Home \ Lauren Mason

About Lauren Mason

This author has not yet filled in any details.
So far Lauren Mason has created 237 blog entries.

Congratulations to Brendan McBennett for winning a Best Student Presentation Award for Symposium EN03: Thermal Materials, Modeling and Technoeconomic Impacts for Thermal Management and Energy Application at the 2021 MRS Fall Meeting

Brendan McBennet’s oral presentation has been selected to win “Best Student Presentation Award for Symposium EN03: Thermal Materials, Modeling and Technoeconomic Impacts for Thermal Management and Energy Application at the 2021 MRS Fall Meeting”. Congratulations, Brendan!

Simons Postdoctoral Scholars at IPAM, UCLA

The Institute for Pure and Applied Mathematics (IPAM) at UCLA is seeking to recruit up to three Simons Postdoctoral Scholars (SPD) funded by the Simons Foundation. The appointment will be for one calendar year, beginning August 1, 2022 and carry a salary of up to $85,000 annually.

During the 2022-23 academic year, IPAM will host two long programs: Computational Microscopy and New Mathematics for the Exascale: Applications to Materials Science. A successful SPD candidate will pursue a robust program of mathematical research that connects with at least one of these programs. SPD candidates are expected to stay in residence at IPAM for the academic year. They will be supervised by members of the IPAM directorate, or other UCLA faculty.

A PhD in Mathematics, Statistics, or a related field received in May 2017 or later is required. Women and minorities are especially encouraged to apply.

How to Apply:

Applications must be submitted at Applications should include a CV, a research statement addressing connections with IPAM programs, a statement on contributions to Equity, Diversity, and Inclusion (EDI), and at least three letters of recommendation. All applicants should indicate the AMS Subject Classification that most accurately represents their research area. Applications will receive fullest consideration if received by January 1, 2022. Questions about the position/application may be sent to

More Information about IPAM: IPAM is an NSF mathematics institute whose principal objective is to encourage cross-fertilization between pure and applied mathematics and other scientific disciplines. IPAM provides a scientific environment where new collaborations can begin and to create active working research groups centered on the topic of the program.

IPAM offers two long programs per year, plus several shorter programs throughout the year. Each long program has significant participation from math and other disciplines, or from multiple fields within mathematics, and consists of tutorials, workshops and a culminating retreat off-campus. IPAM also sponsors a summer undergraduate industrial research program and a one to three-week summer school. Further information on IPAM can be found at

The University of California is an Equal Opportunity/Affirmative Action Employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability, age or protected veteran status. For the complete University of California nondiscrimination and affirmative action policy, see

Congratulations to Giulia Mancini for Receiving the International Union of Pure and Applied Physics (IUPAP) Young Scientist Prize in Optics from the International Commission of Optics

Congratulations to Giulia Mancini for receiving the IUPAP Young Scientist Prize in Optics! In 2005 the International Union of Pure and Applied Physics (IUPAP) created the Young Scientist Prizes for its commissions. The international Commission of Optics (ICO), as an Affiliated Commission of IUPAP, decided in 2008 to adopt the IUPAP Young Scientist Prize in Optics. The IUPAP prize in optics will be awarded annually through ICO to a scientist who has made noteworthy contributions to applied optics and photonics during a maximum of 8 years of research experience after having earned a PhD degree. Career interruptions will not be counted as time of research experience.

Infrared nano-imaging and -spectroscopy: methods, applications, and current research

Infrared (IR) vibrational scattering scanning near-field optical microscopy (s-SNOM) has advanced to become a powerful nano-imaging and -spectroscopy technique to probe molecular and lattice vibrations, low-energy electronic excitations and correlations, and related collective surface plasmon, phonon, or other polaritonic resonances. s-SNOM enables the study of complex heterogeneous materials with simultaneous nanoscale spatial resolution and quantum state spectroscopic specificity. It has also been extended to studying dynamics in the time domain, where ultrafast vibrational and electronic spectroscopy unravels mechanisms underlying functionality in quantum materials. I will discuss light sources, implementations of nano-probe spectroscopy and imaging, and open scientific questions that are being addressed with these techniques.

Pycro-Manager: open-source software for customized and reproducible microscope control

Innovative microscopy techniques are often impeded by a lack of control software that is capable of meeting demands for speed and performance, integrating new and diverse types of hardware, providing the flexibility to adapt in real time to the data being captured, and providing user-friendly programming interfaces. As a result, researchers often end up developing custom software that works only with specific instruments, using closed-source and/or proprietary programming languages. Pycro-Manager is a package that meets these challenges by enabling python control of Micro-Manager (an open-source microscopy control software) as well as the simple development of customized experiments that involve microscope hardware control integrated with real-time image processing. It is compatible with hundreds of microscope components and full microscopes and provides open source APIs for the integration of new hardware. More information can be found at:

Tutorial: X-ray microscopy and spectroscopy at synchrotron light sources

Synchrotron light sources provide unique types of X-rays and different end-station configurations. As such, synchrotrons can host a wide variety of experiments to study the most diverse materials and their properties. In this talk, we will discuss the benefits and challenges of these light sources in the context of x-ray microscopy. We will provide examples of what they can be used for, including spectromicroscopy for 3D magnetic imaging and elemental analysis, while focusing on the COherent Scattering and MICroscopy (COSMIC) beamline located at the Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL).

