News

Home \ News

Congrats to Margaret Murnane for Receiving an Honorary Doctorate from the University of Limerick

JILA Fellow Margaret Murnane has been awarded an Honorary Doctorate from the University of Limerick this year – her 6th Honorary Doctorate.

“I hadn’t even known I was being considered for it,” Murnane says of the award. Murnane, a native of Ireland, is excited to add another excuse to return to the country. Growing up in the 1960s and 1970s in Ireland, only 10% of high school graduates at that time had the opportunity to attend university. It wasn’t until the 1980s and 1990s that Ireland had the resources to invest in higher education by expanding their university system, later followed by flourishing science research. Murnane grew up very close to the University of Limerick, which became a university in 1980. She is excited to hopefully be attending the awards ceremony in person in August of 2021. When speaking of her future trip, Murnane stated: “It’ll be great to be able to be with family and friends again.”

Murnane’s group at JILA focuses on ultrafast laser and X-ray science. This year Murnane was also awarded the Franklin Medal in Physics for her work. She shared the award with JILA Fellow Dr. Henry Kapteyn.

Congrats to Jianwei (John) Miao for Receiving the 2021 Innovation in Materials Characterization Award from the Materials Research Society

Congratulations to Jianwei (John) Miao for receiving the 2021 Innovation in Materials Characterization Award from the Materials Research Society for pioneering coherent diffractive imaging for a wide range of material systems and atomic electron tomography for determining atomic positions without assuming crystallinity.

Check out John’s MRS talk here.

Beyond Crystallography: Coherent Diffractive Imaging and Atomic Electron Tomography

Over the last century, crystallography has been fundamental to the development of many fields of science. However, many samples in materials science, physics, chemistry, nanoscience, geology, and biology are non-crystalline, and thus their 3D structures are not accessible by crystallography. Miao will present two methods that can go beyond crystallography: coherent diffractive imaging and atomic electron tomography. He will illustrate the basic principle and broad application of coherent diffractive imaging. He will also present atomic electron tomography for 3D structure determination of crystal defects and amorphous materials at the single atomic level.

Century-old problem solved with first-ever 3D atomic imaging of an amorphous solid

Glass, rubber and plastics all belong to a class of matter called amorphous solids. In spite of how common they are in our everyday lives, amorphous solids have long posed a challenge to scientists.

Since the 1910s, scientists have been able to map in 3D the atomic structures of crystals, the other major class of solids, which has led to myriad advances in physics, chemistry, biology, materials science, geology, nanoscience, drug discovery and more. But because amorphous solids aren’t assembled in rigid, repetitive atomic structures, as crystals are, they have defied researchers’ ability to determine their atomic structure with the same level of precision.

Until now, that is.

UCLA-led research published in the journal Nature reports on the first-ever determination of the 3D atomic structure of an amorphous solid — in this case, a material called metallic glass…

Congrats to Franklin Dollar for Receiving the 2021 Tom Angell Fellowship Award for Outstanding Mentoring from UC Irvine

Awarded annually at the Office of Inclusive Excellence’s Mentoring for Achievement and Excellence event, this fellowship is intended to honor Tom Angell’s contributions as the UCI Graduate Counselor to graduate student wellness and retention. Awards are open to graduate students, faculty, and postdoctoral scholars. Award recipients demonstrate outstanding mentorship by going above and beyond their normal duties to create new opportunities to mentor UCI students.

Atomic structure of a glass imaged at last

The positions of all the atoms in a sample of a metallic glass have been measured experimentally — fulfilling a decades-old dream for glass scientists, and raising the prospect of fresh insight into the structures of disordered solids. If the chemical element and 3D location of every atom in a material are known, then the material’s physical properties can, in principle at least, be predicted using the laws of physics. The atomic positions of crystals have long-range periodicity, which has enabled the development of powerful methods that combine diffraction experiments with the mathematics of symmetry to determine the precise atomic structure of these materials. Moreover, deviations from periodicity that create defects in crystals can be imaged with sub-ångström resolution. But these methods do not work for glasses, which lack long-range periodicity. Our knowledge of the atomic structure of glasses is therefore limited and acquired indirectly. Writing in Nature, Yang et al.1 report the experimental determination of the 3D positions of all the atoms in a nanometre-scale sample of a metallic glass.

Century-old problem solved with first-ever 3D atomic imaging of an amorphous solid

UCLA-led study captures the structure of metallic glass. Glass, rubber and plastics all belong to a class of matter called amorphous solids. And in spite of how common they are in our everyday lives, amorphous solids have long posed a challenge to scientists. Since the 1910s, scientists have been able to map in 3D the atomic structures of crystals, the other major class of solids, which has led to myriad advances in physics, chemistry, biology, materials science, geology, nanoscience, drug discovery and more. But because amorphous solids aren’t assembled in rigid, repetitive atomic structures like crystals are, they have defied researchers’ ability to determine their atomic structure with the same level of precision. Until now, that is. A UCLA-led study in the journal Nature reports on the first-ever determination of the 3D atomic structure of an amorphous solid — in this case, a material called metallic glass.

Do You Know the Way to Berkelium, Californium?

Heavy elements and a really powerful microscope help scientists map uncharted paths toward new materials and cancer therapies. Heavy elements known as the actinides are important materials for medicine, energy, and national defense. But even though the first actinides were discovered by scientists at Berkeley Lab more than 50 years ago, we still don’t know much about their chemical properties because only small amounts of these highly radioactive elements (or isotopes) are produced every year; they’re expensive; and their radioactivity makes them challenging to handle and store safely.

Congrats to Iona Binnie for Receiving an NSF Graduate Research Fellowship

The NSF GRFP recognizes and supports outstanding graduate students in NSF-supported STEM disciplines who are pursuing research-based master’s and doctoral degrees at accredited US institutions. The five-year fellowship includes three years of financial support including an annual stipend of $34,000 and a cost of education allowance of $12,000 to the institution.

New Buff Innovator Insights podcast to spotlight faculty innovators

The first episode of the inaugural season of Buff Innovator Insights, a new podcast from the Research & Innovation Office (RIO), will premiere on Thursday, March 18. The podcast will offer a behind-the-curtain look at some of the most ground-breaking innovations in the world—all emanating from the CU Boulder campus—along with the personal journeys that made those discoveries possible. Terri Fiez, Vice Chancellor for Research & Innovation, hosts this up-close and personal look at how researchers, scholars and artists become global pioneers, why they are so dedicated to discovery, and their visions of the future in the wide range of fields they explore.

Airing Thursday, March 18: Margaret Murnane–JILA; Physics; STROBE Science & Technology Center

In the first episode of Buff Innovator Insights, we meet Dr. Margaret Murnane, CU Boulder professor of physics and one of the world’s leading experts in ultrafast laser and x-ray science. Join us to learn about her improbable journey from growing up in the Irish countryside to developing the microscopes of the future and cultivating the world’s next generation of physicists.

Go to Top