of Optics & Photonics News called Optics in 2023.

The research is the latest advance in the field of ptychography, a difficult to pronounce (the “p” is silent) but powerful technique for viewing very small things. Unlike traditional microscopes, ptychography tools don’t directly view small objects. Instead, they shine lasers at a target, then measure how the light scatters away—a bit like the microscopic equivalent of making shadow puppets on a wall.

So far, the approach has worked remarkably well, with one major exception, said study senior author and Distinguished Professor of physics Margaret Murnane.

“Until recently, it has completely failed for highly periodic samples, or objects with a regularly repeating pattern,” said Murnane, fellow at JILA, a joint research institute of CU Boulder and the National Institute of Standards and Technology (NIST). “It’s a problem because that includes a lot of nanoelectronics.”

High-Fidelity Ptychography of Highly Periodic Structures

Lensless imaging based on ptychographic coherent diffractive imaging enables diffraction-limited microscopy at short wavelengths, overcoming the limits of imperfect optics.1,2 Ptychographic imaging of highly periodic structures has been challenging, however, due to the lack of diversity in the recorded diffraction patterns, which leads to poor convergence of the reconstructed sample images. Although techniques (such as modulus enforced probe and total variation regularization) have been explored to address this challenge, they suffer from slow convergence, heavy reliance on constraints on the samples, or both. This significantly limits ptychography’s application to a wide variety of periodic structures in photonics, nanoelectronics and extreme ultraviolet (EUV) photomasks.

Congrats to Ruiming Cao for Receiving the Hitachi High-Tech Best Presentation Award at the SPIE Photonics West Conference

Hitatchi sponsors two High-Tech Best Presentation Awards in High-Speed Biomedical Imaging and Spectroscopy at the SPIE Photonics West Conference. Congratulations to Ruiming Cao for receiving this award in 2023!

Congrats to Jessica Ramella-Roman for Being Elected as a 2024 Optica Fellow

Jessica Ramella-Roman has been elected as a Fellow of Optica for her pioneering contributions to the study of polarized light transport in biological media through experimental and computational approaches.

The Board of Directors of  Optica (formerly OSA), Advancing Optics and Photonics Worldwide, recently elected 129 members from 26 countries to the Society’s 2024 Fellow Class. Optica Fellows are selected based on several factors, including outstanding contributions to research, business, education, engineering and service to Optica and our community.

Fellows are Optica members who have served with distinction in the advancement of optics and photonics. The Fellow Members Committee, led by Chair Ofer Levi, University of Toronto, Canada, reviewed 216 nominations submitted by current Fellows. The Committee extends its thanks to all of this year’s nominators and references. As Fellows can account for no more than 10 percent of the total membership, the election process is highly competitive. Candidates are recommended by the Fellow Members Committee and approved by the Awards Council and Board of Directors.

The new Fellows will be honored at Optica conferences and events throughout 2024.

Congrats to Ke Xu for Being Selected as a Pew Innovation Fund Investigator

The Pew Scholars Program in the Biomedical Sciences provides funding to young investigators of outstanding promise in science relevant to the advancement of human health. The program makes grants to selected academic institutions to support the independent research of outstanding individuals who are in their first few years of their appointment at the assistant professor level. Congratulations to Ke Xu for being selected as a Pew Innovation Fund Investigator!

Congrats to Ke Xu for Receiving a Heising-Simons Faculty Fellowship

The Heising-Simons Faculty Fellows Program catalyzes scientific discovery by investing in high-risk, high-reward research directions. The Program supports exceptional faculty working on topics in a diverse set of fields, including astronomy, physics, geology and geophysics, materials sciences (in both physics and engineering), and physical and materials chemistry. Program awards will focus on creative and novel approaches that promise to lead to important scientific breakthroughs contributing to a greater understanding of the universe and its components, from the molecular and atomic to the geological and planetary scales, among other areas. Awards also fund the development of new tools, techniques and measurements that help probe these physical phenomena in new ways.

The Heising-Simons Faculty Fellows awards will be made to two UC Berkeley faculty members each year. Each $1M faculty award will be distributed over a period of five years. All early- and mid-career UC Berkeley faculty regardless of their home department are eligible to apply.

Prof. Xu’s project is “Single-Molecule Electrophoresis Microscopy”.

Congrats to Markus Raschke for Receiving a Research Collaboration Award from the University of Bayreuth Centre of International Excellence

Markus Raschke received an award from the University of Bayreuth Centre of International Excellence to foster collaborations. The project is titled “Pico-cavity QED.”  The goal of this project between the Raschke group at the University of Colorado and the Lippitz group (Experimental Physics III) at the University of Bayreuth is to develop quantum-coherent systems operating at room temperature, taking advantage of recent developments in both groups of pico-cavity quantum electrodynamics (cQED) in tip-enhanced strong coupling and with plasmonic nanostructures. Congratulations, Markus!

Go to Top