2D vibrational exciton nano-imaging of domain formation in self-assembled monolayer

Understanding the chemical and physical properties of surfaces at the molecular level is highly relevant in the fields of medicine, semiconductors, batteries, etc. where precise atomic level control of determines materials and device performance. In particular, molecular order and domains affect many of the desired functional properties with carrier transport, wettability, and chemical reactivity often controlled by intermolecular coupling. However, both imaging of molecular surfaces and spectroscopy of molecular coupling has long been challenged by limited chemically specific contrast, spatial resolution, sensitivity, and precision. In this work, a team of  STROBE researchers demonstrate vibrational excitons as a molecular ruler of intermolecular coupling and quantum sensor for wave function delocalization to image nanodomain formation in self-assembled monolayers. In novel precision spatio-spectral infrared scattering scanning near-field optical microscopy combined with theoretical modelling few nanometer domain sizes and their distribution across micron scale fields of view could be resolved. This approach of vibrational exciton nanoimaging is generally applicable to study structural phases and domains in a wide range of molecular interfaces and the method can be used for engineering better molecular interfaces, with controlled properties for molecular electronic, photonic, or biomedical applications.

STROBE Seminar: Patent Law and Intellectual Property

This seminar will include a brief discussion of patents and patent law including the purposes of patents (such as licensing, assets of a company, something to put on your resume), how they are structured (and how they are different from scientific papers), and careers in the patent law field.

About the speaker: Jennifer Bales has a BS in engineering from California State University Northridge and an MS in electrical engineering, specializing in optics, from University of Southern California.  Before going to law school at the University of Colorado, she worked in aerospace in the fields of ECCM, infrared image processing, and synthetic aperture radar (SAR) ground stations.  Her current patent work emphasizes optics, image processing, and signal processing, along with thermodynamics (in the area of refrigeration and air conditioning), medical devices, and various other electrical and mechanical inventions. She has been working as a patent attorney for over twenty years and has helped clients attain over 100 patents.

Cool it: Nano-scale discovery could help prevent overheating in electronics

A team of physicists and engineers at CU Boulder have solved the mystery behind a perplexing phenomenon in the nano realm: why some ultra-small heat sources cool down faster if you pack them closer together. The research began with an unexplained observation: a team led by Margaret Murnane and Henry Kapteyn at JILA were experimenting with metallic nanolines on a silicon substrate that when heated with a laser, something strange occurred. Nanoscale heat sources do not usually dissipate heat efficiently. But if you pack them close together, they cool down much more quickly.

Now, the researchers know why it happens. The team joined forces with a group of theorists led by Mahmoud Hussein in Aerospace Engineering Sciences to use computer-based simulations to track the passage of heat from their nano-sized bars. The simulations were so detailed that they could follow the behavior of each and every atom in the model—millions of them in all. They discovered that when they placed the heat sources close together, the vibrations of energy (called phonons) they produced bounced off each other more efficiently when other heat sources were nearby, scattering heat away and cooling the bars down.

The group’s results highlight a major challenge in designing the next generation of tiny devices, such as microprocessors or quantum computer chips. When you shrink down to very small scales, heat does not always behave the way you think it should.

Seeing with the “Nano” Eye

Understanding the chemical and physical properties of surfaces at the molecular level has become increasingly relevant in the fields of medicine, semiconductors, rechargeable batteries, etc. For example, when developing new medications, determining the chemical properties of a pill’s coating can help to better control how the pill is digested or dissolved. In semiconductors, precise atomic level control of interfaces determines performance of computer chips. And in batteries, capacity and lifetime is often limited by electrode surface degradation.  These are just three examples of the many applications in which the understanding of surface coatings and molecular interactions are important.

The imaging of molecular surfaces has long been a complicated process within the field of physics. The images are often fuzzy, with limited spatial resolution, and researchers may not be able to distinguish different types of molecules, let alone how the molecules interact with each other. But it is precisely this–molecular interactions–which control the function and performance of molecular materials and surfaces.  In a new paper published in Nano Letters, JILA Fellow Markus Raschke and graduate student Thomas Gray describe how they developed a way to image and visualize how surface molecules couple and interact with quantum precision. The team believes that their nanospectroscopy method could be used for molecular engineering to develop better molecular surfaces, with controlled properties for molecular electronic, photonic, or biomedical applications.

Go to Top