News

Home \ News

Congrats to Daniel Carlson for Receiving the Best Paper Award at Optica International Conference on Advanced Solid State Lasers

To honor students’ abilities for clear and effective communication in quantum physics, Optica offers a yearly “best paper” award at its International Conference on Advanced Solid State Lasers. This year, JILA graduate student Daniel Carlson was among the list of winners, with his presentation “Carbon K-Edge Soft X-Rays Driven by a 3 µm,1 kHz OPCPA Laser System” winning over the judges. Carlson, who is a researcher in JILA Fellows and University of Colorado Boulder professor Margaret Murnane and Henry Kapteyn, studies the creation of special X-rays using laser systems. Congratulations, Daniel!

Congrats to Drew Morrill for Receiving the Colorado Photonics Industry Association Poster Award

Drew Morrill’s poster, titled: “High-harmonic generation from a 3 μm wavelength OPCPA,” received an award from the Colorado Photonics Industry Association. The poster illustrates a method to generate soft X-rays using laser arrays. Congratulations, Drew!

CU Students Become Solar Scientists

An unusual research project at the University of Colorado turned more than a thousand undergrad students into instant solar scientists.

Margaret Murnane is Awarded a Honorary Doctorate from the University of Salamanca

Renowned scientist, JILA Fellow, and University of Colorado Boulder professor Margaret Murnane has been granted an honorary doctorate from the prestigious University of Salamanca, recognizing her outstanding contributions to the field of ultrafast laser science. As a trailblazer in her field, Murnane’s groundbreaking research has revolutionized our understanding of light and opened up new avenues for scientific discovery and technological innovation. This esteemed recognition from one of the oldest universities in the world serves as a testament to Murnane’s remarkable achievements and lasting impact on the scientific community.

Turning Up the Heat in Quantum Materials

Quantum materials, a fascinating class of materials that harness the power of quantum mechanics, are revolutionizing modern science and technology. Quantum materials often possess exotic states of matter, such as superconductivity or magnetic ordering, that defy conventional understanding and can be manipulated for various technological applications. To further enhance and manipulate the intriguing characteristics of quantum materials, researchers leverage nanostructuring—the ability to precisely control the geometry on the atomic scale. Specifically, nanostructuring provides the ability to manipulate and fine-tune the electrical and thermal properties of quantum and other materials. This can result, for example, in designer structures that conduct current very well, but impede heat transport. These structures can help recapture and utilize waste heat in electronics, buildings, and vehicles—enhancing their efficiency and, thereby, reducing power consumption. A related critical challenge for a broad range of nanotechnologies is the need for more efficient cooling, so that the nano devices do not overheat during operation. To better understand heat transport at the nanoscale, JILA Fellows Margaret Murnane, Henry Kapteyn, and their research groups within the STROBE NSF Center, JILA and the University of Colorado Boulder, created the first general analytical theory of nanoscale-confined heat transport, that can be used to engineer heat transport in 3D nanosystems—such as nanowires and nanomeshes—that are of great interest for next-generation energy-efficient devices. This discovery was published in NanoLetters. 

Congratulations to Nathan Brooks on a Postdoctoral Fellowship, Academia Sinica, Taiwan

Congratulations to Nathan Brooks for receiving a Postdoctoral Fellowship from Academia Sinica in Taiwan!

How hundreds of college students are helping solve a centuries-old mystery about the sun

Astronomers-in-training spent thousands of hours peering at tiny solar flares that space telescopes missed. A team of more than 1,000 astronomers and college students just took a step closer to solving one of the long-lasting mysteries of astronomy: Why is the sun’s outer layer, known as the corona, so ridiculously hot? The solar surface is 10,000°F, but a thousand miles up, the sun’s corona flares hundreds of times hotter. It’s like walking across the room to escape an overzealous space heater, but you feel warmer far away from the source instead of cooler, totally contrary to expectations.

How 1,000 undergraduates helped solve an enduring mystery about the sun

For a new study, a team of physicists recruited roughly 1,000 undergraduate students at CU Boulder to help answer one of the most enduring questions about the sun: How does the star’s outermost atmosphere, or “corona,” get so hot? The research represents a nearly-unprecedented feat of data analysis: From 2020 to 2022, the small army of mostly first- and second-year students examined the physics of more than 600 real solar flares—gigantic eruptions of energy from the sun’s roiling corona…

Congrats to Emma Nelson for Receiving an NSF Graduate Research Fellowship

The NSF GRFP recognizes and supports outstanding graduate students in NSF-supported STEM disciplines who are pursuing research-based master’s and doctoral degrees at accredited US institutions. The purpose of the NSF Graduate Research Fellowship Program (GRFP) is to ensure the quality, vitality, and diversity of the scientific and engineering workforce of the United States. GRFP seeks to broaden participation in science and engineering of underrepresented groups, including women, minorities, persons with disabilities, and veterans. The five-year fellowship provides three years of financial support inclusive of an annual stipend of $37,000.

Go to Top