News

Home \ News

How hundreds of college students are helping solve a centuries-old mystery about the sun

Astronomers-in-training spent thousands of hours peering at tiny solar flares that space telescopes missed. A team of more than 1,000 astronomers and college students just took a step closer to solving one of the long-lasting mysteries of astronomy: Why is the sun’s outer layer, known as the corona, so ridiculously hot? The solar surface is 10,000°F, but a thousand miles up, the sun’s corona flares hundreds of times hotter. It’s like walking across the room to escape an overzealous space heater, but you feel warmer far away from the source instead of cooler, totally contrary to expectations.

How 1,000 undergraduates helped solve an enduring mystery about the sun

For a new study, a team of physicists recruited roughly 1,000 undergraduate students at CU Boulder to help answer one of the most enduring questions about the sun: How does the star’s outermost atmosphere, or “corona,” get so hot? The research represents a nearly-unprecedented feat of data analysis: From 2020 to 2022, the small army of mostly first- and second-year students examined the physics of more than 600 real solar flares—gigantic eruptions of energy from the sun’s roiling corona…

Congrats to Emma Nelson for Receiving an NSF Graduate Research Fellowship

The NSF GRFP recognizes and supports outstanding graduate students in NSF-supported STEM disciplines who are pursuing research-based master’s and doctoral degrees at accredited US institutions. The purpose of the NSF Graduate Research Fellowship Program (GRFP) is to ensure the quality, vitality, and diversity of the scientific and engineering workforce of the United States. GRFP seeks to broaden participation in science and engineering of underrepresented groups, including women, minorities, persons with disabilities, and veterans. The five-year fellowship provides three years of financial support inclusive of an annual stipend of $37,000.

Imaging Topological Magnetic Monopoles in 3D

Researchers created topologically stable magnetic monopoles and imaged them in 3D with unprecedented spatial resolution using a technique developed at the Advanced Light Source (ALS). The work enables the study of magnetic monopole behavior for both fundamental interest and potential use in information storage and transport applications. A bar magnet cut in half will always have a north and south pole, ad infinitum. Thus, magnetic monopoles—particles with a single magnetic “charge”—have never been observed in isolation. Yet the idea continues to intrigue: How would magnetic monopoles behave? What could you do with the magnetic equivalent of electric charge or current? Remarkably, scientists might be able to explore such questions via quasiparticles—particle-like phenomena emerging from collective interactions in condensed matter. However, it has been difficult to directly measure these quasiparticles and probe their behavior at the nanoscale…

Congratulations to Yuka Esashi for Being Awarded the 2023 SPIE Karel Urbánek Best Student Paper Award

At the 2023 Advanced Lithography and Patterning Conference, Yuka Esashi was awarded the SPIE Karel Urbánek Best Student Paper Award for “Multi-modal tabletop EUV reflectometry for characterization of nanostructures.” Congratulations, Yuka!

The Karel Urbánek Best Student Paper Award recognizes the most promising contribution to the field by a student, based on the technical merit and persuasiveness of the paper presentation at the conference. The Karel Urbánek Best Student Paper Award consists of an SPIE citation and an honorarium. To be eligible, the leading author and presenter of the paper must be a student.

Humans of JILA: Brendan McBennett

Surrounded by some of the world’s most advanced lasers, computers, and microscopes sits Brendan McBennett, a graduate student at JILA. McBennett has been working in the laboratories of JILA Fellows Margaret Murnane and Henry Kapteyn, as part of the KM group since 2019, excited to see his research advance significantly over that time. “We use ultraviolet and extreme ultraviolet (EUV) lasers to study heat flow in nanostructured materials,” McBennett states. “EUV photons have a higher photon energy that makes them insensitive to electron dynamics in most materials, combined with nanometer wavelengths. This allows them to very precisely probe surface deformations induced by heat – or thermal phonons – to capture new materials behaviors.”

Congratulations to Brendan McBennett for Being Named as the 2023 Recipient of the Nick Cobb Memorial Scholarship

Brendan McBennett has been announced as the 2023 recipient of the $10,000 Nick Cobb Memorial Scholarship by SPIE, the international society for optics and photonics, and Siemens EDA — formerly Mentor, a Siemens company — for his potential contributions to the field related to advanced lithography. McBennett will also be honored during 2023’s SPIE Advanced Lithography + Patterning conference.

The Nick Cobb scholarship recognizes an exemplary graduate student working in the field of lithography for semiconductor manufacturing. The award honors the memory of Nick Cobb, who was an SPIE Senior Member and chief engineer at Mentor. His groundbreaking contributions enabled optical and process proximity correction for IC manufacturing. Originally funded for three years ending in 2021, the Nick Cobb scholarship will be awarded to one student annually for an additional period of three years, through 2024.

Congratulations to Chen-Ting Liao for Receiving a Young Investigator Research Program Award from the Air Force Office of Scientific Research

Dr. Chen-Ting (Ting) Liao has been selected as an AFOSR Young Investigator. The Air Force Office of Scientific Research, or AFOSR, the basic research arm of the Air Force Research Laboratory, will award approximately $25 million in grants to 58 scientists and engineers from 44 research institutions and businesses in 22 states under the fiscal year 2023 Young Investigator Research Program, or YIP.

“Through the YIP, the Department of the Air Force fosters creative basic research in science and engineering, enhances early career development of outstanding young investigators and increases opportunities for the young investigators to engage in forwarding the DAF mission and related challenges in science and engineering,” said Ellen Robinson, YIP program manager.

YIP recipients receive three-year grants of up to $450,000. The program is open to U.S. citizens and permanent residents who are scientists and engineers at U.S. research institutions. Individuals must have received Ph.D. or equivalent degrees in the last seven years and show exceptional ability and promise for conducting basic research of Department of the Air Force, or DAF, relevance. Award selections are subject to successful completion of negotiations with the academic institutions and businesses.

Congratulations to Margaret Murnane for Being Named One of the Best Female Scientists in the World in 2022

Margaret Murnane is one of five women scientists in Colorado named among the best in the world. The 1st edition of Research.com ranking of top female scientists in the world is based on data collected from Microsoft Academic Graph on 06-12-2021. Position in the ranking is based on a scientist’s general H-index. The Research.com ranking of top female scientists in the world includes leading female scientists from all major areas of science. It was based on a meticulous examination of 166,880 scientists on Google Scholar and Microsoft Academic Graph.

Congratulations to Jose Rodriguez for Receiving Tenure at UCLA

Professor Jose Rodriguez received tenure at UCLA in the Department of Chemistry and Biochemistry. Congratulations, Jose!

Prof. Jose Rodriguez received his Ph. D in Molecular Biology from UCLA in 2012. He was then a Postdoctoral Researcher at UCLA and subsequently joined the Department of Chemistry & Biochemistry as assistant professor in 2016.

Go to Top